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ABSTRACT 19 

 The pea aphid Acyrthosiphon pisum Harris (Hemiptera: Aphididae) is a phloem-feeding 20 

insect whose anti-predator defenses include kicking, walking away, and dropping from the plant. 21 

Aphid dropping, a risky and energetically-costly antipredator behavior, can be increased by the 22 

release of aphid alarm pheromone; there is also evidence that insect density and plant health can 23 

affect the likelihood of aphids engaging in this behavior. We investigated whether interactions 24 

between alarm cues, insect density, and plant health can alter the dropping behavior of aphids in 25 

response to an artificial disturbance. The presence of the alarm pheromone E-β-farnesene 26 

resulted in a nearly 15-fold increase in aphid dropping behavior; the other two factors, however, 27 

did not affect dropping and none of the two- or three-way interactions were significant. This was 28 

surprising, since aphids affected plant health: production of new plant biomass after five days of 29 

exposure to high aphid densities was 50% lower than in the control treatment. This research adds 30 

to our understanding of the factors affecting aphid anti-predator behavior; the fact that neither 31 

aphid density nor feeding period impacted dropping may reflect the high energetic costs of this 32 

activity and an unwillingness to use it in any but the riskiest situations.  33 
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INTRODUCTION 38 

Predators affect prey directly, via consumption (i.e., consumptive effects), and indirectly, 39 

via the induction of energetically costly anti-predator responses (i.e., non-consumptive effects). 40 

These responses can include changes in prey behavioral, morphological, or developmental traits 41 

(Petranka et al. 1987, Lima 1998, Podjasek et al. 2005, Preisser et al. 2005, Verheggen et al. 42 

2009). While these pathways differ in their benefit to the predator, both can negatively affect the 43 

prey: behaviors that lessen predation risk can also increase energy expenditure, reduce feeding 44 

time, and/or expose prey to alternative predators (Losey and Denno 1998a, Nelson 2007). 45 

Because only a small fraction of prey individuals are eaten but a much larger fraction respond to 46 

predation risk, the cumulative impact of non-consumptive effects on prey population growth may 47 

equal or exceed that of direct consumption (Nelson et al. 2004, Preisser et al. 2005).  48 

Because predators and prey interact in a dynamic environment, the magnitude of predator 49 

indirect effects on prey can also vary. Many mobile prey use behavioral tradeoffs to balance the 50 

rewards of foraging and mating opportunities with the risk of consumption, and may respond to 51 

several different types of predator cues (Lima 1998). Larvae of two-lined salamanders (Eurceya 52 

bislineata) and Cope’s grey treefrog (Hyla chrysoscelis), for instance, both avoid water 53 

previously occupied by their predator, the green sunfish (Lepomis cyanellus); exposure to fish 54 

cues also causes H. chrysoscelis tadpoles to spend more time in refuges (Petranka et al. 1987). 55 

Refuges are also important to invertebrate prey: larvae of the thrip Frankliniella occidentalis 56 

take refuge in spider mite webs to avoid the predatory mite Neoseiulus cucumeris (Magalhaes et 57 

al. 2007). Hunger also alters prey responses to risk: while remaining hidden avoids predators, 58 

prey must forage to survive. Starved mayfly (Baetis caudatus) larvae, for example, expose 59 



themselves to higher predation risk than less hungry individuals by spending more time in risky 60 

but resource-rich food patches (Kohler 1989). 61 

The family Aphididae includes many phloem-feeding species that occur in natural and 62 

managed systems and are consumed by an array of invertebrate predators. One common member 63 

of this family, the pea aphid Acyrthosiphon pisum (Harris), is an agricultural pest that can 64 

quickly reach high densities because of its ability to reproduce parthogenetically during the 65 

summer growing season. While A. pisum move slowly and possess few morphological defenses, 66 

they have developed anti-predator behaviors to evade or deter predators. These behaviors include 67 

kicking, stylet removal, walking away, and dropping from the plant (Roitberg 1978). 68 

Dropping behavior in A. pisum can be influenced by several factors, including the risk of 69 

predation, value of the plant resource, and mortality risk in the new environment (Losey and 70 

Denno 1998b). This behavior reduces feeding time and reproduction, increases the risk of 71 

desiccation, and exposes aphids to ground predators (Losey and Denno 1998a, Nelson 2007). 72 

The substantial costs of aphid dropping suggest that the frequency of this antipredator behavior 73 

should change when aphids are reared on host plants whose nutritive value has been reduced by 74 

prior herbivory (Denno et al. 1986, Awmack and Leather 2002). The generally negative 75 

relationship between plant health and aphid density, and the decrease in aphid performance 76 

(indicated by both aphid growth and the increased production of winged individuals) as plant 77 

health declines, has been extensively documented in the scientific literature (e.g., Müller et al. 78 

2001). When food-deprived A. pisum are exposed to a parasitoid, for example, they use less 79 

energetically-costly behaviors (kicking) than do well-fed aphids that drop from the plant or walk 80 

away from the threat (Villagra et al. 2002). This response is not restricted to A. pisum; knapweed 81 

aphids, Uroleucon jaceae, also reduce their dropping rate when feeding on low-quality plants 82 



(Stadler et al. 1994). Conversely, dropping rates might decrease on high-quality plants if the 83 

benefit of staying on such a host exceeds the cost of reduced dropping (Stadler et al. 2002). One 84 

study, for instance, found that A. pisum on high-quality diet dropped less often in response to risk 85 

cues than those reared on low-quality diet (Dill et al. 1990). 86 

Threatened aphids also secrete an alarm pheromone, consisting of E-β-farnesene and 87 

other sesquiterpene hydrocarbons such as α- and β-pinene (Pickett and Griffiths 1980), that 88 

elicits an array of anti-predator behaviors in other aphids (Roitberg 1978). Response to this 89 

pheromone can be affected by the aphids’ environment. Pea aphids exposed to E-β-farnesene 90 

were more likely to drop with increasing amounts of alarm pheromone and when the pheromone 91 

cue is preceded by a vibrational cue indicative of a predator (Clegg and Barlow 1982). Pea 92 

aphids are particularly sensitive to this alarm cue; a larger portion of A. pisum drop in response to 93 

E-β-farnesene than any other aphid species sensitive to this alarm pheromone (Montgomery and 94 

Nault 1977). Antipredator behavior in some aphid species is also sensitive to population density. 95 

In the wheat aphid, Schizaphis graminum, dropping behavior in response to a coccinellid 96 

predator increases as a function of population density; while similar work on A. pisum did not 97 

find a relationship between aphid density and dropping, densities lower than 30 aphids per plant 98 

were not tested (McConnell and Kring 1990, Losey and Denno 1998b).  99 

We report the results of research assessing how interactions between prey density, alarm 100 

cues, and food resources affect aphid responses to predation risk. Specifically, we tested how 101 

dropping behavior in response to an artificial predator differed at low versus high aphid 102 

densities, in the presence or absence of alarm cues, and on host plants that had been fed upon for 103 

a short or long time period. Our findings add to the results of previous research by addressing 104 

how the potential interplay between these factors can affect aphid antipredator defense. 105 



MATERIALS AND METHODS 106 

Pea aphids were collected from pea plants (Pisum sativum) cultivated at the agronomy 107 

farm at the University of Rhode Island, Kingston, RI, USA in September of 2014. Aphids were 108 

reared in the laboratory on broad bean plants (Vicia faba L. var. “Varoma” source: Johnny’s 109 

Selected Seeds, Maine, USA). Seeds were planted in 26 grams of potting mix (Metro-mix 360; 110 

Sun Gro Horticulture, Agawam, MA, USA). Bean plants emerged approximately one week after 111 

planting. Aphids were maintained in mesh-sided insect cages containing two two-week-old V. 112 

faba plants. Two fresh plants were added to each insect cage every five days, and aphids were 113 

given twelve hours to transfer to the new plants before the old plants were removed and 114 

composted. Plants and insects were raised in a temperature-controlled laboratory at 22oC and 115 

16L:8D photoperiod under fluorescent shop lights.  116 

 Prior to the start of an experimental trial, eight uninfested two-week-old V. faba plants 117 

were trimmed to two leaves per plant and individually potted in a 20 cm plastic pot. After 24 118 

hours, each pot-plant combination was covered with a cylindrical lid made of clear plastic 119 

transparency film and dacron chiffon netting (70 per inch mesh size, 240-micron hole size). The 120 

netting allowed light and air to pass through while remaining impermeable to aphids. Each pot, 121 

plant and lid combination was used as an individual experimental arena.  122 

Experimental design 123 

We tested how A. pisum dropping behavior was affected by aphid density (low, high), 124 

length of feeding period (short, long), and exposure to aphid alarm cues (present, absent). We 125 

tested aphid density by transferring five (low density) or 50 (high density) aphids onto individual 126 

V. faba plants. These densities reflect those found during a field survey on the least- and most-127 

infested quartiles of leaves on aphid-colonized V. faba plants (Preisser, unpublished data). We 128 



tested the length of feeding period by allowing aphids to feed on a previously-uninfested plant 129 

for one (short feeding period) or five days (long feeding period). We tested exposure to alarm 130 

cues by exposing aphids to a crushed aphid (E-β-farnesene present) or neutral cue (same 131 

disturbance regime without the cue). We assessed the positive and control cue in each of the four 132 

main experimental groups listed above for a total of eight experimental groups. All three factors 133 

were crossed for a total of eight (2*2*2) experimental treatments, and each treatment was 134 

replicated eight times (=64 total replicates).  135 

We started each replicate by using a damp fine-point paintbrush to gently transfer an 136 

appropriate number of aphid nymphs from the source population onto an experimental plant. 137 

Although immature aphids are more conservative in their dropping behavior than adult aphids 138 

(Roitberg and Myers 1978, Gish et al. 2012), we chose to use third-instar nymphs in order to 139 

maintain the initial aphid densities (i.e., prevent the aphid population from growing) throughout 140 

the experiment. Immediately following aphid transfer, we re-counted aphids on each 141 

experimental plant to ensure that none had fallen off during the transfer process. Replicates from 142 

the eight experimental treatments were randomly interspersed on a metal shelf underneath 143 

fluorescent shop lights (light and temperature conditions as above) to prevent spatial bias. In 144 

order to measure the impact of aphid feeding on plant growth, we also included five control 145 

plants that were treated similarly (i.e., removal of all but two leaves, mimicking of disturbance 146 

caused by aphid inoculation) but did not have aphids added to them. 147 

We added first-instar nymphs in the five-day treatments in order to prevent aphid 148 

reproduction; third-instar nymphs were used for the one-day treatments. Because most of the 149 

first-instar nymphs matured into third-instar nymphs by the end of the five-day treatment, our 150 



tests of dropping behavior primarily assessed third-instar nymphs in both the short- and long-151 

feeding-period treatments.  152 

Aphid dropping behavior in a given replicate was tested either one or five days after the 153 

experiment began. Our testing protocol consisted of exposing aphids for two minutes to a 154 

paintbrush with or without a crushed aphid cue. During the two minutes, the paintbrush was 155 

firmly brushed onto parts of the leaf immediately adjacent to aphids for 10-15 seconds to 156 

simulate predator presence, but did not physically contact any aphids. At the end of the two-157 

minute testing period, both dropped and remaining aphids were counted. The above-ground 158 

biomass of plants in the five-day and control treatment was then divided up into old growth and 159 

new growth (i.e., biomass added between the start and end of the five-day period). The old- and 160 

new-growth biomass of each plant was then weighed in order to determine the percentage of 161 

plant growth after five days in the control (zero aphids/ plant), low density (five aphids/ plant), 162 

and high density (50 aphids/ plant) treatments.  163 

Statistical Analysis 164 

We tested whether our aphid densities affected plant resources using a one-way ANOVA 165 

to compare the amount of new growth per plant after five days in the control, low density and 166 

high density treatments. We tested the impact of risk cues, aphid density, and feeding period on 167 

the arcsine square-root transformed proportion of aphids dropping using a fully-factorial three-168 

way ANOVA. Data was checked prior to analysis to ensure that it was normally distributed and 169 

that variances were homogeneous. While the data from the cue present treatments met both 170 

criteria, the data from the cue absent treatments did not (because so few aphids dropped); 171 

ANOVA is, however, highly robust to departures from both assumptions when per-treatment 172 

sample sizes are large (Underwood 1997). JMP 9.0.0 (SAS 2010) was used for all analyses.    173 



RESULTS 174 

Aphid feeding over a five-day period did not impact the weight of existing plant tissue 175 

(F2,21 = 0.06, p = 0.95), but substantially reduced the amount of new plant growth (F2,21 = 6.48, p 176 

= 0.006). As a result, new growth made up 13.4% and 27.6% of total aboveground biomass in 177 

the 50-aphid and aphid-free treatments, respectively (Tukey’s HSD with p = 0.05, Fig. 1).  178 

Aphid alarm cues increased the percentage of aphids dropping, from 1.5% in cue-absent 179 

treatments to 22.4% in cue-present treatments (F1,40 = 44.9, p < 0.01; Fig. 2). Despite the 180 

decrease in new plant growth associated with aphid feeding (Fig. 1), neither feeding period nor 181 

aphid density affected dropping behavior (F1,40 = 1.27 and 0.21 respectively, both p > 0.20). 182 

There were also no significant two- or three-way interactions between any of the main effects.  183 

DISCUSSION 184 

 The presence of aphid alarm cues (in this case, a crushed prereproductive aphid) 185 

increased dropping rates 15-fold, with 22.4% of aphids dropping in the cue-present treatments 186 

versus 1.5% in the cue-absent treatments. E-β-farnesene, the substance previously identified as 187 

the predominant component of aphid alarm pheromone (Pickett and Griffiths 1980), is an active 188 

volatile terpenoid in aphid cornicle droplets; the results of our experiment are consistent with 189 

previous research finding that even prereproductive aphids reared in the absence of predators 190 

produce E-β-farnesene (Bowers et al. 1972, Mondor et al. 2000, Francis et al. 2005). Previous 191 

work has shown that the volatiles emitted from crushed aphids are nearly identical to those 192 

produced by cornicle droplets, and that aphids show similar defensive responses to both 193 

substances (Pickett and Griffiths 1980).  194 

While we anticipated that aphid alarm cues increased dropping rates, we were surprised 195 

at how few aphids dropped in their absence. In all of the treatments, we used a fine-point 196 



paintbrush to disturb the leaves and approach (although not touch) each individual aphid. 197 

Although the aphids would sometimes respond to the paintbrush by moving away or kicking, 198 

they apparently did not view the combined visual and vibrational stimulus presented by the 199 

paintbrush as an immediate threat (as per Ben-Ari and Inbar 2014). While vibration in 200 

combination with E-β-farnesene can increase dropping behavior in younger instars, the act of 201 

dropping is costly and can reduce fecundity or increase mortality (Roitberg 1978, Nelson et al. 202 

2004, Nelson 2007). Additionally, cornicle droplets are high in triglycerides and are costly for 203 

aphids to synthesize; the secretion of a single cornicle drop can delay offspring production 204 

(Callow et al. 1973, Mondor and Roitberg 2003). The high cost of E-β-farnesene should limit its 205 

use to the riskiest of situations and make it a highly reliable indication of imminent danger 206 

(Orrock et al. 2015). In the absence of an alarm pheromone, however, the vibrational and visual 207 

cues presented by the paintbrush alone were insufficient to induce dropping in our experiment. 208 

Although increased aphid densities reduced plant growth (Fig. 1), neither aphid density 209 

nor feeding period affected aphid dropping behavior (Fig. 2). In addition, neither factor 210 

interacted with the presence/absence of aphid alarm cues. The lack of a density effect may be 211 

explained by the fact that our numbers were too low to affect aphid behavior. While previous 212 

work on the greenbug Schizaphis graminum found that dislodgement increased with increasing 213 

aphid density, aphid numbers in their low-density treatment were similar to those of  our high-214 

density treatment (McConnell and Kring 1990). In contrast, Losey and Denno (1998b) used 215 

densities similar to ours and found no relationship between pea aphid density and dropping 216 

response. Aphid numbers in our high-density treatment were chosen to increase the likelihood 217 

that their host plants, which we trimmed to two leaves to aid in aphid detection, would survive 218 

five days of aphid feeding. While plant growth in the high-density treatment was significantly 219 



lower than in the no-aphid treatment, the impact of this reduction in growth on plant quality 220 

appeared insufficient to alter aphid dropping behavior. It is possible, however, that less 221 

energetically-costly aphid defensive behaviors such as kicking or walking away may be more 222 

sensitive to changes in density than aphid dropping (Villagra et al. 2002). Since immature aphids 223 

are less likely than adults to drop in response to risk (Roitberg and Myers 1978, Gish et al. 224 

2012), it is also worth noting that adult aphids may exhibit different responses. 225 

Our results suggest a number of ways to modify our experimental design in order to 226 

better study A. pisum dropping behavior as a function of density and plant health. First, 227 

increasing aphid numbers in the high-density treatment above 50 insects/plant should magnify 228 

the insects' effect on plant health and increase our ability to detect differences between the low- 229 

and high-density treatments. Second, our one- versus five-day feeding period treatments, which 230 

were intended to assess the importance of plant quality, could be replaced with treatments in 231 

which plants were either protected from or exposed to feeding prior to their experimental use as 232 

seen in Tokunaga and Suzuki (2007). The length of aphid feeding period could also be extended 233 

in order to include the next generation of aphids and observe any transgenerational effects of E-234 

β-farnesene exposure, aphid density, and/or plant health. The alarm pheromone E-β-farnesene 235 

has been shown to modulate transgenerational wing induction in A. pisum and solitary aphids 236 

produce less E-β-farnesene than do aphids with conspecifics (Podjasek et al. 2005, Verheggen et 237 

al. 2009). Nymphs of maternal aphids exposed to alarm pheromone also select less risky feeding 238 

sites, a decision which alters colony structure (Keiser and Mondor 2013). As a result, it is 239 

possible that the impacts of our treatments can only be observed across a longer time period than 240 

the one we chose. 241 



Although we did not see an impact of aphid density or plant health on dropping behavior, 242 

our results still contribute to our understanding of aphid anti-predator responses, and the 243 

conditions in which they do (or do not) manifest. The fact that aphids responded strongly to 244 

alarm pheromone demonstrated that they can alter their dropping behavior; the fact that the other 245 

factors did not induce similar variation may reflect the energetic and fitness cost of this behavior. 246 

By demonstrating how reluctant aphids can be to increase dropping in response to all but the 247 

most serious threat (i.e., alarm pheromone), our findings thus add to the results of previous 248 

research addressing into the factors affecting aphid antipredator defense.  249 
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Figure Legends  335 

Figure 1. Effect of aphid density on percent new plant growth (mean + standard error) 336 

over a five-day feeding period. The percentage of aboveground plant biomass made up of new 337 

growth was significantly lower in the high-aphid density treatment than in the zero-aphid control 338 

(13% and 27%, respectively; F2,21 = 6.48, p = 0.006). Bars with different letters represent 339 

significant differences (Tukey’s HSD, α = 0.05).  340 

Figure 2. Effect of alarm cue, aphid density, and feeding period on aphid dropping (mean 341 

+ standard error) in response to disturbance. The presence of an alarm cue significantly increased 342 

the percentage of aphids dropping across all treatments (F1,40 = 36.5, p < 0.01). There was no 343 

significant effect of aphid density or length of feeding period (both p > 0.05), and there were no 344 

significant interactions between any of the main effects. Bars with different letters represent 345 

significant differences (Tukey’s HSD, α = 0.05) 346 
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