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ABSTRACT  16 

Polycyclic musks (PCMs) are synthetic fragrance compounds used in personal care 17 

products and household cleaners.  Previous studies have indicated that PCMs are introduced to 18 

aquatic environments via wastewater and river discharge.  Polyethylene passive samplers (PEs) 19 

were deployed in air and water during winter 2011 and summer 2012 to investigate the role of 20 

population centers as sources of these contaminants to the Great Lakes and determine whether 21 

the lakes were acting as sources of PCMs via volatilization.  Average gaseous Σ5PCM ranged 22 

from below detection limits (<DL) to 3.2 ng/m3 on the western shoreline of Lake Erie in Toledo.  23 

Average dissolved Σ5PCM ranged from <DL to 2.6 ng/L on the southern shore of Lake Ontario 24 

near the mouth of the Oswego River.  Significant correlations were observed between population 25 

density and Σ5PCM in both air and water, with strongest correlations within a 25 and 40 km 26 

radius, respectively.  At sites where HHCB was detected it was generally volatilizing, while the 27 

direction of AHTN air-water exchange was variable.  Volatilization fluxes of HHCB ranged 28 

from 11±6 ng/m2/day to 341±127 ng/m2/day, while air-water exchange fluxes of AHTN ranged 29 

from -3±2 ng/m2/day to 28±10 ng/m2/day.  Extrapolation of average air-water exchange flux 30 

values over the surface area of the lakes’ coastal boundary zone suggested volatilization may be 31 

responsible for the loss of 64-213 kg/year of dissolved Σ5PCM from the lakes.  32 

 33 

 34 

 35 

 36 
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INTRODUCTION 37 

 Polycyclic musks (PCMs) are ubiquitous pollutants widely used as additives in personal 38 

care products and household cleaners to lend them a long-lasting, pleasing odor.1–3  Previous 39 

studies have indicated that PCMs are introduced to aquatic environments, including the Great 40 

Lakes, via effluent from wastewater treatment plants (WWTPs) and river discharge.3–6  One of 41 

the most widely used PCMs, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-42 

benzopyran (HHCB, or Galaxolide®), was listed as one of Howard and Muir’s top 50 high 43 

priority pollutants with persistence and bioaccumulation potential in need of increased 44 

monitoring.7  The effects of PCMs on aquatic organisms are largely unknown, but they have 45 

been found to bioaccumulate8–10 and recent studies suggest environmentally relevant 46 

concentrations may cause oxidative stress and genetic damage in some organisms.11  47 

 Polyethylene passive samplers (PEs) are promising tools for measuring hydrophobic 48 

organic contaminants (HOCs) at high spatial resolution because they are cost-effective, require 49 

no electricity, and are simple to deploy.12  PEs sequester the dissolved or gaseous fraction of 50 

HOCs from the surrounding water or air over time, allowing measurement of time-integrated 51 

concentrations.13–16  They have been used to measure a wide variety of HOCs in air and water 52 

and to calculate air-water exchange fluxes,17–20 but they have not been applied to the study of air-53 

water exchange for PCMs.   54 

The use of PEs in this study provided a unique opportunity to measure the truly gaseous 55 

and dissolved fraction of PCMs available for air-water exchange and determine whether gaseous 56 

PCMs were volatilizing from surface waters in Lake Erie and Lake Ontario.  Based on previous 57 

work, volatilization may be an important loss route for PCMs in the Great Lakes,4,5 but fluxes 58 
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had not been determined by simultaneous air and water sampling.  In this study, PEs were 59 

deployed in air and water during winter 2011 and summer 2012 to (i) measure baseline gaseous 60 

and dissolved concentrations of PCMs in and above Lakes Erie and Ontario, (ii) investigate the 61 

role of population centers as sources of these contaminants, (iii) determine whether the lakes 62 

were acting as sources of PCMs via volatilization, and (iv) explore how PE-derived PCM air-63 

water exchange fluxes respond to non steady-state conditions.  64 

 65 

METHODS 66 

Sampler Preparation and Deployment.  Prior to deployment, PEs were pre-extracted in solvent 67 

and loaded with performance reference compounds (PRCs) dibromobiphenyl, 68 

tetrabromobiphenyl, pentabromobiphenyl, naphthalene-d8, pyrene-d10, and benzo(a)pyrene-d12 69 

as described previously.19  The PE deployment schedule and meteorological parameters, 70 

including the number of days each PE was deployed, are summarized in Supporting Information 71 

(SI) Table S1.  Average temperature and wind speed were determined using data from the 72 

nearest available meteorological buoy (Table S2, Figure S1).   73 

Shoreline PEs were deployed by trained volunteers as previously described.19  Briefly, 74 

volunteers hung air PEs inside protective metal bowls at a height of about 1.5 meters, and 75 

tethered water PEs to an anchored line so that they would be secured about 1 meter beneath the 76 

water’s surface.  Offshore and nearshore deployments were carried out by workers at 77 

Environment Canada and the Ontario Ministry of the Environment, as described previously by 78 

Liu et al.17  Air PEs were secured in a protective chamber 2 meters above the water’s surface on 79 

a buoy and water PEs were enclosed within a perforated metal cage and secured to the buoy 80 
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about 4 meters below the water’s surface.  After the PEs were recovered, they were shipped back 81 

to the laboratory overnight on ice and frozen until extraction.  82 

Extraction and Analysis.  PEs from 56 atmospheric deployments (including 9 over-winter 83 

deployments) and 39 aqueous deployments were extracted and analyzed.  All PEs were spiked 84 

with labeled PAHs (acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) and 85 

extracted for 18-24 hours in pentane, concentrated to <100 µL, and spiked with injection 86 

standard p-terphenyl-d14.  All extracts from aqueous PEs were passed through silica gel/sodium 87 

sulfate cleanup columns.  88 

 Extracts were analyzed for five PCMs: 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-89 

hexamethylcyclopenta-(g)-2-benzopyran (HHCB, or Galaxolide®), 7-acetyl-1,1,3,4,4,6-90 

hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN, or Tonalide®), 4-acetyl-1,1-dimethyl-6-tert-91 

butylindan (ADBI, or Celestolide®), 6-acetyl-1,1,2,3,3,5-hexamethylindan (AHMI, or 92 

Phantolide®), 5-acetyl-1,1,2,6-tetramethyl-3-isopropylindane (ATII, or Traesolide®) and two 93 

nitromusks: 1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene (musk xylene) and 4-acetyl-1-tert-94 

butyl-3,5-dimethyl-2,6-dinitrobenzene (musk ketone).  This was done using an Agilent 6890 gas 95 

chromatograph (GC) with a J&W Scientific DB-5 MS fused silica capillary column (30 m x 0.25 96 

mm I.D.) with the injection port set to 275 ºC and helium flow set to 1.9 mL/min, coupled to an 97 

Agilent 5973 mass spectrometric detector (MSD) in electron ionization (EI) mode with ion 98 

source at 230 ºC, quadrupole at 150 ºC, and transfer line at 250 ºC.  Concentrations were 99 

corrected for internal standard recoveries.   100 

Quality Control. Every batch of PEs was extracted alongside a laboratory blank and two 101 

additional blanks extracted in solvent spiked with all target compounds.  Spiked samples were 102 
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used to track losses during extraction, concentration, and cleanup.  Average recoveries ranged 103 

from 79% for musk xylene to 145% for musk ketone (Table S3).  The relative percent 104 

differences (RPD) between ambient concentrations from duplicate samplers are shown in Table 105 

S4.  For air PEs, the mean RPD was 18% for HHCB and 21% for AHTN (N=18).  For water 106 

PEs, the mean RPD was 15% for HHCB and 25% for AHTN (N= 14).   107 

 Field blanks were sent to each volunteer along with PEs intended for deployment.  Field 108 

blanks were transported to the sampling site along with other PEs, taken out of their packaging, 109 

handled by the volunteer, and then immediately re-packaged and shipped back to the laboratory 110 

for analysis.  Concentrations of target compounds in deployed PEs were blank-subtracted using 111 

the most relevant field blank.  For offshore deployments done from research vessels, all field 112 

blanks taken during the cruise were averaged and the average field blank value was subtracted 113 

from all samples collected.  114 

After blank subtraction, the detection limit (DL) in ng/g PE was defined as twice the 115 

standard deviation for all 11 laboratory blanks, as these samples were representative of the 116 

typical variability in background concentrations in the laboratory.  Concentrations below 117 

detection limits were replaced with zero.  Average blank concentrations and detection limits per 118 

gram polyethylene are shown in Table S5.  For HHCB, which was typically found at greatest 119 

concentrations in the blanks, average blank concentrations were 13 ng/g PE, 28 ng/g PE, and 4 120 

ng/g PE in laboratory blanks, shoreline volunteer field blanks, and shipboard field blanks, 121 

respectively.   122 

To better describe the detection limits for PEs, typical DLs in ng/g PE were translated to 123 

air and water concentrations using the average percent equilibration for each site type and 124 
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assuming an average temperature of 18.85 ºC for summer deployments and 4.85 ºC for winter 125 

deployments (Table S6).  For air samples, typical ambient detection limits were about 0.9 ng/m3 126 

for HHCB and 0.07 ng/m3 for AHTN at summer shoreline and offshore sites, and 0.2 ng/m3 for 127 

HHCB and 0.01 ng/m3 for AHTN at winter shoreline sites.  In water samples, typical detection 128 

limits were about 0.6 ng/L for HHCB and 0.04 ng/L for AHTN, with no significant difference 129 

between offshore and shoreline samples.  Actual detection limits varied from site to site 130 

depending on the PE’s sampling rate, and all blank subtraction was done using concentrations 131 

per weight of polyethylene, before conversion to ambient air and water concentrations.    132 

 Percent detection for target compounds is presented in Table S7.  HHCB and AHTN 133 

were found in 15% and 68% of all shoreline air PEs deployed in this study and in 38% and 54% 134 

of offshore/nearshore air PEs.  In water, HHCB and AHTN were found in 45% and 60% of 135 

shoreline water PEs and in 47% and 79% of offshore water PEs.  136 

Physico-chemical Properties.  Physico-chemical properties of all target analytes and PRCs are 137 

presented in Table S8.  PE-air partitioning coefficients (KPEA) were determined from regression 138 

with sub-cooled liquid vapor pressure as in Khairy and Lohmann.15  PE-water partitioning 139 

coefficients (KPEW) were calculated from solubility as in Lohmann.21  KPEA, KPEW, and 140 

diffusivity in air (Da) and water (Dw) for each compound were corrected for each deployment’s 141 

mean temperature, as detailed further in the SI.  142 

Sampling Rates and Ambient Concentrations.  To determine ambient concentration (Ca), the 143 

concentration in the PE (CPE) was adjusted for the percent equilibration (f) reached during 144 

deployment as in Equation 1.  A detailed summary of these calculations is presented in the SI.  145 

Briefly, percent loss of each PRC (1-f) was plugged into a generalized exponential model for PE 146 
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uptake (Equation 2) to derive a best-fit value for the thickness of the diffusive boundary layer 147 

(δDBL) using a nonlinear least-squares fitting method adapted from Booij et al.22  In Equation 2, t 148 

is total deployment time (listed for each deployment in Table S1), lPE is half the PE thickness, 149 

KPEM is the PE-matrix partitioning coefficient, and ko is the mass transfer coefficient, which 150 

represents the reciprocal sum of PE-side resistance (kPE
-1), which is dependent on DPE and lPE, and 151 

environmental matrix-side resistance (km
-1), which is dependent on Da or Dw and δDBL.  Best-fit 152 

δDBL values were used to estimate f reached by each PCM during each deployment.  153 

                                        (1) 154 

                 (2) 155 

 Average f values for each PCM are presented in Table S9 and show that HHCB and 156 

AHTN generally reached > 95% equilibrium in both air and water.  Average δDBLs for air 157 

boundary layers (δABL) were lower for offshore/nearshore PEs (0.2±0.1 mm; average ±stdev) 158 

than for shoreline PEs (1.8±1.4 mm in summer and 1.4±0.5 mm in winter).  This translated to 159 

average HHCB sampling rates of 5.7±0.9 m3/day for winter PEs, 6.9±2.3 m3/day for shoreline 160 

summer PEs, and 13±0.9 m3/day for offshore PEs.  Average water boundary layer thickness 161 

(δWBL) was 170±63 µm at shoreline sites and 82±25 µm at offshore sites, which translated to 162 

average sampling rates for HHCB of 16±3.8 L/day for shoreline PEs and 9.2±4.1 L/day for 163 

offshore PEs. 164 
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 Best-fit δDBL and other compound-specific and site-specific parameters were plugged into 165 

the equation for f to determine typical equilibration times for the PCMs measured in this study.  166 

HHCB and AHTN tended to equilibrate within about 25 days in water and 19 days in air, so 167 

mean concentrations were representative of these time lengths, though PEs were often deployed 168 

for longer.  Use of thicker polyethylene sheeting in future deployments would allow for time-169 

integrated concentrations of HHCB and AHTN to be measured over longer time periods.  170 

Data Analysis and Statistical Methods.  Human population data was extracted from the Global 171 

Rural-Urban Mapping Project (GRUMP) Population Count Grid dataset provided by Columbia 172 

University23 and maps were constructed in ArcMap for Desktop 10.3.1.  To find the radii at 173 

which population and Ʃ5PCM correlated most strongly, the model with the lowest residual 174 

standard error (RSE) was identified using the ordinary least-squares linear modeling function 175 

(lm) in R.24  Linear models were further refined using the robust linear model (rlm) function in 176 

the MASS package in R,25 which iteratively fits data to a linear model, weighting outliers 177 

depending on their distance from the best-fit line.  All presented relationships were found to be 178 

statistically significant (p < 0.01) using both approaches.  Results were plotted using R package 179 

ggplot2.26 180 

Air-Water Exchange Calculations.  32 pairs of co-deployed air and water PEs were used to 181 

investigate time-integrated air-water exchange fluxes.  The direction of exchange was 182 

determined by calculating the ratio of fugacity in water to fugacity in air (fw/fa) as in Equation 3, 183 

where C∞,w and C∞,a represent the concentration of the compound in the PE once it has reached 184 

equilibrium with surrounding water and air, respectively.  185 
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           (3) 186 

fw/fa  > 1 indicates volatilization while fw/fa  < 1 indicates absorption.  In cases where the 187 

concentration in both air and water were <DL, no fugacity ratio was calculated.  In cases where 188 

the concentration in one medium was <DL, but was >DL in the other medium, a fugacity ratio 189 

was calculated by replacing the <DL value with the DL value, as this resulted in the most 190 

conservative estimate for the fugacity ratio (see Figure S2).  191 

C∞,w and C∞,a were determined by correcting the concentration in the PE (CPE) using the 192 

calculated percent equilibrium (f) reached by each compound during deployment.  In most cases 193 

for AHTN and HHCB, C∞ ~ CPE because they equilibrated during deployment.  The uncertainty 194 

in the fugacity ratio was calculated by propagating the uncertainty in the parameters used to 195 

calculate C∞,a and C∞,w, which is detailed further in the SI.  In cases where the fugacity ratio was 196 

within one standard deviation from equilibrium, it was not considered significantly different 197 

from equilibrium and no flux was calculated.   198 

Air-water exchange fluxes (Fa/w) were calculated using an approach based on the 199 

Whitman two-film model27 as described in Schwarzenbach et al.28 with wind speed’s effect on 200 

water-side mass transfer determined using a Weibull distribution to account for the non-linearity 201 

of the effect of wind speed on mass transfer.29  The mass transfer coefficient (va/w) was 202 

multiplied by the concentration gradient as in Equation 4, where KPEW,T2 is the PE-water 203 

partitioning coefficient corrected for deployment temperature.  Similar approaches have 204 

previously been used to estimate air-water exchange fluxes from PE pairs for polychlorinated 205 

biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and polycyclic aromatic 206 
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hydrocarbons (PAHs) in the Great Lakes,20,17,30 but PCMs have not been investigated.  207 

Uncertainty in exchange fluxes was calculated using the uncertainty of the parameters used to 208 

calculate C∞,a, C∞,w, and KPEW,T2, and assuming 30% relative uncertainty in va/w.31 Calculations 209 

and error propagation are detailed further in the SI.   210 

       (4) 211 

 212 

 213 

RESULTS AND DISCUSSION 214 

Dissolved PCM Concentrations.  Average dissolved Ʃ5PCM ranged from <DL at Cape Vincent 215 

(CV) in eastern Lake Ontario to 2.6 ng/L near the mouth of the Oswego River (OSW) on the 216 

southern shoreline of Lake Ontario. Average dissolved concentrations of AHTN and HHCB are 217 

shown in Figure 1A.    218 

 Average dissolved PCMs are summarized in Table 1.  Along the southeastern shore of 219 

Lake Erie and the northeastern shore of Lake Ontario, concentrations were similar to offshore 220 

levels (Ʃ5PCM < 100 pg/L) and HHCB was generally <DL, while concentrations were elevated 221 

nearer to the urban centers of Toronto and Cleveland and along the southern shore of Lake 222 

Ontario.  Variation in dissolved Ʃ5PCM over multiple deployments is shown in Figure S3.  223 

 Overall, concentrations reported from PEs were similar but lower than previous results: 224 

Peck and Hornbuckle measured PCMs in Lake Michigan in 1999-2000 using shipboard active 225 

sampling with XAD-2 resin and reported means of 5 ng/L for HHCB and 1 ng/L for AHTN.4  226 
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Helm et al. estimated concentrations of 0.2 – 10 ng/L and 0.1 – 10 ng/L for HHCB and AHTN, 227 

respectively, east of Toronto in June 2008 using semi-permeable membrane devices (SPMDs).32  228 

In offshore Lake Ontario, Andresen et al. measured HHCB and AHTN by liquid-liquid 229 

extraction of water samples at 2.0 ng/L and 0.2 ng/L, with concentrations increasing to 7.0 ng/L 230 

for HHCB and 0.8 ng/L for AHTN in Hamilton Harbor.33  Concentrations in this study were 231 

typically lower than in urban creeks near Toronto (2-1000 ng/L, with lower concentrations (0.04 232 

– 18 ng/L) in the less populated Rouge River watershed).5  This was expected, as the sites 233 

monitored in this study were not as directly representative of upriver source regions.   234 

At sites where both HHCB and AHTN were detected, the ratio of HHCB:AHTN ranged 235 

from 7-12, with an average of 10±2, which was similar to that reported by Buerge et al. for 236 

summertime surface waters in a Swiss lake (HHCB:AHTN 6 – 9) and by Andresen et al. in Lake 237 

Ontario in 2005 (~ 10).33,34  HHCB:AHTN ratios were, in most cases, greater than those 238 

measured in source region studies.  Buerge et al. estimated that the half-life of HHCB with 239 

respect to photolysis in water was about 25 times longer than for AHTN, so increasing 240 

HHCB:AHTN ratio in water with distance from source was expected.34 241 

 Nitromusks were not found above a 3:1 signal:noise level in the majority of water 242 

samples and were therefore omitted from discussion.  Previous studies generally found musk 243 

xylene and musk ketone at levels near or below this study’s typical detection limits (19 pg/L for 244 

musk xylene and 225 pg/L for musk ketone).  Peck and Hornbuckle found median concentrations 245 

in Lake Michigan of 49 pg/L for musk xylene and 81 pg/L for musk ketone, and Andresen et al. 246 

measured both nitromusks at about 40 pg/L in Hamilton Harbor, Lake Ontario.4,33  247 
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Gaseous PCM Concentrations.  Average summertime Ʃ5PCM ranged from <DL at sites in Erie 248 

(ERI) and Sheffield Lake (SHF) on the southern Lake Erie shoreline, Prince Edward Point (PEP) 249 

in northern nearshore Lake Ontario, and eastern offshore Lake Erie (EERI), to 3.2 ng/m3 in 250 

Toledo (TOL).  Concentrations of all gaseous PCMs are summarized in Table 2.  Average 251 

summertime HHCB and AHTN concentrations are displayed in Figure 1B.  Summertime 252 

concentrations were lowest at offshore buoy sites (< 300 pg/m3, with HHCB <DL), with the 253 

exception of three buoy sites near the Toronto waterfront, where concentrations were comparable 254 

to or greater than shoreline sites.  Concentrations at shoreline sites were generally greater in the 255 

summer than in the winter.  Variations in Ʃ5PCM over multiple deployments are depicted in 256 

Figure S4. 257 

A possible explanation for the low incidence of detection of HHCB in this study is its 258 

short atmospheric lifetime (about 5.3 hours) with respect to photolysis.35  HHCB:AHTN ratios in 259 

air have previously been shown to decrease with distance from source regions, suggesting that 260 

gaseous HHCB may degrade more rapidly than AHTN.36  At sites where both AHTN and HHCB 261 

were >DL, the average HHCB:AHTN ratio ranged from 3.8 in eastern nearshore Toronto 262 

(ETOR) to 6.6 in Toledo (TOL), with an average value of 5±1, somewhat similar to ratios 263 

measured by Xie et al. in rural Germany (median 3.5).36 264 

  PCMs are relatively volatile (0.02 - 1.2 Pa)4 compared to other semi-volatile organic 265 

contaminants (SVOCs) and a significant fraction of these compounds (> 80%) is typically found 266 

in the gaseous phase, suggesting that PE-derived concentrations should match those from other 267 

air sampling techniques.  Indeed, results from previous studies were similar: Peck and 268 

Hornbuckle measured gas-phase PCMs in 1999-2001 using XAD-2 resin throughout the Great 269 
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Lakes and found average urban ∑2PCM (AHTN + HHCB) around 1-5 ng/m3 with mean offshore 270 

Lake Erie and Lake Ontario concentrations <0.5 ng/m3.37 Furthermore, average ∑2PCM 271 

concentrations in Toronto nearshore air measured in this study (1.6- 3.1 ng/m3) were comparable 272 

to those measured by Melymuk et al. during 2007-2008 using polyurethane foam (PUF) samplers 273 

within 10 km of the Toronto central business district (0.89-3.5 ng/m3).38  274 

As in water, the nitromusks were not found above 3:1 signal:noise levels in the majority 275 

of air samples and were therefore omitted from discussion.  In previous work by Peck and 276 

Hornbuckle in the lower Great Lakes region, nitromusks in air were found above method 277 

reporting limits only intermittently and at levels under 80 pg/m3.37 278 

Correlation of PCM concentrations with Population Density.  Previous studies have 279 

identified population centers as sources of gaseous PCMs to ambient air37 and have shown 280 

correlations between population density and PCMs in air and water.34,39,40  To investigate the 281 

relationship between PCMs and population density in the lower Great Lakes, average 282 

summertime concentrations were compared to population within 2 to 50 km of each site.  The 283 

strongest correlations found for gaseous and dissolved PCMs are displayed in Figure 2.  284 

Gaseous Ʃ5PCM exhibited significant (p < 0.01) correlation with population within a 15-285 

50 km radius of each site.  The correlation was strongest when considering population within 25 286 

km (p < 0.001; SE = 0.33; N = 22).  The two locations with the greatest residuals were Toledo 287 

(TOL) and Cleveland Edgewater (CLE), both of which exhibited greater gaseous Ʃ5PCM than 288 

would be predicted from population based on the presented regression.  This suggests elevated 289 

concentrations in these areas may be caused by nearby point sources not representative of the 290 

surrounding region.   291 
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Dissolved Ʃ5PCM exhibited significant (p < 0.01) correlation with population within a 292 

20-40 km radius of each site, with the strongest correlation observed when considering 293 

population within 40 km (p < 0.005; SE = 0.26; N = 20).  The strong correlation at such a large 294 

radius may be because spatial distributions are influenced by wastewater outfalls and river 295 

mouths, both of which are point sources that represent a much larger area’s population (the 296 

watershed).  Concentrations near the mouth of Oswego River exhibited the greatest residuals, 297 

again suggesting a nearby point source.  298 

River and Wastewater Discharge.  Dissolved PCMs were elevated at many shoreline sites 299 

impacted by nearby WWTPs designated as major dischargers by the US Environmental 300 

Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES),41 many of 301 

which discharged directly into the lakes.  More details on sites with elevated concentrations and 302 

possible sources are included in the SI.     303 

Air-Water Exchange.  Fugacity Ratios.  Fugacity ratios for all air-water PE pairs are displayed 304 

in Table S10 and depicted in Figure S2.  At all sites where HHCB was detected in air and/or 305 

water, fugacity ratios suggested it was volatilizing out of surface waters.  Fugacity ratios for 306 

AHTN also suggested volatilization from surface waters near Toronto and along the southern 307 

shore of Lake Ontario, though AHTN was near equilibrium or absorbed into surface waters at 308 

some other sites.  309 

The greatest fugacity ratios for both AHTN (fw/fa = 7) and HHCB (fw/fa = 18) were 310 

calculated for the PE pair from the late-summer deployment near the mouth of the Oswego River 311 

(OSW), during which greater dissolved PCMs were measured than during any other deployment 312 

(Ʃ5PCM = 4.8 ng/L).  Fugacity ratios were generally not significantly different from equilibrium 313 
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at sites on the southeastern shore of Lake Erie (ERI, DUN, BUF), the northeastern Lake Ontario 314 

shoreline/nearshore (CV, PEP, CHB), or at the offshore sites (CERI, EERI).  315 

PE-Derived Air-Water Exchange Fluxes at Non-Steady-State Conditions.  Values of va/w 316 

calculated for HHCB and AHTN ranged from 4.5-8.8 cm/day, which was somewhat slower than 317 

rates for PCBs calculated by Liu et al. (15-63 cm/day) and within the range for 4-ring PAHs 318 

calculated by McDonough et al. (1-16 cm/day).20  These rates were used along with mass 319 

transfer coefficients for PE uptake (ko) of HHCB from air (181-6,905 cm/day) and water (14-47 320 

cm/day) to determine how air-water exchange fluxes derived from co-deployed air and water 321 

PEs compared to actual values in scenarios where concentrations in air and water are not at 322 

steady state.   323 

A model was written in R in which air and water concentrations of HHCB were set to 324 

vary every 6 hours over 100 days.  In Scenario 1, both air and water concentrations fluctuated 325 

randomly between minimum and maximum values based on realistic concentration ranges from 326 

this and previous studies (1-6 ng/m3 in air; 0.5-8 ng/L in water).  In Scenario 2, air 327 

concentrations fluctuated randomly around a steadily increasing mean from 5 to 12 ng/m3 and 328 

water concentrations declined from 6 to 1 ng/L, also with random fluctuations, resulting in a 329 

reversal of the flux direction during the deployment.  The air-water exchange flux (Faw) at each 330 

time point was calculated from the simulated air and water concentrations at that time.   331 

At each time point, the mass of HHCB accumulated in air and water PEs in response to 332 

the fluctuating ambient concentrations was computed, and the PE-derived air-water exchange 333 

flux (Faw,PE) was calculated based on the concentrations of HHCB in the co-deployed PEs at that 334 

time.  Faw was then compared to Faw,PE by calculating the RPD between the two values.  An 335 
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example from Scenario 2, in which Faw decreased throughout the simulated deployment, is 336 

displayed in Figure 3.  Faw,PE is shown to steadily decline over the deployment along with Faw, 337 

but Faw,PE does not capture rapid day-to-day changes in the flux and appears to lag behind Faw by 338 

about 20 days.  A similar figure is shown for Scenario 1 in Figure S5.  339 

Each scenario was run 100 times, and each time the RPD between Faw,PE and Faw after 340 

100 days of deployment was recorded.  Results are presented in Table 3 as the mean RPD 341 

between Faw,PE and three values: Faw on the last day of the simulated deployment (Day 100), the 342 

average Faw over the typical equilibration time for HHCB (defined as 22 days, the average of air 343 

and water PE equilibrium times), and the average Faw over the entire 100-day deployment.  344 

Results show that PE-derived exchange fluxes provide a good estimate of mean Faw over the last 345 

22 days in both scenarios, though they were not always representative of instantaneous fluxes the 346 

day they were recovered, or of average fluxes over the entire deployment period.  347 

Table 3 also shows RPDs determined by comparison of “actual” fluxes (Faw) and fluxes 348 

that would be derived from weekly grab samples . Grab samples were simulated by taking values 349 

of the “actual” concentrations of PCMs in air and water once a week, calculating instantaneous 350 

exchange fluxes, and averaging these values over the 100-day deployment, or over the last 22 351 

days.  Results suggest that Faw,PE is more representative of the mean Faw over the last 22 days 352 

than taking 3 weekly grab samples, while weekly grab samples are more appropriate for 353 

capturing mean flux over 100 days in cases where the exchange flux changes steadily over time, 354 

as in Scenario 2.  In summary, PEs resulted in a very good approximation of the actual air-water 355 

exchange flux during the compounds’ equilibration time window, in some cases superior to 356 

weekly grab sampling. 357 
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PCM Air-Water Exchange Fluxes.  Air-water exchange mass transfer coefficients and exchange 358 

fluxes for all PE pairs with fugacity ratios significantly different from equilibrium are provided 359 

in Tables S11 and S12.  Figure 4 shows air-water exchange fluxes calculated for HHCB and 360 

AHTN in ng/m2/day during each deployment for which data was available.  As demonstrated in 361 

the previous section, these fluxes were representative of time-averaged air-water exchange fluxes 362 

over the last 3 weeks prior to sampler recovery.   363 

Volatilization fluxes of HHCB and AHTN ranged from 11±6 ng/m2/day and -3±2 364 

ng/m2/day during the first deployment near the shore of Cleveland, OH (CLE) to 341±127 365 

ng/m2/day and 28±10 ng/m2/day during late summer near the mouth of Oswego River (OSW).    366 

Few previous measurements of PCM air-water exchange fluxes are available for comparison.  367 

Xie et al. measured median net air-water volatilization of 27 ng/m2/day and 14 ng/m2/day for 368 

HHCB and AHTN in the North Sea, and measured net deposition of both compounds in the 369 

Arctic.36   370 

 371 

IMPLICATIONS 372 

Results from this study suggest that WWTPs may be responsible for influencing spatial 373 

distributions of dissolved PCMs in the lower Great Lakes, and that PCMs in the lakes were 374 

volatilizing from surface waters at many locations near urbanized shorelines.  Previous studies of 375 

the Great Lakes region have estimated that volatilization is an important loss route for dissolved 376 

PCMs.  Melymuk et al. estimated that volatilization removes 31% of total inputs of PCMs from 377 

the Toronto area, about 210±120 kg/yr, from Lake Ontario.5  Peck and Hornbuckle estimated that 378 

volatilization was responsible for the loss of about 290 kg/yr of PCMs from Lake Michigan.4  379 
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 Volatilization fluxes in this study were driven by elevated dissolved concentrations at 380 

shoreline and nearshore sites.  These elevated concentrations were expected to be entrained in 381 

the nearshore coastal boundary zone, which extends from the shoreline to where the depth of the 382 

lake exceeds that of the thermocline.42  To estimate total losses of dissolved PCMs from the 383 

lakes via volatilization, fluxes were averaged over the estimated surface area of the urbanized 384 

coastal boundary zone.   385 

The surface area of the Lake Ontario coastal boundary zone was estimated to be 6500 386 

km2 by extracting the area with depth shallower than 50 meters using GIS data from the Great 387 

Lakes Commission’s Great Lakes Information Network (GLIN), as shown in Figure S6.  The 388 

coastal boundary zone in Lake Erie was more difficult to define, as most of the lake is quite 389 

shallow and it does not develop a pronounced seasonal thermocline as in Lake Ontario.  From 390 

GLIN data, the surface area of Lake Erie shallower than 20 m was estimated to be 15200 km2.   391 

Averaging fluxes at all Lake Ontario sites yielded a mean Ʃ5PCM flux of 58 ng/m2/day 392 

over the coastal boundary zone.  Assuming fluxes of this magnitude occurred over 30%–100% 393 

the total coastal boundary zone and that fluxes of this magnitude occur all year long, we 394 

estimated that 41-138 kg/year Ʃ5PCM could be lost to volatilization in Lake Ontario.  Lake Erie 395 

data yielded an average Ʃ5PCM flux of 13 ng/m2/day, suggesting that 22-74 kg/year Ʃ5PCM 396 

could be lost to volatilization in Lake Erie.  This may be an overestimate, as fluxes could be 397 

lower in the winter, when the surface waters freeze and lower temperatures drive down PCM 398 

vapor pressure, but the absence of wintertime dissolved concentration data prohibited flux 399 

calculations for these months.  While these estimations are based on temporally- and spatially-400 

limited data, they are of a similar magnitude to those estimated in previous Great Lakes studies, 401 
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and suggest that volatilization may be a significant loss process for dissolved PCMs in this 402 

region.  403 
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FIGURES AND TABLES 588 

 589 

Table 1. Average dissolved PCMs (pg/L) summarized regionally 590 

	  	   N a ADBI AHMI ATII HHCB AHTN 
Toronto Waterfront Nearshore 3 1.1 ± 0.7 2.2 ± 0.7 37 ± 6.6 1625 ± 242 162 ± 32 
Southern L. Ontario Shoreline 3 1.2 ± 0.8 2.4 ± 1.3 28 ± 33 1363 ± 827 134 ± 66 
Greater Cleveland Shoreline/Nearshore 3 1.5 ± 0.9 3.9 ± 2.2 29 ± 13 697 ± 222 72 ± 19 
Southeast L. Erie Shoreline 3 0.1 ± 0.2 0.8 ± 0.3 3.0 ± 5.1 23 ± 39  16 ± 7.9 
Northeast L. Ontario Nearshore 3 < DL 0.4 ± 0.4 2.1 ± 2.0 < DL 14 ± 12 
Offshore L. Erie and L. Ontario 5 0.9 ± 1.2 2.5 ± 3.8 16 ± 21 < DL 28 ± 18 

a N is the number of sites of each type. 591 

 592 

 593 

Table 2. Average gaseous PCMs (pg/m3) grouped by site type   594 

  N a ADBI AHMI ATII HHCB AHTN 
Summer (May - November)   
Offshore/Nearshore Buoys 5 2.1 ± 4.6 2.2 ± 4.9 47 ± 106 < DL 5.4 ± 12 
Toronto Waterfront Nearshore Buoys 3 0.6 ± 1.0 24 ± 17 493 ± 69 1529 ± 591 302 ± 88 
L. Erie and L. Ontario Shoreline  14 2.8 ± 6.3 11 ± 9.5 100 ± 189 357 ± 836 149 ± 159 
Winter (December - April)   
L. Erie and L. Ontario Shoreline 9 0.2 ± 0.6 0.8 ± 1.5 22 ± 44 29 ± 87 17 ± 19 
a N is the number of sites of each type. 595 

 596 
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 597 

Figure 1. Average summer HHCB and AHTN (Σ2PCM) concentrations throughout the 598 
lower Great Lakes.  Average dissolved (top) and gaseous (bottom) HHCB and AHTN during 599 
summer deployments are shown with HHCB in red and AHTN in yellow.  Gaseous Σ2PCM 600 
ranged from <DL at sites marked by X’s to 3.2 ng/m3 in Toledo (TOL).  Dissolved Σ2PCM 601 
ranged from <DL at sites marked by X’s to 2.5 ng/L near the mouth of Oswego River (OSW).  602 
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 603 

Figure 2. Correlation of dissolved and gaseous Σ5PCM and surrounding population 604 
density.  Average summer dissolved (left) and gaseous (right) Σ5PCM was most strongly 605 
correlated with population within 25 km and 40 km of each site, respectively.  95% confidence 606 
intervals for the linear models are shaded in gray. 607 

 608 

 609 

 610 
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 611 

Figure 3. Predicted Air-Water Exchange Fluxes Based on Simulated Air and Water HHCB 612 
Concentrations. Simulated water and air concentrations of HHCB and air-water exchange 613 
fluxes calculated from these concentrations are shown on the left over a 100-day simulated 614 
deployment. The mass of HHCB accumulated in a 2-gram PE in response to the simulated air 615 
and water concentrations is shown on the left, along with the air-water exchange flux that would 616 
be calculated using this pair of air and water PEs.  617 
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 623 

Table 3. Comparison of Simulated Air-Water Exchange Fluxes to PE-Derived and Grab 624 

Sample-Derived Exchange Fluxes.  625 

 626 

 627 

 628 

 629 

Scenario)1:)Randomly)
Fluctuating)Air)and)Water)

Concentrations

Scenario)2:)Steadily)Increasing)
Air)and)Decreasing)Water)

Concentrations
Relative(Percent(Difference((RPD)(between(Faw(and(Faw,PE

Mean(Faw(Over(100(Days( 18.5+/B6.8% 357+/B267%
Mean(Faw(Over(Last(22(days( 15.3+/B8.8% 8.4+/B5.2%
Faw(on(Day(100 351+/B219% 12.3+/B1.2%

Relative(Percent(Difference((RPD)(between(Faw(and(mean(Faw(from(weekly(grab(sample
Mean(Faw(Over(100(Days( 26.9+/B15.0% 21+/B15%
Mean(Faw(Over(Last(22(days( 60.4+/B34.6% 329+/B232
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  630 

Figure 4. Summer air-water exchange fluxes of AHTN and HHCB.  Air-water exchange 631 
fluxes are shown for shoreline Lake Erie and Lake Ontario sites, as well as nearshore Toronto 632 
buoy sites.  Positive bars represent volatilization while negative bars represent absorption.  Cases 633 
where both air and water concentrations were <DL were marked “<DL”.  Cases where fugacity 634 
ratios were not significantly different from equilibrium were marked “X”.  Offshore Lake Erie 635 
and nearshore northern Lake Ontario sites as well as some shoreline sites (SHF, ERI, DUN, 636 
BUF, and CV) were omitted because no significant exchange fluxes were calculated there.  Error 637 
bars represent standard deviation calculated via error propagation.   638 
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