Spatial Distribution and Air-Water Exchange of Organic Flame Retardents in the Lower Great Lakes

Carrie A. McDonough

Gavino Puggioni
University of Rhode Island

Paul A. Helm

Derek Muir

Rainer Lohmann
University of Rhode Island, rlohmann@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution

Available at: http://dx.doi.org/10.1021/acs.est.6b02496

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Spatial Distribution and Air-Water Exchange of Organic Flame Retardents in the Lower Great Lakes

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/gsofacpubs/152
Spatial Distribution and Air-Water Exchange of Organic Flame Retardants in the Lower Great Lakes

Carrie A. McDonough¹, Gavino Puggioni², Paul A. Helm³, Derek Muir⁴, Rainer Lohmann¹*

¹University of Rhode Island Graduate School of Oceanography, 215 South Ferry Road, Narragansett, RI, USA 02882
²University of Rhode Island Department of Computer Science and Statistics, 45 Upper College Road, Kingston, RI, USA 02881
³Ontario Ministry of the Environment and Climate Change, 125 Resources Road, Toronto, Ontario, Canada M9P 3V6
⁴Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Road, Burlington, Ontario, Canada L7S 1A1

*Corresponding Author; Email: rlohmann@uri.edu; Phone: 401-874-6612; Fax: 401-874-6811
ABSTRACT

Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in air and water, calculate air-water exchange fluxes, and investigate spatial trends. Dissolved Σ_{12}BDE was greatest in Lake Ontario near Toronto (18 pg/L), while gaseous Σ_{12}BDE was greatest on the southern shoreline of Lake Erie (11 pg/m3). NHFRs were generally below detection limits. Air-water exchange was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m2/day to -30 pg/m2/day. Σ_{12}BDE in air and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ_{12}BDE was strongest when considering population within 25 km, while correlation with gaseous Σ_{12}BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ_{12}BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.
INTRODUCTION

Organic flame retardants (OFRs) such as the polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are persistent bioaccumulative contaminants that have been liberally added to polymers used in consumer goods to slow combustion in the event of a fire.1,2 While PBDEs are no longer manufactured or used in North America, they are ubiquitous in the environment and continually leach out of in-use products, especially furniture, casings for electronics, and automotive upholstery.3 Numerous studies have shown that PBDEs, as well as many NHFRs, accumulate in humans4–6 and wildlife,7–11 and that concentrations are elevated in North American cities.12–14 Some studies have suggested that various NHFRs are increasingly being added to consumer products due to the PBDE phase-out, but there is uncertainty regarding which chemicals are being used in which applications, and at what production volumes.2,14–16

Previous studies have identified densely populated areas, central business districts, and indoor environments as sources of OFRs to the atmosphere via volatilization from consumer goods.13,14,17,18 Atmospheric wet and dry deposition have been identified as important pathways for these contaminants to reach the Great Lakes,19,20 though recent work has shown inputs from storm water,
tributaries, and wastewater also play a significant role.21,22 Some studies have identified absorption of gaseous PBDEs from air as a potentially significant source of some PBDEs to the Great Lakes,23,24 though others have demonstrated that volatilization from surface water can be a significant loss process for semi-volatile organic compounds, especially as atmospheric concentrations decline following changes in regulation.25,26 The direction of air-water diffusive exchange for OFRs can be deduced by simultaneous measurement of dissolved and gaseous concentrations, which has not been undertaken previously in the lower Great Lakes (Lake Erie and Lake Ontario).

While some recent studies have measured concentrations of PBDEs and NHFRs in air,14,18,27,28 rain,19 and surface water29 of the lower Great Lakes, there are no published studies of regional spatial trends, nor are there reported measurements of air-water exchange fluxes. This information is critical to track whether changes in regulation and usage of OFRs lead to future changes in spatial distributions and air-water exchange. Deployment of polyethylene passive samplers (PEs) in air and water is a convenient way to deduce fugacity ratios at the air-water interface and a cost-effective approach to time-averaged monitoring at numerous sites. PEs have been used to measure PBDEs in a handful of previous studies,24,30–32 but their use to detect NHFRs has not been previously reported.

In this study, extracts from PEs deployed in the air and water throughout Lake Erie and Lake Ontario were analyzed for twelve PBDEs and nine NHFRs to (i) determine baseline concentrations of PBDEs and NHFRs at a variety of shoreline, nearshore, and offshore sites, (ii) determine whether the lower Great Lakes were acting as sinks or secondary sources of PBDEs via air-water
exchange, (iii) investigate spatial trends of PBDEs and their relation to population centers, and (iv) build a geostatistical interpolation model to provide estimates of dissolved PBDE concentrations across the lakes.

METHODS

Sampler Preparation and Deployment. Air and water PEs were deployed throughout the lower Great Lakes region from April to November of 2012. Air concentrations were monitored at 22 locations (14 shoreline sites, 5 nearshore sites (<5 km from the shoreline), and 3 offshore sites), while water concentrations were monitored at 20 locations (8 shoreline sites, 7 nearshore sites, and 5 offshore sites). Air samplers were also deployed during the 2011/2012 winter (generally from October 2011 to April 2012). Deployment time ranged from 4-30 weeks. The sampling schedule, locations, and site characteristics are summarized in the Supporting Information (SI) along with the length of deployment time at each site (Table S1). Nearby meteorological buoys used to determine average temperature and wind speed during deployments are listed in Table S2.

Details of sampler preparation and deployment have been summarized previously in McDonough et al. and Liu et al. Briefly, 50 μm-thick PEs were pre-cleaned with solvent and loaded with performance reference compounds (PRCs), which included deuterated polycyclic aromatic hydrocarbons (PAHs; naphthalene-\textit{d8}, pyrene-\textit{d12}, and benzo(a)pyrene-\textit{d12}) and bromobiphenyls (PBB 9, PBB52, and PBB 103). Shoreline air PEs were secured within protective chambers constructed from two metal bowls and hung from trees or structures, generally at about 1.5 meters height. Shoreline water PEs were fastened to rope and anchored about 1
meter below the water’s surface. Nearshore/offshore air PEs were fastened into protective chambers secured to buoys about 2 meters above the water’s surface, and water PEs were placed in perforated stainless steel cages and secured to subsurface floats at a depth of about 4 meters. After PEs were recovered, they were mailed back to the laboratory overnight on ice and frozen until extraction.

Extraction and Analysis. PEs from 56 air and 39 aqueous deployments were spiked with non-native PBDEs (BDE 35, BDE 77, BDE 118, BDE 128, and BDE 190) and extracted for about 24 hours in pentane, then concentrated to ~50 μL and spiked with injection standard (BDE 71). Water extracts were passed through silica gel/sodium sulfate cleanup columns and eluted with 60:40 pentane:DCM. Concentrations were corrected for internal standard recoveries.

Extracts were analyzed for twelve mono- to octa-brominated PBDE congeners (BDE 2, 8, 15, 30, 28, 47, 49, 100, 99, 154, 153, and 183) and nine NHFRs (tetrabromo-p-xylene (pTBX), pentabromobenzene (PBBz), pentabromotoluene (PBT), pentabromoethylbenzene (PBE), hexabromobenzene (HBBz), hexachlorocyclopentadienyl-dibromocyclooctane (HCDBCO), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and *anti*-* and syn-*-isomers of Dechlorane Plus (ADP and SDP)) on an Agilent 6890N gas chromatograph coupled to a Waters Quattro Micro mass spectrometer (GC-MS/MS) in electron ionization mode (EI, 70 eV) using multiple reaction monitoring (MRM). Extracts were injected in splitless mode with helium carrier gas at 2 mL/min onto an Agilent J&W DB-5MS fused silica capillary column (30 m x 0.25 mm I.D.).

Quality Control. Every batch of PEs was extracted alongside a method blank and two spiked blanks to control for compound losses during extraction, concentration, and clean-up steps. Average spike recoveries ranged from 67±15% for BDE 2 to 101±19% for BDE
Concentrations were blank-subtracted using the most relevant field blank and detection limits were defined as the upper limit of the 95% confidence interval for 11 laboratory blanks. Detection limits per gram PE are summarized in Table S4, and are converted to typical ambient air or water concentrations in Table S5. Percent detection for each compound is shown in Table S6. Concentrations below detection limits were replaced with zero. More details on detection limits and repeatability of replicate sampler extractions are in the SI.

Sampling Rates & Ambient Concentrations. PRC loss data was entered into a generalized exponential model for PE uptake to derive best-fit values for the thickness of the diffusive boundary layer (δ=DBL). The best-fit δ=DBL value for each PE was then used to determine the percent equilibration (f) reached by each compound during sampler deployment. f values were used to convert concentrations in PEs to ambient concentrations, which is described in detail in the SI. Physico-chemical properties of target compounds used in these calculations are presented in Table S7. Average f values for each compound in air and water are in Table S8. Mono- to dibrominated PBDEs were generally equilibrated or nearly equilibrated in all PEs while tetra- to octa-brominated PBDEs remained <50% equilibrated in the majority of samples.

Best-fit δ=DBL values and BDE 47 sampling rates are shown in Tables S9 and S10. Average δ=DBLs for air boundary layers (δ=ABL) were lower for offshore/nearshore PEs (0.2±0.1 mm; average±stdev) than for shoreline PEs (1.8±1.4 mm in summer and 1.4±0.5 mm in winter). Average water boundary layer thickness (δ=WBL) was 170±63 μm at shoreline sites and 82±25μm at offshore sites. For air PEs, average sampling rates for BDE 47 were 9±3 m³/day for winter PEs, 10±6 m³/day for shoreline summer PEs, and 83±36 m³/day
for offshore PEs. For water PEs, average BDE 47 sampling rates were 27±8 L/day for shoreline PEs and 14±10 L/day for offshore PEs, in-line with expectations based on relative flow strengths at these locations.

Air-water exchange calculations. 32 pairs of co-deployed air and water PEs were used to investigate PBDE air-water exchange. Details on the procedure for calculating fugacity ratios, air-water exchange fluxes, and associated error propagation are presented in the SI. Fugacity ratios and air-water exchange fluxes were only calculated in instances where the congener was detected in both air and water. In cases where the compound was not detected in air and/or water, or where fugacity ratios were not significantly different from equilibrium after error propagation, the net air-water exchange flux was assumed to be zero.

To determine whether PE-derived air-water exchange fluxes were representative of average exchange fluxes in non-steady-state conditions over time periods relevant to this study, a model was built in R to compare simulated air-water exchange fluxes to PE-derived exchange fluxes. This is described further in the SI (Figures S1, S2; Table S11).

Correlation with population density. Average summertime concentrations of PBDEs were compared to population within 2 - 60 km of each site using population data from the Columbia University Center for International Earth Science Information Network (CIESIN) Global Rural-Urban Mapping Project (GRUMP). To determine which radius around the sites yielded the strongest linear correlation, ordinary least squares regression was performed for each congener, as well as the sum of all congeners, at a series of different radii in R to identify the model with the minimum residual standard error (RSE) in each case. This procedure was repeated
for population data within 180° wedges to the north, south, east, and west of each sampling site to determine whether population density within one general direction was more significant in driving spatial distributions of PBDEs.

Bayesian kriging. Bayesian kriging is a geostatistical interpolation technique that automates the parameter estimation needed to build a kriging model, which makes it the most appropriate approach for datasets with very limited spatial resolution. More details on this approach are in the SI.

RESULTS & DISCUSSION

Dissolved PBDEs in the Great Lakes. Average concentrations of dissolved PBDEs are summarized in Table 1 for shoreline (deployed directly from shoreline), nearshore (< 5 km from shore), and offshore sites. BDEs 100, 99, 47, 28, and 49 were detected in >70% of all water PEs. BDE 154 was detected in 53%, BDE 153 in 43%, and the remaining congeners in ≤15%. Average dissolved Σ12BDE ranged from 0.6 pg/L at Dunkirk (DUN) on the southern shoreline of Lake Erie to 18 pg/L at a nearshore buoy site west of central Toronto (WTOR). All dissolved PBDE concentrations for all deployments are displayed in Table S9.

Average concentration and composition for summer dissolved Σ12BDE at each site is shown in Figure 1. BDEs 47 and 99 were the dominant congeners at most sites, making up 41±15% and 29±14% of Σ12BDE, respectively. Composition of the major BDE congeners (BDE 47, 99, and 100) was quite consistent among sites with Σ12BDE>3 pg/L, but more variable at sites with lower
concentrations. This was most likely due to some congeners being <DL at these sites. Figure S3 provides a closer look at mean percent composition at each location.

Along the southern shore of Lake Erie, Σ₁₂BDE ranged from 0.6 pg/L on the Dunkirk shoreline (DUN) to 11 pg/L in Presque Isle Bay (ERI). Concentrations at the three sites near Cleveland (CLE, SHF, and FH) were similar, with average summertime Σ₁₂BDE of 4.3–5.5 pg/L. Along the southern shore of Lake Ontario, Σ₁₂BDE was greater than what was seen on Lake Erie, ranging from 11–12 pg/L. The Cape Vincent shoreline site (CV) had a lower average Σ₁₂BDE (3.8 pg/L), possibly due to dilution, as the site was along the St. Lawrence River, the major outflow from Lake Ontario, while the three shoreline sites in Niagara (NIA), Oswego (OSW), and Rochester (ROC) were located near the mouths of tributaries.

Σ₁₂BDE at offshore/nearshore sites was generally < 3 pg/L, significantly lower than shoreline concentrations (p < 0.05 two-tailed t test with unequal variance), excluding the three nearshore Toronto sites. The greatest offshore concentrations were observed at the westernmost offshore sites on each lake, with Σ₁₂BDE of 2.8 pg/L in western Lake Erie and 3.2 pg/L in western Lake Ontario. These western sites were the closest offshore sites to the major rivers feeding each lake (the Detroit River and Niagara River) and may have been influenced by inputs from these rivers.

Generally, dissolved PBDEs in this study were lower than in previous studies. This may be because the PEs used for sampling were selective for the truly dissolved phase. In previous active sampling studies on the Great Lakes, Venier et al. measured average BDE 28, 47, 99, and 100 at a total concentration of 117 pg/L in Lake Ontario and 62 pg/L in Lake Erie surface waters during a 2011-
2012 springtime sampling campaign and Streets et al. measured a mean value for total dissolved Σ_6BDE of 18 pg/L in offshore Lake Michigan in 2004. In other regions, Zarnadze & Rodenburg reported dissolved PBDE concentrations of 44, 5.5, and 35 pg/L for BDE 47, 100, and 99 in Raritan Bay in 2001-2002 and Yang et al. measured dissolved Σ_{10}BDE from 13 – 26 pg/L in 9 English freshwater lakes from 2008 to 2012. In contrast, studies using PEs to measure total truly dissolved PBDEs in Narragansett Bay in 2009 and Lake Superior in 2011 found concentrations <3 pg/L at all sites, similar to offshore/nearshore concentrations in this study. Booij et al. measured BDEs 47, 99, and 153 in the Western Scheldt Estuary in 1999 using semi-permeable membrane devices (SPMDs) and found that total concentrations generally did not exceed 2 pg/L.

We investigated whether the discrepancy between concentrations reported by Venier et al. and our own could be due to the presence of dissolved organic carbon (DOC) that was likely co-sampled by Venier’s active sampling method. As detailed further in the SI (Table S12), the DOC concentrations that would be needed to explain the discrepancy were quite high for the open-lake Great Lakes sites (> 3 mg/L), suggesting that the inclusion of the colloidal phase in the active sampling study was not sufficient to explain the difference between concentrations. Seasonal differences in dissolved PBDE concentrations may explain some of the additional discrepancy, as Venier et al. sampled in April-May, while PEs from this study were representative of average summer concentrations. Another possible contributor to the discrepancy is uncertainty in quantifying the affinity of BDEs for DOC (K_{iDOC}). Similar discrepancies were observed in a comparison by Ruge et al. in Lake Superior.
Gaseous PBDEs above the Great Lakes. BDEs 99, 100, and 47 were detected in >75% of air PEs. BDE 28 was in 54%, BDE 49 in 34%, and the remaining congeners were in ≤15% (Table S6). Mean summer gaseous Σ_{12}BDE ranged from 0.1 pg/m^3 near the northeastern shore of Lake Ontario to 11 pg/m^3 on the Cleveland shoreline (CLE). BDEs 47 and 99 were the dominant congeners, making up 39±21% and 34±18% of Σ_{12}BDE, respectively. As with dissolved PBDEs, composition of the major congeners (BDE 47, 99, and 100) was similar at most sites, with the exception of one in northern Lake Ontario (CHB), where the difference in composition was most likely because concentrations were very low and BDE 99 and 47 were <DL, and two other locations with atypical compositions, Sheffield Lake (SHL) and Rochester Site 1 (ROC1), where the reason for the absence of BDE 99 was not known (Figure S4).

Summertime concentrations of total gaseous PBDEs are summarized in Table 2 for shoreline, nearshore, and offshore sites. Gaseous Σ_{12}BDE was significantly greater at the shoreline than offshore and nearshore sites (p<0.005, two-tailed t test with unequal variance), and shoreline gaseous Σ_{12}BDE was greater in summer than winter (p<0.005, two-tailed paired t test). Concentrations of all compounds from all deployments are presented in Table S10.

Average summer gaseous PBDE concentration and composition at each site are shown in Figure 1. Gaseous Σ_{12}BDE was lower than concentrations from previous studies in the region, possibly due to declining concentrations over time. Su et al. reported mean gaseous Σ_{12}BDE of 17 pg/m^3 at a clearing in Ontario during 2001-2002. Ma et al. measured average gaseous Σ_{34}BDEs ranging from 5 pg/m^3 in Eagle Harbor, a remote site on the shore of Lake Superior, to 25 pg/m^3 in Cleveland and 32 pg/m^3 in Chicago via
active sampling with XAD resin. They observed a significant decreasing trend from 2005 to 2011 for BDE 47 in Cleveland and Chicago, though concentrations increased or showed little change at other locations.

During 2007-2008, Melymuk et al. monitored PBDEs throughout the greater Toronto area and found mean Σ_{25}BDE of 3 pg/m3 at their southernmost site, near the northern Lake Ontario shoreline. This was about two to three times greater than total mean Σ_{12}BDE measured at the nearshore Toronto sites in this study (1.1 – 1.4 pg/m3). The site monitored by Melymuk et al. was closer to the city center and polyurethane foam passive samplers (PUFs) were used, which capture both gaseous and some fraction of particle-sorbed PBDEs. During 2012-2013, Peverly et al. measured Σ_{27}BDE ranging from 11-150 pg/m3 in the Chicago region, also using PUFs, and observed a significant contribution from BDE 209, which was not measured here. In the only previous study to use PEs to measure truly gaseous PBDEs in the Great Lakes region, Ruge et al. measured average summer gaseous Σ_7BDE of 0.02-5.5 pg/m3 in Lake Superior in 2011, similar to the range of values in this study.

Gaseous and Dissolved NHFRs in the Great Lakes. Ambient concentrations of gaseous NHFRs are presented in Table S10. When detected, estimated gaseous bromobenzene concentrations (PBBz, PBT, PBEB, and HBBz) were similar in magnitude to those measured by Venier et al. in the Great Lakes atmosphere by high-volume active sampling with XAD, with all concentrations <2 pg/m3. However, these compounds were only detected intermittently in this study and were near detection limits, so estimated concentrations are somewhat uncertain.
Venier et al. measured dissolved and colloidal NHFRs in Great Lakes water by active sampling and found mean PBEB concentrations in Lake Ontario to be 32±18 pg/L, while in this study PBEB concentrations were <2 pg/L (Table S9). No other NHFRs were detected in more than two aqueous PEs.

Percent detection was low for all NHFRs. As the NHFRs are low-volatility compounds that are expected to be found primarily in the particulate phase, it may be that concentrations in the truly gaseous or dissolved phase were too low to be detected here using passive samplers.

Air-water exchange of PBDEs. Fugacity ratios (f_w/f_a), which indicate the direction of air-water exchange, are presented in Table S13 for all PBDE congeners. In all cases where fugacity ratios were significantly different from equilibrium after error propagation, they indicated absorption into surface waters.

Exchange fluxes for all available air-water PE pairs at each site were averaged to yield mean summer air-water exchange fluxes for each location, which are shown in Figure 2. Mean absorptive fluxes ranged from -964 pg/m2/day on the shoreline of Cape Vincent (CV) to -30 pg/m2/day at an offshore site in central Lake Erie (CERI). Absorption of BDEs 47 and 99 dominated air-water exchange fluxes at the majority of sites, with greatest absorption fluxes at shoreline sites and little to no significant exchange flux in either direction at most offshore/nearshore sites. It should be noted that aqueous PEs at Cleveland Edgewater (CLE) and Fairport Harbor (FH) were placed on nearshore buoys, while air measurements were taken at the shoreline, which may have resulted in calculation of stronger absorption fluxes than if dissolved concentrations were monitored directly at the shoreline.
Previous measurements of PBDE air-water exchange fluxes are scarce. Xie et al. and Lohmann et al. both observed net absorption of gaseous PBDEs on transects of the Atlantic Ocean, dominated by BDEs 47 and 99. Lohmann et al. calculated median air-water exchange fluxes of about -325 pg/m²/day for BDE 47 and about -260 pg/m²/day for BDE 99. Xie et al. calculated fluxes ranging from -28 to -875 pg/m²/day for BDE 47 and -3 to -170 pg/m²/day for BDE 99. In contrast to the offshore Great Lakes sites, where fluxes were mostly near equilibrium, these studies were conducted in remote regions with lower concentrations of dissolved PBDEs where atmospheric deposition was expected to be the primary source of PBDEs.

Ruge et al. observed absorption of gaseous PBDEs at shoreline sites and volatilization offshore on Lake Superior in 2011, with the greatest total absorption flux at Sault Ste. Marie (-2,700 pg/m²/day). The occurrence of offshore volatilization in that study, compared to near-equilibrium conditions at offshore sites in this study, may have been due to the smaller surface areas and more urbanized shorelines of Lake Erie and Lake Ontario in comparison with Lake Superior.

Liu et al. observed volatilization of polychlorinated biphenyls (PCBs) at the majority of the same sites discussed here, suggesting that the lakes may be acting as secondary sources of legacy pollutants, but continue to absorb PBDEs.

Correlation between PBDE congeners and other compound groups. Dissolved concentrations of the seven PBDEs found in >30% of water samples (BDEs 28, 47, 49, 99, 100, 154, and 153) were significantly linearly correlated with each other (p < 0.05, 0.24 ≤ r² ≤ 0.73), with the exception of BDEs 49 and 153. Correlations between the two hexabrominated congeners, BDEs 154 and 153, and other congeners were generally weaker than correlations between lower-brominated congeners. This may be because PBDEs 28, 49,
47, 99, and 100 share a common source: the Penta-BDE commercial formulation, while BDEs 154 and 153 are associated with Octa-BDE. BDEs 154 and 153 were strongly correlated with each other in the dissolved phase \((p < 0.001, r^2 = 0.63) \). Gaseous concentrations of the five PBDEs found in >30% of air samples (BDEs 28, 47, 49, 99, and 100) were also significantly linearly correlated with each other \((p < 0.05, 0.30 \leq r^2 \leq 0.80) \). Only samples in which both congeners were found >DL were used in the correlation analysis for each pair.

In addition to comparisons between PBDE congeners, \(\Sigma_{12} \)BDE concentrations in air and water were compared to total concentrations of polycyclic musks (PCMs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) measured in the same extracts. PCB data was published previously by Liu et al.,\(^ {34} \) PCM data is currently in review, and mean PAH concentrations are available in Tables S14 and S15. Dissolved \(\Sigma_{12} \)BDE exhibited a significant positive linear correlation with total dissolved PCMs \((\Sigma_3 \text{PCM}; p < 0.01; r^2 = 0.34; SE = 4.2; N = 39) \), but was not correlated with dissolved \(\Sigma_{14} \)PAH or \(\Sigma_7 \)PCB, suggesting that dissolved PBDEs may share more common sources with PCMs than with PAHs or PCBs in the lower Great Lakes region. Previous work by Melymuk et al. suggested that wastewater may be an important source of both PBDEs and PCMs in Lake Ontario, while not as significant for PCBs or PAHs.\(^ {22} \)

In contrast, gaseous \(\Sigma_{12} \)BDE was weakly but significantly correlated with gaseous \(\Sigma_{14} \)PAH \((p < 0.01; r^2 = 0.13; SE = 3.8; N = 56) \) and \(\Sigma_7 \)PCB \((p < 0.01; r^2 = 0.16; SE = 3.8; N = 54) \), but not correlated with \(\Sigma_3 \)PCM, possibly due to scarcity of data, as gaseous PCMs were detected above blank levels less frequently than the other compound groups. Previous studies in the Great Lakes region...
have also reported significant correlation between atmospheric PBDEs and PCBs due to their elevated emissions in urban and industrial areas.44

Results of this correlation analysis suggest that PBDEs and PCMs share common sources to the aquatic environment. They may also share common sources to the atmosphere, but results for air were inconclusive.

Gaseous PBDEs and population density. Population data within a 180° wedge to the south of each site resulted in stronger correlation with gaseous Σ_{12}BDE than population within a circle around each site or population to the north, east, or west. This was also generally true for individual BDE congeners. Correlations found using a circular radius or 180° southern wedge are compared for Σ_{12}BDE and Σ_{14}PAH in Figure S5.

In previous studies investigating relationships between atmospheric pollutant concentrations and population, sites have often been characterized using a circular area with a specific radius (often 20 – 25 km).46 However, some studies have shown that directional terms should be considered when investigating trends of atmospheric pollutants in the Great Lakes, especially for compound groups with significant local atmospheric emissions.45 Previous studies have also demonstrated that coastal effects can disrupt population trends when offshore air dilutes the urban plume.46 The work described here included mostly shoreline sites which had very different nearby population densities to the north and south. Furthermore, the lower Great Lakes region was generally subject to prevailing southwesterly winds during the deployment period, as is demonstrated by wind direction data from meteorological buoys and predicted mean wind directions at the sampling sites, shown in Tables S16 and S17 and Figures S6 and S7.
Average gaseous Σ_{12} BDE exhibited significant ($p<0.05$) linear correlation with population within 1-10 km south of each site, with the strongest correlation at 3 km ($p<0.005$; $r^2=0.36$; SE=2.9; $N=22$). Significant linear correlation with population was also seen for four of the five commonly detected individual congeners (BDE 28, 47, 99, and 100), with strongest correlations between 3-15 km. This suggests PBDE concentrations were significantly influenced by local sources, consistent with their low vapor pressures and significant loss via deposition. Melymuk et al. observed a swift decline in PBDE concentrations with 5 km south of the Toronto city center, supporting the importance of nearby populated areas in influencing distributions of these compounds. BDE 49 did not exhibit significant correlation with population at any distance, perhaps due to its low frequency of detection (34%) compared to the other congeners (>50%).

The maximum radius where a significant ($p < 0.05$) linear correlation was observed between gaseous concentration and population density was plotted against log p_L at 298 K for four PBDE congeners, as well as several PAHs, PCBs, and PCMs, in Figure 3. As compound vapor pressure increased, the maximum distance where significant correlation was observed expanded, suggesting that spatial distributions of more volatile compounds like the PCMs and lower molecular weight PAHs were influenced more strongly by distant emissions, while local emissions were more important in determining spatial distributions of PBDEs.

Previous data from PEs collected on the lower Great Lakes in 2011 suggested that PAHs with sub-cooled liquid vapor pressure log p_L(Pa) <-3 at 298 K most strongly correlated with population within a radius of 3 km, while PAHs with greater vapor pressures correlated more strongly with population within a radius of 20 km. In this study, PAHs, PCBs, and PCMs with log $p_L >-2$ remained
significantly correlated with population within radii >25 km, while less volatile compounds generally did not. BDEs 47 and 99 fell farther below the regression line in Figure 3 than the other compounds, with significant correlation occurring only to a radius of 5-6 km. This may be due to their short lifetimes with respect to photolysis and OH radical degradation (4.0 – 8.7 hours) compared to BDE 100 and 28 (26 – 48 hours).20

Dissolved PBDEs and population density. Dissolved Σ_{12}BDE exhibited a significant positive linear correlation with population within a 25 km radius of each site ($r^2=0.52; p<0.01; SE=0.27; N=20$), as shown in Figure 4. The correlation was driven primarily by the seven nearshore sites, which exhibited the broadest range in surrounding population densities. In this case, use of population extracted from wedges north, south, east, or west of each site did not result in stronger correlations.

Four shoreline sites (OSW, NIA, ROC, and ERI) exhibited low surrounding population and elevated dissolved Σ_{12}BDE relative to the regression line, suggesting they may be influenced by nearby point sources. The Niagara River site (NIA) was likely representative of the Niagara River plume and the Oswego site (OSW) may have been influenced by two nearby (within 1.5 km) wastewater treatment plants that discharged directly into Lake Ontario, both identified as major dischargers in the US Environmental Protection Agency (US EPA) National Pollutant Discharge Elimination System (NPDES) 2012 Discharge Monitoring Report.47

Geostatistical Interpolation of Dissolved PBDE Concentrations. Using passive samplers enabled a much improved spatial coverage over past studies of the region (though still limited on the scale of the Great Lakes). This dataset thus provided an opportunity to more accurately predict surface water concentrations over the lakes. Maps of predicted aqueous Σ_{12}BDE across Lake
Erie and Lake Ontario are presented in Figure 5 and variance for these predictions is presented in Figure S8. Posterior distributions for the estimated parameters used in the kriging model are shown in Figure S9 and results of cross validation are shown in Figure S10.

Predictions for Lake Erie identified the area near Detroit at the western end of the lake as a possible unmonitored “hot spot”, and highlighted areas around Buffalo, Cleveland, and Dunkirk as having the greatest concentrations (around 10 ± 4 pg/L) on the lake. Predictions for Lake Ontario highlighted the significance of the Toronto conurbation as a source of PBDEs to the lake, with elevated concentrations of 10-18 pg/L extending about 15 km away from the shoreline.

The use of Bayesian kriging coupled with PE-derived concentrations to predict dissolved Σ_{12}BDE over the lakes illustrates the utility of relatively highly spatially resolved data in identifying potential hot spots for further study, like the area around Detroit. Concentrations in this area would likely be greater than predicted by the model, as they would be influenced by the Detroit River, which is the major tributary to Lake Erie. Elevated gaseous and dissolved PBDEs near population centers highlight the need to continually monitor concentrations of phased-out persistent organic pollutants in urbanized areas.

ASSOCIATED CONTENT

Supporting Information. Additional figures and tables, as well as details on sampling rate estimation and air-water exchange flux calculations, are available in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.
AUTHOR INFORMATION

Corresponding Author

* Rainer Lohmann: rlohmann@uri.edu

ACKNOWLEDGMENTS

We acknowledge funding from the US EPA Great Lakes Restoration Initiative (GLRI) GLAS #00E00597-0, project officer Todd Nettesheim. We thank Professor Peter August (URI) for assistance with GIS, David Adelman (URI) for organizing field deployments, Michael Vansco (URI) for data from thin-film experiments, Camilla Teixeira and the field staff of the Emergencies, Operational Analytical Laboratories, and Research Support group (Environment Canada Burlington) for open-lake deployments, and all of the volunteers who deployed PEs in the region.

REFERENCES

343 (9) Booij, K.; Zegers, B. N.; Boon, J. P. Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accumulation in SPMDs and blue mussels (Mytilus edulis). *Chemosphere* 2002, 46, 683–688, DOI:10.1016/S0045-6535(01)00232-6.

(23) Venier, M.; Hites, R. A. Atmospheric deposition of PBDEs to the Great Lakes featuring a Monte Carlo analysis of errors.

R Core Team. R: A language and environment for statistical computing (version 3.1.0), 2014.

Hafner, W. D.; Hites, R. A. Effects of wind and air trajectory directions on atmospheric concentrations of persistent organic

Table 1. Average Dissolved PBDEs (pg/L) ± Standard Deviation.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>BDE 28 ±</th>
<th>BDE 49 ±</th>
<th>BDE 47 ±</th>
<th>BDE 100 ±</th>
<th>BDE 99 ±</th>
<th>BDE 154 ±</th>
<th>BDE 153 ±</th>
<th>Σ_{12}BDE ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toronto Nearshore</td>
<td>3</td>
<td>0.48±0.12</td>
<td>0.22±0.02</td>
<td>5.4±1.3</td>
<td>1.8±0.76</td>
<td>5.0±1.8</td>
<td>0.42±0.22</td>
<td>0.20±0.07</td>
<td>14±4.1</td>
</tr>
<tr>
<td>Lake Erie Shoreline</td>
<td>6</td>
<td>0.23±0.22</td>
<td>0.20±0.17</td>
<td>2.0±1.2</td>
<td>0.93±0.46</td>
<td>1.9±1.4</td>
<td>0.11±0.11</td>
<td>0.03±0.04</td>
<td>5.5±3.4</td>
</tr>
<tr>
<td>Lake Ontario Shoreline Nearshore</td>
<td>6</td>
<td>0.28±0.16</td>
<td>0.23±0.21</td>
<td>3.0±2.2</td>
<td>0.95±0.68</td>
<td>2.0±1.8</td>
<td>0.13±0.15</td>
<td>0.06±0.05</td>
<td>6.8±5.0</td>
</tr>
<tr>
<td>Lake Erie Offshore</td>
<td>3</td>
<td>0.17±0.15</td>
<td>0.13±0.11</td>
<td>0.55±0.48</td>
<td>0.30±0.27</td>
<td>0.63±0.74</td>
<td>0.07±0.07</td>
<td>0.02±0.04</td>
<td>1.9±0.91</td>
</tr>
<tr>
<td>Lake Ontario Offshore</td>
<td>2</td>
<td>0.08±0.11</td>
<td>0.11±0.06</td>
<td>1.1±0.18</td>
<td>0.40±0.21</td>
<td>0.85±0.36</td>
<td>0.09±0.12</td>
<td>< DL</td>
<td>2.6±0.81</td>
</tr>
</tbody>
</table>

*N is the number of sites of each type.

Table 2. Average Gaseous PBDEs (pg/m³) ± Standard Deviation.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>BDE 28 ±</th>
<th>BDE 49 ±</th>
<th>BDE 47 ±</th>
<th>BDE 100 ±</th>
<th>BDE 99 ±</th>
<th>Σ_{12}BDE ±</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer Sites (May to November)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Offshore</td>
<td>3</td>
<td>0.09±0.10</td>
<td>0.03±0.02</td>
<td>0.22±0.09</td>
<td>0.05±0.03</td>
<td>0.25±0.12</td>
<td>0.74±0.15</td>
</tr>
<tr>
<td>Nearshore</td>
<td>5</td>
<td>0.14±0.09</td>
<td>0.03±0.02</td>
<td>0.28±0.24</td>
<td>0.11±0.05</td>
<td>0.22±0.18</td>
<td>0.79±0.56</td>
</tr>
<tr>
<td>Shoreline</td>
<td>14</td>
<td>0.25±0.29</td>
<td>0.06±0.07</td>
<td>2.9±1.3</td>
<td>0.59±0.25</td>
<td>2.6±1.7</td>
<td>6.7±2.1</td>
</tr>
<tr>
<td>Winter Sites (November to May)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shoreline</td>
<td>9</td>
<td>0.03±0.07</td>
<td>0.01±0.02</td>
<td>0.55±0.62</td>
<td>0.21±0.15</td>
<td>1.7±0.88</td>
<td>2.7±1.4</td>
</tr>
</tbody>
</table>
\(n \) is the number of sites of each type.
GRAPHICAL ABSTRACT

For Table of Contents only