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Offspring born to related parents often have lower fitness than those born to non-20 

related parents, a phenomenon termed inbreeding depression. While many species have been 21 

shown to rely on pre- and/or post-copulatory mate choice to avoid inbreeding, such research 22 

has focussed largely on polyandrous rather than monandrous species. The absence of post-23 

copulatory mate choice in monandrous species suggests that pre-copulatory mate choice 24 

should play a more important role in inbreeding avoidance. We used a monandrous wolf 25 

spider, Pardosa astrigera, as a model system to investigate whether (1) male spiders respond 26 

differently to sibling and non-sibling females; (2) female spiders respond differently to 27 

sibling versus non-sibling males; and (3) inbreeding affects females and their offspring. Male 28 

courtship behavior was similar for sibling and non-sibling females; although females were 29 

less likely to mate with siblings, over half did mate successfully with their sibs. Sibling-30 

mated females produced fewer offspring from the first eggsac and fewer total offspring, but 31 

inbred offspring survived longer in a range of environments than their outbred counterparts. 32 

This suggests that the fitness costs of reduced fecundity in sibling-mated females may be 33 

offset by higher offspring survivorship. Our results highlight the importance of considering 34 

both parent and offspring fitness when addressing the costs of inbreeding, and are the first to 35 

document the impact of inbreeding on sexual behaviour and reproductive fitness in a 36 

monandrous spider.  37 

Keywords: Courtship, fecundity, fitness, inbreeding avoidance, mate discrimination, 38 

mating, monandrous, spider  39 



Inbred individuals are often less fit than outbred individuals, a phenomenon generally 40 

resulting from increased homozygosity at loci carrying rare deleterious recessive alleles or 41 

exhibiting over-dominance (Charlesworth & Charlesworth, 1987; Lynch, 1991). The fitness 42 

costs of inbreeding have been documented in an array of taxa, and exert a strong selective 43 

pressure on both mating and reproductive strategies (Bateson, 1982; Escobar et al., 2011; 44 

Muller & Muller, 2016; Szulkin, Stopher, Pemberton, & Reid, 2013). The impact of 45 

inbreeding on offspring can be altered by the surrounding environment. Varying 46 

environmental conditions, for example, can cause stress and often exacerbate the effects of 47 

inbreeding (Armbruster & Reed, 2005). These stressors can include suboptimal diets (Fox & 48 

Reed, 2011; Freitak, Bos, Stucki, & Sundstrom, 2014) and variation in temperature (Fox & 49 

Reed, 2011; Kristensen, Barker, Pedersen, & Loeschcke, 2008), and are widely recognized to 50 

exacerbate the fitness costs of inbreeding.   51 

An array of mechanisms have evolved for avoiding inbreeding and/or reducing its 52 

fitness costs (Firman & Simmons, 2008; Pusey & Wolf, 1996; Ruch, Heinrich, Bilde, & 53 

Schneider, 2009). Prior to breeding, sex-biased dispersal from natal habitats decreases 54 

inbreeding risk in some species (Keane, 1990; Pusey & Wolf, 1996; Smith, Su, Berger-Tal, & 55 

Lubin, 2016), while other species prefer to mate with unrelated partners (Fischer, Karl, 56 

Heuskin, Janowitz, & Dotterl, 2015; Thomas & Simmons, 2011; Whitehorn, Tinsley, & 57 

Goulson, 2009). The recognition and avoidance of related individuals requires chemical or 58 

other cues that are indicative of relatedness (Firman & Simmons, 2008; Pusey & Wolf, 1996; 59 

Ruch et al., 2009). In insects, for instance, both mate recognition and pre-mating preference 60 

are affected by cuticular hydrocarbons (CHCs; Geiselhardt, Otte, & Hilker, 2009; Thomas & 61 



Simmons, 2011) and other compounds (Chuine, Sauzet, Debias, & Desouhant, 2015; 62 

Herzner, Schmitt, Heckel, Schreier, & Strohm, 2006). The CHC profiles of several 63 

chrysomelid beetle species, for example, affect mate choice and facilitate outbred mating 64 

(Geiselhardt et al., 2009). Even if inbreeding does occur, its impact in polyandrous species 65 

can be reduced via post-copulatory mechanisms in which differential fertilization success 66 

depend on patterns of relatedness rather than intrinsic male quality (Bretman, Wedell, & 67 

Tregenza, 2004; Firman & Simmons, 2008; Fitzpatrick & Evans, 2014).  68 

Research exploring inbreeding avoidance has primarily addressed polyandrous 69 

species, organisms capable of employing both pre- and post-copulatory mate choice strategies 70 

(Cornell & Tregenza, 2007; Firman & Simmons, 2008; Tregenza & Wedell, 2002; Welke & 71 

Schneider, 2009). This focus reflects the genetic benefits likely necessary for polyandry to 72 

evolve in species where females derive little or no material benefit from males (reviewed in 73 

Simmons, Beveridge, Wedell, & Tregenza, 2006). In contrast, inbreeding in monandrous 74 

species has received far less attention. Because monandrous females only mate once within a 75 

single reproductive episode, inbreeding avoidance must occur via pre-copulatory mechanisms 76 

(Hosken, Stockley, Tregenza, & Wedell, 2009). In situations where inbreeding is costly, 77 

monandrous species may thus possess especially effective pre-copulatory barriers. The 78 

strength of these barriers may, however, vary by sex: because male fitness is relatively 79 

unaffected by inbreeding, they should be more tolerant of sibling matings than females 80 

(Duthie, Lee, & Reid, 2016).  81 

The wolf spider Pardosa astrigera Koch is widely distributed in East Asia. Male 82 

courtship consists of two distinct behaviours, body shaking and foreleg raising (Wu, Jiao, & 83 



Chen, 2008). Olfaction plays a key role in male courtship. Males initiate courtship in 84 

response to pheromones associated with female dragline silk, and males can distinguish silk 85 

cues from individuals differing in sex and mating status (Xiao et al., 2015). While female P. 86 

astrigera are monandrous, the polygynous males can copulate with as many as five virgin 87 

females at 24h intervals (Jiao et al., 2011; Wu et al., 2008). While inbreeding depression has 88 

not previously been addressed in this species, prior research into its courtship and mating 89 

behavior make it an ideal model system for addressing such questions. 90 

We report work investigating inbreeding avoidance through courtship behavior and 91 

the impact of inbreeding on reproductive output and offspring survival in the monandrous 92 

wolf spider P. astrigera. We compared male courtship behaviors in response to dragline silk 93 

of sibling and non-sibling females to test for male pre-copulatory kin discrimination. We also 94 

conducted non-choice mating experiments to compare the likelihood of sibling and non-95 

sibling mating. In addition, we measured post-mating female reproductive output (both 96 

number and size of offspring) to determine the cost of inbreeding on female fitness. Finally, 97 

we compared the survival of inbred versus outbred offspring across a range of temperatures. 98 

We predicted that strong pre-copulatory barriers exist to sibling mating, that these barriers are 99 

stronger in females than in males, that inbreeding reduces both maternal and offspring fitness, 100 

and that higher temperatures increase the impact of inbreeding on the offspring. 101 

Methods 102 

Subadult P. astrigera of the overwintering generation were collected in April 2012 103 

from Ma’anshan Forest Park, Wuhan, Hubei Province, China. Spiders were housed 104 

individually in opaque Plexiglass enclosures (5.0 × 5.0 × 7.5 cm, l×w×h) at 25 ± 0.5 oC with 105 



60 ± 10% relative humidity ('RH') and on a 14:10 light:dark ('l:d') cycle. Spiders were 106 

supplied with water ad libitum and fed every 3 days with a mixture diet of Drosophila 107 

melanogaster and mosquitoes (Culicidae). Individuals were checked daily for subadult 108 

molting in order to determine the exact date of adulthood. We used randomly-selected adult 109 

spiders to create the ten male:female pairs used to generate ten families. Mated females were 110 

maintained as above. We randomly selected and reared 30 spiderlings from each eggsac; each 111 

spiderling was reared individually in a glass tube (1.5 cm diameter). Spiderlings were 112 

supplied with water ad libitum and fed every two days with a mixture of D. melanogaster and 113 

mosquitoes. Once the spiders matured, similarly-sized females in their third day of adulthood 114 

were selected for silk collection and/or behavioural trials. All spiders were virgin and used 115 

only once; all adult spiders, except for those females whose lifespan was measured (details 116 

below) were released following their involvement in the experiment.  117 

Experiment 1: Male response to sibling/nonsibling female silk 118 

Silk was collected by placing each female in a 9-cm diameter glass petri dish lined 119 

with filter paper (15 cm diameter; Double Ring brand, Hangzhou, Zhejiang, China) for 12 h. 120 

All females were starved for 12 h beforehand to reduce faecal contamination. All silk was 121 

used within 18-24 h after its collection, a period of time over which silk-borne spider cues do 122 

not degrade under natural conditions (Baruffaldi, Costa, Rodriguez, & Gonzalez, 2010; 123 

Costa, Curbelo, & Perez-Miles, 2015).  124 

We randomly selected similarly-sized virgin males (N = 65, 5-7 individuals per 125 

family) aged 5-10 days post-maturation and assigned each to one of the two female silk 126 

stimulus treatments. Male body size did not differ significantly between treatments (t61 = 127 



0.75, P = 0.45). Thirty-three males were exposed to silk from a female in the same family 128 

(sibling), and 32 males were exposed to silk from a female from a different family (non-129 

sibling); silk from a given female was only used for one male.  130 

Behavioural trials were carried out in a cylindrical glass container open at both ends 131 

(10.5-cm diameter, 12-cm length). After setting the cylindrical glass container on the silk-132 

covered filter paper, a single male was gently introduced onto the stimulus filter paper with a 133 

glass tube from above and its courtship behaviour videotaped (HDR-CX580E Sony video 134 

camera) for five min. We chose this cut-off period because preliminary experiments revealed 135 

that male spiders exposed to silk either began courtship rapidly (within two minutes) or never 136 

engaged in courtship behavior (Roberts & Uetz, 2004). Each arena was cleaned after each 137 

trial with 70% ethanol and left to air dry. Videos were analysed using Observer v. 4.1 (Noldus 138 

Information Technology, Wageningen, The Netherlands), a software package for behavioural 139 

data analysis. On the basis of work reported in Wu et al. (2007, 2008) and Jiao et al. (2009), 140 

the following courtship behaviours were analysed: (a) time to the start of body shaking and 141 

(b) foreleg raising; (c) The number of body shaking and (d) foreleg raising events per minute.  142 

Data from all trials was analysed to determine whether the likelihood of courting 143 

behavior was affected by female relatedness. For analysis of specific courtship behaviors, 144 

data from trials where such behaviors did not occur within five minutes were excluded from 145 

analysis. 146 

Experiment 2: Male and female responses to siblings and non-siblings 147 

We paired individual virgin females (N = 120; 12 spiders from each family) in their 148 

third day of adulthood with individual virgin males 5-10 days into adulthood; 60 male-female 149 



pairs were siblings, and the other sixty pairs were non-siblings. All spiders belonged to one of 150 

the ten families. We recorded behavioural data on male courtship as per experiment #1, and 151 

also whether mating occurred within 30 minutes. Data for replicates in which no mating 152 

occurred was used to analyse mating likelihood in treatments but not included in other 153 

mating-dependent analyses (described below). Forty-two females mated with non-sibling 154 

males and 31 females with sibling males; each mating produced an eggsac. The unit of 155 

replication for analysis of mating behavior was individual mating pairs (N = 73).  156 

Experiment 3: Impact of inbreeding on female fecundity and offspring survival 157 

We held mated females individually under the conditions described above, and 158 

checked daily for an eggsac. Although all 73 females produced eggsacs, 20 cannibalized their 159 

eggsacs prior to hatching; eggsacs from the remaining 53 spiders (26 sibling and 27 non-160 

sibling) hatched successfully. The size (measured as carapace width) of female spiders did 161 

not differ between treatments (t45 = 0.51, P = 0.61). We removed the eggsacs of five 162 

randomly-chosen sibling-mated spiders and eight non-sibling-mated spiders for an unrelated 163 

experiment, leaving a total of 40 eggsac-producing females (21 sibling and 19 non-sibling, 164 

representing all ten families). For each female, we recorded time (days) from mating to first 165 

eggsac production and from first eggsac production to hatching. After the first eggsac was 166 

produced, each female was kept alive and fed ad libitum until death to measure their lifespan 167 

and see if they produced additional eggsacs. Offspring from these eggsacs plus the number of 168 

offspring from the first eggsac determined total offspring production per female. 169 

After recording the number of offspring emerging from the first eggsac, we preserved 170 

five randomly-selected offspring from it in 70% alcohol for carapace width measurements.  171 



We divided the remaining offspring of the first eggsac into three groups. Spiderlings 172 

were kept in 1.5-cm diameter glass tubes with no water and held at one of three temperatures 173 

(15, 25 and 30 oC) without food nor water (60 ± 10% RH, 14:10 light:dark cycle). These 174 

temperatures were chosen to reflect the mean, high, and absolute highest temperatures spiders 175 

might experience at this point in the year. While 25o C temperatures are ideal for spider 176 

development when water is provided ad libitum, in the absence of water such high 177 

temperatures speed desiccation and death. Survival was checked twice daily. The survival of 178 

all offspring of a female at a given temperature was averaged; the unit of replication was 179 

mean offspring survival per female per temperature (N = 120). 180 

Ethical note 181 

Animal care in all experiments complied with the current laws and standards of China 182 

(Bayne & Wang, 2014). 183 

Data analysis 184 

Data were analyzed by fitting a generalized linear mixed model (glmm) with the 185 

appropriate link function (e.g. Gaussian, Poisson, binomial) using penalized quasi-likelihood 186 

(PQL) (‘glmmPQL’ function in MASS package, Venables & Ripley, 2002) in R (R 187 

Development Core Team, 2017). Family nested within treatment (i.e. sibling and non-sibling) 188 

was used in all models as a random effect to account for the non-independence of multiple 189 

individuals from a given family. A Wald χ2 test was used to extract χ2 and P-values on the 190 

glmm model using the ‘Anova’ function in the ‘car’ package (Fox & Weisberg, 2011). 191 

Additionally, data on mean offspring size from experiment three was analyzed by including 192 

mating treatment in all models as a fixed effect with female carapace width (a proxy for body 193 



size) as a covariate. Data on mean offspring survival from experiment three was also 194 

analyzed as above but with the addition of a fixed main effect (temperature) and a 195 

temperature*mating interaction. 196 

Results 197 

Twenty-one of 33 males responded to sibling silk, and 22 of 32 males responded to 198 

non-sibling silk; the proportion of non-responding males did not differ between treatments 199 

(χ2
1 = 0.50, P = 0.48). Males did not differentiate between sibling and non-sibling females 200 

when exposed to either silk cues (Fig. 1, top panel) or directly to the females themselves (Fig. 201 

1, bottom panel). The start of courtship behaviors such as foreleg raising or body shaking was 202 

unaffected by female relatedness, whether conveyed via silkborne cue (Figs. 1A and 1B, 203 

respectively; χ2
1, both P > 0.5) or direct female exposure (Figs. 1E and 1F; both P > 0.5). 204 

There were also no treatment differences in the frequency of courtship behaviors in both the 205 

silk-cue (Figs. 1C and 1D; both P > 0.4) and direct exposure (Figs. 1G and 1H; both P > 0.3) 206 

experiments. 207 

Despite similar male courtship behavior, mating occurred more often between 208 

unrelated individuals (70% of pairings) than between siblings (52%; χ2
1 = 4.26, P = 0.039). 209 

The time from mating to first eggsac production (Fig. 2A) and from production to hatching 210 

(Fig. 2B) was similar for both sibling and non-sibling pairings (χ2
1 = 0.43 and 0.31, 211 

respectively, both P > 0.05). The fecundity of sibling-mated females, however, was much 212 

lower than that of non-sibling mated ones: they produced 41% fewer offspring in their first 213 

eggsac (Fig. 2C; χ2
1 = 24.8, P < 0.001) and 44% fewer offspring in total (Fig. 2D; χ2

1 = 34.2, 214 

P < 0.001). Five of 27 non-sibling mated females produced a second eggsac, while only two 215 



of 26 sibling-mated females did so; this difference was not, however, significant (χ2
1 = 1.40, P 216 

= 0.24). There were no treatment-level differences in the longevity of mated adult females 217 

(χ2
1 = 0.07, P = 0.80). 218 

The offspring of sibling and non-sibling pairings were of similar size (1.28 + 0.006 219 

[SE] and 1.27 + 0.007 mm carapace width, respectively; χ2
1 = 1.79, P = 0.18). Offspring in 220 

the sibling treatment survived an average of 23% longer (9.3 + 0.20 [SE] and 7.1 + 0.13 days; 221 

χ2
1 = 33.0, P < 0.001) across all three temperature treatments than those in the non-sibling 222 

treatment (Fig. 3). Spiderling survival declined as temperature increased (χ2
2 = 111, P < 223 

0.001), and there was a significant mating*temperature interaction χ2
2 = 10.3, P = 0.006). 224 

This interaction reflected the fact that the survival advantage of inbred offspring generally 225 

decreased as temperature increased; inbred offspring survived 28% longer in the 15oC 226 

treatment, 19% longer in 25oC, and 22% longer in 30oC (Fig. 3).  227 

Discussion 228 

Contrary to our predictions, we found only weak pre-copulatory inbreeding avoidance 229 

in P. astrigera. Male spiders, by not responding differently to silk or courting female cues, 230 

showed no evidence of kin discrimination (Fig. 1). Female spiders mated at a higher rate with 231 

unrelated individuals, but over half still mated successfully with male siblings. While weak 232 

sibling avoidance suggests a minimal cost to inbreeding, the fecundity of sibling-mated 233 

females was reduced (Fig. 2). Experimental assessment of their offspring, however, revealed 234 

that although they were the same size as their outbred congeners, the offspring of sibling-235 

mated females survived ~20% longer under a range of environmental conditions (Fig. 3). 236 

These findings highlight the importance of assessing both parental and offspring fitness when 237 



exploring the costs of inbreeding.  238 

The fact that females bred less often with sibling males demonstrates their ability to 239 

detect relatedness via chemical or other cues; mate recognition via such cues often plays a 240 

key role in inbreeding avoidance (Geiselhardt et al., 2009; Herzner et al., 2006; Lihoreau & 241 

Rivault, 2010; Thomas & Simmons, 2011). In many spider species, males employ silk-242 

mediated cues for species, sex, and mating status recognition (Gaskett, 2007; Xiao et al., 243 

2015). Given this, we were surprised to find no evidence for male pre-copulatory mate choice 244 

in response to either females or their silk. This result likely reflects the fact that male P. 245 

astrigera are polygynous and compete fiercely with each other for mating opportunities (Jiao 246 

et al., 2011). Because the males can remate, they have little to lose from inbreeding and 247 

should seek to maximize mating opportunities even under strong inbreeding depression 248 

(Duthie et al., 2016).  249 

The inbreeding-related decline in female fecundity is consistent with results from a 250 

wide range of taxa (Charlesworth & Charlesworth, 1987; Hedrick & Garcia-Dorado, 2016; 251 

Pusey & Wolf, 1996). The >40% reduction in offspring number is especially harmful in a 252 

monandrous species like P. astrigera, since females cannot compensate via subsequent 253 

matings with higher-quality partners. Given these high costs, it may seem surprising that over 254 

half of the females in the sibling group chose to mate. One explanation for this result may 255 

involve our decision to employ a no-choice design in our mating assays. A recent meta-256 

analysis (Dougherty & Shuker, 2015) found stronger mating preferences in choice 257 

experiments where females were exposed to different mates. If this is the case in P. astrigera, 258 

our results may underestimate the strength of female mate preference. Alternately, sex-biased 259 



dispersal prior to reproductive maturity has been shown to reduce the likelihood of 260 

inbreeding in some species (Keane, 1990; Pusey & Wolf, 1996; Smith et al., 2016). If such 261 

sex-biased dispersal occurs in this species, it may reduce the need for females to strongly 262 

discriminate against related individuals. Finally, the weak sibling avoidance we observed may 263 

highlight the importance of viewing the costs of inbreeding depression within the larger 264 

context of female inclusive fitness - and specifically, the higher survival of inbred offspring. 265 

There is considerable evidence that the offspring of sibling matings are equally or 266 

more sensitive to environmental variation than their outbred congeners, presumably because 267 

the stress associated with that variation increases the expression of deleterious recessive 268 

alleles (Armbruster & Reed, 2005; Fox, Stillwell, Wallin, Curtis, & Reed, 2011; Kristensen et 269 

al., 2008). We were thus surprised to find that inbred offspring survived longer than outbred 270 

ones across a range of temperatures (Fig. 3). One explanation for this pattern, the idea that 271 

density-dependent resource competition may disproportionately affect spiderlings from larger 272 

clutches (Wise, 2006), is unlikely since hatched spiderlings were immediately confined to 273 

individual glass tubes.  274 

One likely explanation for our results involves the trade-off between offspring number 275 

and per-offspring investment predicted for sibling matings (Duthie et al., 2016). Since inbred 276 

offspring share more alleles with their parents than outbred offspring, each successful inbred 277 

offspring increases parental inclusive fitness more than its outbred congener and is thus more 278 

'worthy' of parental resource investment. As a consequence, the inclusive fitness of 279 

inbreeding parents that invest resources in fewer offspring may equal or exceed that of 280 

outbreeding parents that produce more less-provisioned offspring (Duthie et al., 2016). Were 281 



this the case, we might expect offspring size to differ. Although spiderling carapace width 282 

was negatively correlated with offspring per eggsac, there were no between-treatment 283 

differences. Inbreeding parents may allocate more nutrients to eggs (Wilder, 2011) or employ 284 

other forms of investment (e.g., parental care; Pilakouta & Smiseth, 2016). Future research 285 

might address whether such alternate forms of parental provisioning occur in this system. 286 

Our results are also consistent with the hypothesis that inbreeding in P. astrigera, 287 

while harmful to parental fecundity, benefits one or more traits that prolong offspring 288 

survival. The effects of inbreeding are often trait-specific, with some traits strongly affected 289 

and others remaining similar to those found in outbred congeners (Kristensen et al., 2008; 290 

Pilakouta & Smiseth, 2016; Valtonen, Roff, & Rantala, 2011). Given this, it is unsurprising 291 

that inbreeding can increase the benefit of some life history traits. In the cricket Teleogryllus 292 

commodus, for example, inbred individuals exhibit higher macroparasitic immunity than 293 

outbred individuals (Gershman et al., 2010). Similarly, male Litoria peronii frogs that mate 294 

with sibling females sire more offspring in sperm competition (Sherman, Wapstra, Uller, & 295 

Olsson, 2008). These benefits can also be sex-specific: inbreeding in the beetle 296 

Callosobruchus maculatus increases male - but shortens female - lifespan (Bilde, Maklakov, 297 

Meisner, la Guardia, & Friberg, 2009). In our case, an increase in desiccation tolerance or 298 

modifications to similar traits might provide inbred spiderlings a survival advantage 299 

consistent with our results. 300 

While inbreeding is generally harmful, its costs can vary substantially both between 301 

and within species (Aviles & Bukowski, 2006; Szulkin et al., 2013); theory predicts an 302 

optimal balance between inbreeding and outbreeding (Kokko & Ots, 2006; Puurtinen, 2011; 303 



Richard, Losdat, Lecomte, de Fraipont, & Clobert, 2009). Our results reveal unexpectedly 304 

weak inbreeding avoidance in a monandrous spider and demonstrate that sibling mating 305 

reduces maternal fecundity but increases offspring survival in a range of environmental 306 

conditions. These findings highlight the importance of viewing maternal fecundity in the 307 

larger context of inclusive fitness; a relatively low degree of inbreeding avoidance may 308 

reflect a trade-off between parental and offspring fitness. This is especially important for 309 

monandrous organisms that, by definition, cannot employ post-copulatory mechanisms to 310 

reduce the impact of inbreeding. In such species, weak sibling avoidance may be indicative of 311 

inbreeding-related tradeoffs: future research should explore both the conditions that 312 

necessitate pre-copulatory mate choice strategies and determine its strength. 313 
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Figure Legends 458 

Figure 1. Male courtship behaviors in response to sibling versus non-sibling females. 459 

Panels A-D: courtship in the presence of silkborne cues produced by sibling (filled bars) and 460 

non-sibling (open bars) females. Panels E-H: courtship in the physical presence of sibling and 461 

non-sibling females.  462 

Figure 2. Female reproduction (A-B) and fecundity (C-D) following mating with 463 

sibling (filled bars) and non-sibling (open bars) males.  464 

Figure 3. Survival of offspring (days) from sibling-mated females (filled circles) and 465 

non-sibling mated females (open triangles) held without food or water at 15, 25, and 30 oC.466 
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