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Quantum Effects in the Dynamics of the
One-Dimensional Planar Antiferromagnet

Gerhard Müller, 1 Harry Thomas, 1 Marcos W. Puga, 2 and Hans Beck 2

1 Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland
2 Institut de Physique de I’Université, CH-2000 Neuchâtel, Switzerland

In a recent publication [1] we found that the T = 0 dynamics of the 1D s = 1
2 Heisenberg

antiferromagnet (HB AF) with nearest-neighbor exchange interaction J is almost completely dom-
inated by a particular continuum of excitations (called spin-wave continuum, SWC) bounded by
the dispersion branches ε1(q) = (πJ/2) sin q and ε2(q) = πJ sin(q/2). It differs markedly from the
classical lD HB AF where the spectral weight is concentrated on a single branch of spin-waves.
The result for the structure function Sµµ(q, ω) ≡ 〈Sµl S

µ
l′〉q,ω, which is a special case of Eq. (6), is

in good agreement with low-Tneutron scattering data on CPC [2] concerning excitation energies,
lineshapes and integrated intensity.

In this paper we outline an extension to the planar s = 1
2 AF with Hamiltonian

H =
N∑
l=1

{
J⊥
(
Sxl S

x
l+1 + Syl S

y
l+1

)
+ JzS

z
l S

z
l+1

}
, J⊥ ≡ J > 0, 0 < Jz < J. (1)

By using finite-chain calculations on systems with 4 to 10 spins, we again find a special class of
excitations forming a two-parameter continuum (SWC) in (q, ω)-space which dominates Sµµ(q, ω)
at T = 0. Further, we can identify each one of these excitations with a member of the ‘class C’
of non-bound states defined in the framework of Bethe’s formalism. By use of des Cloizeaux and
Gaudin’s method [3], we obtain the SWC energies

ωm(q) =
πJ sin θ

θ
sin

q

2
cos
(q

2
− qm

2

)
; q ≥ 0, 0 ≤ qm ≤ q, (2)

where θ = arccos(Jz/J⊥), and qm labels the different dispersion branches of the SWC. In particular,
qm = 0 and qm = q yield the lower and the upper boundary, respectively,

ε1(q) =
πJ sin θ

2θ
sin q, ε2(q) =

πJ sin θ
θ

sin
q

2
. (3)

From (2) we deduce the density of states in the SWC

D(q, ω) =
N

2π

{
ε22(q)− ω2

}−1/2

; ε1(q) ≤ ω ≤ ε2(q). (4)

In analogy to our result for the HB AF (Jz = J⊥) and to exact results for the XY AF (Jz = 0) [1],
we conjecture that Szz(q, ω) can be written as a product M(q, ω) ·D(q, ω) with

M(q, ω) = const ·
{
ε22(q)− ω2

ω2 − ε21(q)

}α
(5)

representing the squared matrix elements |〈G|Sz(q)|SWC〉|2 between the non-degenerate ground
state and the SWC excitations. The exponent α can be related to exponents of the Baxter model
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[4] yielding α(θ) = (π/2− θ)/(π − θ). Thus we are led to the analytic expression

Szz(q, ω) =
2A

B(1− α, 1/2 + α)
Θ
(
ω − ε1(q)

)
Θ
(
ε2(q)− ω

)(
ω2 − ε21(q)

)α(
ε22(q)− ω2

)1/2−α , (6)

where the Beta function serves as a convenient normalizing factor, and the constant Awill be
determined below. In the limit Jz/J⊥ = 0 (θ = π/2), this result is exact [1].

Fig. 1 shows Szz(q, ω) at fixed q = 4π/5 as a function of ω for various anisotropies. In the XY
limit α = 0 M(q, ω) is a constant and Szz(q, ω) reflects the SWC density of states (5) with a square-
root divergence at ε2(q) and a finite step at ε1(q). For intermediate anisotropies (0 < α < 1/2)
M(q, ω) is no longer a constant, but diverges at ε1(q) and vanishes at ε2(q). This leads to a weaker
singularity in Szz(q, ω) at ε2(q) and gives rise to a second divergence at ε2(q). We therefore expect
that inelastic neutron-scattering experiments will reveal a two-peak structure at low T . In the HB
AF limit α = 1/2) the matrix elements (5) vanish sufficiently rapidly at ε2(q) in order to overcome
the density-of-states singularity. Most of the spectral weight is now concentrated at ε1(q). It should
be remarked that the spectrum contributing to Szz(q, ω) has no gap at q = 0 or q = π in the whole
range 0 ≤ Jz/J⊥ ≤ 1. This is a clear quantum effect, for it is in marked contrast to classical
spin-wave theory. Here, the excitations contributing to Szz(q, ω) consist of a single branch (in the
extended zone) [5]

εcl(q) = 2Js
{

(1− cos q)[1 + (Jz/J) cos q]
}1/2

, (7)

which has a gap at q = π increasing with planar anisotropy. Note that in the quantum case
the spectral weight of Szz(π, ω) is also redistributed, with increasing anisotropy, towards higher
energies, but rather in terms of a varying exponent than in terms of an energy gap.

An important check for the validity of our result (6) is the application of the sum rule [6]

Kzz(q) ≡
∫ ∞

0

dω
2π
ωSzz(q, ω) = −2JFx(1− cos q), (8)

where the nearest-neighbor correlation function Fx ≡ 〈Sxl Sxl+1〉 has been calculated exactly by
Yang and Yang [7]. The first frequency moment of (6)

Kzz(q) =
AJ sin θ

4θ
(1− cos q) (9)

Figure 1. Out-of-plane structure function Szz(q, ω) of Eq. (6) versus ω at fixed q = 4π/5 for
various anisotropies Jz/J⊥. The prefactor A has been determined for this figure via the sum
rule.
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reproduces the exact q-dependence irrespective of the anisotropy. The integrated intensity is ob-
tained as

Izz(q) ≡
∫ ∞

0

dω
2π
Szz(q, ω) =

A

2π
tan

q

2 2F1

(
1
2
, 1− α, 3

2
,− tan2 q

2

)
, (10)

Izz(q) '
A

4π
q, (q � 1); Izz(π) =

A

4
√
π

Γ(1/2− α)
Γ(1− α)

. (11)

In the XY limit the linear term is already the exact result for all q. In the HB AF limit Izz(q)
has a logarithmic divergence at q = π. The asymptotic behaviour of the correlations in real space
is 〈Szl Szl+R〉 ∼ (−1)R/R2(1−α). Thus, the out-of-plane correlations are strongest in the isotropic
limit. With increasing anisotropy the spins become more and more correlated in the easy plane,
and hence the fluctuations out of the plane are increasingly suppressed. Another important static
quantity is the q-dependent susceptibility

χzz(q) ≡
∫ ∞

0

dω
2π
ω−1Szz(q, ω) =

Aθ

π2J sin θ 2F1

(
1, α+

1
2
,

3
2
, sin2 q

2

)
, (12)

χzz(0) =
Aθ

π2J sin θ
, χzz(q) ∼ (π − q)−2α (q → π). (13)

The exact result for the uniform susceptibility is already available [7]: χzz = θ/[Jπ(π − θ) sin θ].
Hence, with the sum rule result (8), (9) and with the uniform susceptibility (13), we have two
independent ways of determining A, yielding

AK(θ) = −8θFx(θ)/ sin θ, Aχ(θ) = π/(π − θ). (14)

The difference between the two values is not greater than a few percent, except close to the HB AF
limit, where it reaches 15%. This discrepancy in the isotropic limit is understood and extensively
discussed in Ref. [1].

We conclude by noting that the present approach also works for the in-plane component of
the structure function Sxx(q, ω). In this case there are two dominating spin-wave continua, one
of which is again confined between the branches ε1(q) and ε2(q) of Eq. (3) and the second one
between the boundaries ε1(π − q) = ε1(q) and ε2(π − q). We find that the SWC contributions to
Sxx(q, ω) can be written as a sum of two terms of the form (6) with the boundaries in one of them
replaced accordingly. The prefactors and the exponents in the two terms are different functions of
the planar anisotropy. Hence the corresponding lineshapes are predicted to be even more complex
than those of Szz(q, ω). Furthermore we can show that an ansatz of the form (6) also holds for
the isotropic s > 1

2 HB AF with an exponent α which in this case depends on the spin quantum
number s. Here we find that with increasing s the lineshape of Sµµ(q, ω) becomes more symmetric.
In the limit s→∞ the exact classical result is recovered. More details will be published elsewhere.
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