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Dynamical Correlation Functions for Linear Spin Chains

Gerhard Müller and Hans Beck

Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland

Dynamical spin correlation functions are calculated numerically for cyclic linear Heisenberg chains contain-
ing up to 10 spins with S = 1

2
and S = 1. We consider ferro- and antiferromagnets including single-site

and exchange anisotropies. The results agree well with the neutron scattering cross sections on quasi one-
dimensional systems.

The properties of quasi one-dimensional magnetic materials have recently been reviewed [1].
Some prominent examples are: TMMC (S = 5

2 Heisenberg antiferromagnet (HB AF)), CPC (S = 1
2

HB AF), CsNiF3 (S = 1 planar HB Ferromagnet (FM)). The dynamics of such weakly coupled spin
chains is investigated by neutron scattering. The experimental results show rather well defined spin-
wave peaks at low temperatures. Unfortunately, a rigorous theoretical treatment of the dynamics
of HB chains is impossible.

Thus besides various analytical approaches (see [1]), some authors have evaluated the dynamical
spin correlation functions numerically by diagonalizing the Hamiltonian of finite chains. Richards
and Carboni [2] demonstrated the existence of spin-wave peaks at low T for isotropic HB AF S = 1

2
chains. The purpose of this work is to extend these calculations to various anisotropic systems and
to S > 1

2 . We treat the Hamiltonian

H = ±J
N∑
l=1

{
αSz(l)Sz(l + 1) + β

[
Sx(l)Sx(l + 1) + Sy(l)Sy(l + 1)

]}
+ γ

N∑
l=1

S2
z (l) (1)

for a chain of N sites with periodic boundary conditions. The eigenfunctions of (1) can be classified
by STz (z-component of total spin) and a k-vector (k = n2π/N, n = 0, . . . , N − 1). Using the
eigenvalues Eλ and eigenvectors |λ〉 we evaluate

Gαα(q, ω) = N−1
∑
ll′

eiq(l−l′)
∫

dt eiωt〈Sα(l, t)Sα(l′, 0)〉

=
2π
Z

∑
λλ′

e−βEλδ(ω + Eλ − Eλ′)|〈λ|Sα(q)|λ′〉|2. (2)

For finite systems these functions are best represented, for fixed q, as histograms in frequency
space. In the following we describe our main results for various cases:

(i) Isotropic HB AF. In agreement with [2] we obtain Gaussian line shapes (spin diffusion)
for T → ∞ and spin-wave peaks for low T . These peaks are predominantly produced by matrix
elements between the ground state, which has K0 = 0 or K0 = π depending on N , and the lowest
eigenstates with wave vector q + k0. The latter were determined exactly by Des Cloiseaux and
Pearson (DP), see [1], for infinite chains. However, even at T = 0, states with higher energies also
contribute in agreement with theoretical considerations by Hohenberg and Brinkman [3].

(ii) Isotropic HB FM. Here, at T = 0, the spin-wave peaks are sharp. All nonzero matrix
elements, i.e. those between each of the degenerate ground states and the corresponding spin-wave
states, contribute to Gαα at the same frequency. For finite, but low, T additional contributions
arise from spin-wave bound states, which, at least for small q, again contribute at frequencies close
to the T = 0 spin-wave frequency. Therefore, for low T , the peak is narrower for a FM than for an
AF chain.
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(iii) HB FM with anisotropic exchange (α < β, γ = 0). For α 6= β the lowering of the symmetry
partially lifts the degeneracies of the isotropic HB chain: the energies depend on |STz |, and Gxx and
Gzz are no more identical. Due to selection rules, only states with the same STz are connected for
Gzz. However, these states are all affected in a similar way by the anisotropy. The matrix elements
for Gxx are those with ∆STz = ±1, i.e. between states that are shifted differently by anisotropy.
Thus the peak of Gzz is narrower than the one of Gxx for α < β. In the extreme case α = 0
(XY -chain) Gzz has one sharp peak at T = 0 and the smallest q (= 2π/N), whereas for larger
wave-vectors several peaks appear. Gxx shows a broad ‘background’ accompanying the main peak,
which is due to the one-fermion states in the treatment of Lieb, Schultz and Mattis (LSM), see [1].

Figure 1. In-plane (Gxx) and out-of-plane (Gzz) correlation function at q = π/3 for the planar
HB FM S = 1 chain of 6 particles. The value γ = 0.212J for the anisotropy is appropriate for
CsNiF3, [4] and q is close to qz = 0.35π used in neutron scattering [4]. The three temperatures
correspond to those of ref. 4: (a) T = 0.208J , (b) T = 0.343J , (c) T = 0.5J .

(iv) Planar HB FM (α = β, γ > 0. This model is appropriate for CsNiF3 [I, 4]. Histograms of
Gxx and Gzz are shown in fig. 1 for q = π/3 and various T . Our results are in good qualitative
agreement with neutron scattering data. The main peak of Gzz is narrow and decreases rather
rapidly with rising T , without shifting appreciably in energy. In contrast Gxx shows a broader
shape. Its width and intensity both increase with growing T . The energies of the lowest states
connected with the ground state by Sx(q) and Sz(q) follow closely the dispersion relation

ω2(q) = 4J2S2
{

(1− cos q)(1− cos q + γ/J)
}

(3)

given by Villain [1, 4]. The local anisotropy (γ > 0) splits the degenerate eigenvalues of the isotropic
system in a way similar to the case α 6= β described before. Thus the rather distinct behaviour
of Gzz and Gxx is again due to the shifts produced by the (single-site) anisotropy and the STz
selection rules. More details will be published elsewhere. We have used a modified cmpj.sty style
file.
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