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ABSTRACT 

 

The nearshore and offshore waters of southern New England provide important winter 

habitat for many sea duck species including common eiders (Somateria mollissima). Sea 

ducks that inhabit these waters must contend with global climate change, disease, and 

anthropogenic disturbance including proposed offshore wind energy development; 

however, evaluating these potential impacts on sea ducks, in general, and eiders in 

particular is difficult because knowledge of their ecology during winter is limited. I 

conducted the first validation of a non-lethal method for estimating body composition 

(deuterium dilution) of eiders and then applied this method to assess changes in body 

composition throughout the winter of 2011-12.  I constructed models using deuterium-

estimated body water, structural measurements, body mass and sex that estimated wet 

lean mass with 2.0 % relative error, and fat mass with 20.2 % relative error. Both male 

and female eiders were heavier and had more fat in late winter compared to early winter, 

whereas wet lean mass remained constant for males and declined over time for females 

from early to late winter. Based on model accuracy, the deuterium dilution method 

provided a viable, non-lethal approach for estimating body composition of eider. 

Biologists interested in assessing the potential impacts of offshore wind energy 

development and exposure to diseases such as Wellfleet Bay Virus on body composition 

of eider could use the method to assess changes in body condition. In a complimentary 

second study, I used satellite telemetry to track the movements of 26 adult female 

common eiders from November 2011 to July 2013 to delineate the migratory phenology, 

home ranges, habitat use and site fidelity of eiders that were initially captured during 

early-winter in southern New England. Eiders exhibited high fidelity to the southern New 



 

 

England wintering area (19 of 23 birds returned to the same area between years), where 

birds spent approximately 38% of their annual cycle.  Birds were relatively sedentary 

during winter with home ranges that tended to be smaller than other species of seaducks (

x -50% kernel core use areas = 38.5 km
2
 and x -95% kernel utilization distributions = 

199.3 km
2
). Satellite-tagged eiders wintering in southern New England migrated to 4 

summer areas in Maine, USA, Nova Scotia, the St. Lawrence Estuary and the Gulf of St. 

Lawrence, Canada. During winter, eiders preferred shallow waters that were closer to 

shore, and that had relatively fine-sediment substrate and a higher probability of hard 

bottom. I used this information to develop a spatially-explicit model that predicted that 

approximately 13.1% of this 6,212 km
2
 study area had a medium-high to high relative 

probability of use by eiders, and identified relatively high-use areas. Managers and policy 

makers could use this information to evaluate certain siting scenarios for offshore wind 

energy development so that areas with a high probability of use by eiders are avoided, 

thus minimizing the chance of negative impacts on the species. 
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PREFACE 

This thesis follows the University of Rhode Island Graduate School guidelines for 

manuscript formatting. Manuscript 1 is titled “Validating the Deuterium Dilution Method 

to Assess Changes in Body Composition of Common Eiders During Winter” and is 

formatted for submission to the journal Wildlife Society Bulletin. Manuscript 2 is titled 

“Habitat Use and Movement Dynamics of Common Eiders in Southern New England 

Relative to Offshore Wind Energy Development” and is formatted for submission to the 

Journal of Wildlife Management. 
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ABSTRACT Thousands of sea ducks winter along the nearshore and offshore waters of 

southern New England and these waters have been recently considered for offshore wind 

energy development. Anthropogenic disturbances introduced into habitat used by 

wintering eider have the potential to negatively impact their body condition. Biologists 

presently lack an accurate, non-lethal method for measuring body composition of sea 

ducks that allows them to assess body condition. Our goal was to validate the deuterium 

dilution method for measuring body composition American common eiders (Somateria 

mollissima dresseri). We captured 19 eiders during winter in southern New England, 

injected each eider with 1,066 ± 4.5 mg of 99.9% deuterium oxide, allowed them to rest 

for 90 minutes and then collected approximately 200 ul of blood from each eider. We 

euthanized eiders after collecting blood, recorded structural measures, and performed a 

carcass analysis. We measured deuterium concentration in blood water using an isotope 

ratio mass spectrometer, from which we estimated total body water. Deuterium over-

estimated body water by 13.30 ± 0.73% (R
2
 = 0.931). We derived linear regression 

models using combinations of 5 variables to estimate wet lean and fat mass. Using a jack 

knife validation, we determined that the top two models predicted with 2.04 and 2.02 % 

relative error, respectively, and the top ranked fat mass model predicts with 20.24% 

relative error. Using these models we determined that both male and female eiders 

significantly increased fat mass in late winter compared to early winter, whereas wet lean 

mass of males remained constant throughout the winter, while wet lean mass of females 

was significantly less than males during late winter and decreased compared to early 

winter.  Deuterium dilution is a method that enables field biologists to obtain relatively 
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accurate measurements of common eider body composition without needing to kill the 

bird to perform extensive and expensive total carcass analyses. 

Wildlife Society Bulletin: 00(0): 000-000, 201X 

Biologists interested in an animal’s health often measure body condition, which wildlife 

biologists define as an individual’s fat content relative to morphometrically-estimated 

size (Green 2001; Labocha and Hayes 2012) or more broadly as “the energy capital 

accumulated in the body as a result of feeding” (Peig and Green 2009). Investigations of 

body condition have broad relevance for the ecology and management of free-living 

wildlife (Servello et al. 2005) because they relate to habitat requirements, can indicate 

habitat quality (Moon et al. 2007, Schummer et al. 2012), so can be a useful integrative 

indicator of environmental disturbance at a variety of scales including that associated 

with global climate change, disease, and anthropogenic development (Klaassen et al. 

2012). 

Estimates of body condition of waterfowl are especially common (Campbell and 

Leatherland 1980, Alisauskas et al. 1990, Jamieson et al. 2006a) in part because body 

composition of ducks and geese changes quite dramatically across seasons (Reinecke and 

Stone 1982, Badzinski et al. 2011) and because nutrient stores of females during winter 

and spring migration affects reproductive investment (Korschgen 1977, Ankney et al. 

1991). Studies of waterfowl body condition during winter have primarily focused on 

dabbling and diving ducks (Baldassarre et al. 1986, Whyte et al. 1986, Morton et al. 

1990, Schummer et al. 2012), whereas few investigators have focused on sea ducks 

(Jamieson et al. 2006b) despite recent declines in many sea duck populations that may be 

related to their ecology and condition (Caithamer et al. 2000, Goudie et al. 2000).  
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Understanding body condition of wintering waterfowl including seaducks is critical 

because individuals with lower body mass relative to body size have reduced annual 

survival rates (Haramis et al. 1986, Hepp et al. 1986, Hohman et al. 1995, but see 

Krementz et al. 1989) in part because birds in poor body condition may be more 

vulnerable to predation (Guillemette et al. 1992) and diseases (Navarro et al. 2003, 

Hanssen et al. 2005, Bourgeon et al. 2006, Owen and Moore 2008, but see Arsnoe et al. 

2011).  In addition, there is a pressing need to understand how body condition of 

wintering sea ducks is affected by displacement from offshore wind energy developments 

(OWED; RI Ocean SAMP 2010, BOEM 2012), regional diseases (Ellis et al. 2010), and 

other potential anthropogenic disturbances (Merkel et al. 2009, Schwemmer et al. 2011, 

Klimstra and Padding 2012). Offshore wind energy development in Europe may alter 

body composition of sea ducks because these facilities displace birds from preferred 

habitats (Petersen et al. 2006), cause at least short-term avoidance of the area between 

turbines (Petersen and Fox 2007), and create barriers to diel movements and thus increase 

flight times (Desholm and Kahlert 2005).   

Body condition of animals can be assessed using direct or indirect methods 

(Campbell and Leatherland 1980, Speakman 2001, Jamieson et al. 2006a). Direct 

methods are lethal because they involve directly measuring the total amount of fat and/or 

lean mass (protein) in individuals (Hicks 1967, McLandress and Raveling 1981, Ellis and 

Jehl 1991, Alisauskas et al. 1990, Jamieson et al. 2006a).  Jamieson et al. (2006a) 

recommended directly measuring body composition of common eider (Somateria 

mollissima) and this method has been commonly used for other waterfowl (Ankney and 

MacInnes 1978, Reinecke et al. 1982, Baldassarre et al. 1986, Schummer et al. 2012). 



5 

 

Indirect methods allow body composition to be estimated without the need to sacrifice 

the birds (Speakman 2001, McWilliams and Whitman 2013) and avoid the laborious 

dissections and complex analyses required for directly measuring body composition 

(Johnson et al. 1985). Deuterium dilution is an indirect method that has been successfully 

applied to estimate body composition of a variety of wild vertebrates (Speakman 2001) 

including song-birds (McWilliams and Whitman 2013) and Barnacle Geese (Branta 

leucopsis) (Eichhorn and Visser 2008), although no previous studies have used this 

indirect method to assess body composition dynamics of sea ducks. 

Common eider (hereafter eider) are the largest species of North American sea 

duck, are widespread and abundant during winter in northeastern North America (Goudie 

et al. 2000, Silverman 2013), and thus are an ideal species for investigating how body 

composition changes throughout the winter in relation to environmental, disease and 

anthropogenic factors. Thousands of American common eider (S. m. dresseri) winter 

nearshore in southern New England (Klimstra and Padding 2012, Silverman et al. 2013) 

where eider are exposed to harvest by hunters (Raftovich et al. 2011), habitat loss and 

degradation (Goudie et al. 2000, Thrush and Dayton 2002), novel diseases (Ellis et al. 

2010) and inclement weather. In addition, efforts to develop separate large and small 

scale OWED projects are advancing in Rhode Island (RI OCEAN SAMP 2010, BOEM 

2012), intensifying the need to understand the potential impacts of OWED on sea duck 

body composition in southern New England.  Simultaneously, Wellfleet Bay Virus 

(WBV), a newly emerging regional disease (A. Allison, Cornell University, personal 

communication) that threatens eiders in southern New England has been responsible for 

die-offs ranging from several hundred to several thousand eiders annually (Ellis et al. 
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2010). Although body composition of eider likely influences their response to 

anthropogenic disturbance and disease risk, the only baseline study of the body 

composition dynamics of eider during winter was conducted on the smaller northern 

common eider (Somateria mollissima borealis) (Jamieson et al. 2006a) that winters in 

more northern latitudes. The specific goals of this study of American common eider were 

to: 1) validate for the first time the deuterium dilution method for estimating body 

composition of eider, 2) use deuterium dilution to estimate and compare body 

composition of adult eider throughout the wintering period while they inhabit the 

southern New England wintering area, and 3) compare the body composition dynamics 

during winter of the two subspecies of eider that reside at different latitudes. 

STUDY AREA 

Our study area included nearshore and offshore waters of southern New England, 

which we define as all waters extending east from Montauk Point, Long Island, New 

York to Cape Cod and Cape Cod Bay, Massachusetts (Figure 1).  The southern New 

England continental shelf has many offshore islands of varying sizes; most notably Block 

Island, Rhode Island, and Martha’s Vineyard and Nantucket, Massachusetts.  Rocky reefs 

and sporadic mussel beds in southern New England provide eider excellent foraging 

opportunities for benthic invertebrates (Theroux and Wigley 1998), such as blue mussels 

(Mytilus edulis) and green crabs (Carcinus maenas) (Loring et al. 2013), which are 

preferred food sources of eider (Ydenberg and Guillemette 1991). The nearshore waters 

of southern New England are generally shallow with increased depth gently sloping 

seaward (Theroux and Wigley 1998, Eakins et al. 2009), which provides extensive 

habitat for eider and other sea ducks because they prefer to forage in water depths up to 
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20 m (Goudie et al. 2000).  As such, southern New England supports the highest densities 

of wintering sea ducks on the Atlantic Coast (Silverman et al. 2013).  

METHODS 

Capture of Eider 

We used floating mist nets surrounded by decoys (Brodeur et al. 2008) to capture 

eiders at several locations in southern New England (Fig. 1) during 3 time intervals: early 

winter (November 2011, 2012, December 2011, n =139), mid-winter (February 2012, 

n=47), and late winter (March 2012, n=37).  We deployed 3 pairs of mist nets (net size: 

1.3 m x 18 m, 127-mm mesh) over near shore (<1 km) feeding locations from pre-dawn 

until 2-4 hrs after sunrise. Teams of 2-4 biologists in 6-7 m outboard skiffs remained 

approximately 100 m from each active mist net to closely monitor and determine where 

eider were captured.  We immediately removed captured birds from mist nets, recorded 

their age as after hatch year (adult) or hatch year and gender (based on wing plumage 

characteristics described by Carney (1992)) and measured body mass with a Pesola 

spring scale (± 5g). 

Measuring Body Composition  

     Field methods.   Our goal was to capture and estimate body composition of 30 adult 

eiders during each of the 3 winter periods (early, mid and late). In addition, we captured 

21 adult eiders for the validation of the deuterium dilution method. These 21 adult eider 

were caught throughout the winter (early winter n = 16, mid-winter n = 4, later winter n = 

1) and were selected to span the full range of body weights of captured eider (1533 to 

2298 g) (Table 1).  We used 111 of the 148 adult eiders captured during fieldwork (early 

winter n=51, mid-winter n=33, late winter n=27) for inclusion in this body composition 
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study and immediately released after banding the other 37 adults, as well as all 75 

juvenile eiders.  We included more adult eider during early winter because this project 

was part of a larger satellite telemetry study (Chapter 2) for which we estimated body 

composition of eiders when transmitters were deployed.   

Within 30 min of capture in the field, we used a pre-filled, disposable 1-ml insulin 

syringe (Fischer Scientific, 22004270) to inject into the pectoral muscle of each of 107 

eider on average 1,066 ± 4.5 mg of 99.9% deuterium oxide (Sigma Aldrich Co. 151882-

100G).  Four eiders captured and injected in Wellfleet, Massachusetts (Fig. 1), were 

injected with on average 3,148 ± 34.3 mg of the same 99.9% deuterium oxide solution in 

order for concentrations to be determined using an infrared spectrophotometer available 

in our laboratory. We measured actual mass of deuterium oxide injected into each bird by 

reweighing syringes after injection and subtracting this from the pre-injection mass of the 

same syringe plus deuterium oxide solution. After injection we housed birds in individual 

pet crates (48cm x 32cm x 26 cm height) for 1.5 hrs to allow deuterium oxide to reach 

equilibrium in their pool of body water (Eichhorn and Visser 2008).  On average 97 min 

(± 9 min) after injection, we collected approximately 200 ul of blood into heparinized 

capillary tubes (Fischer Scientific, 22362566) after pricking the medial metatarsal vein of 

each bird with a sterile 27G needle (Fischer Scientific, 1482648).  In the field, we sealed 

capillary tubes with blood using clay, and later the same day we flame-sealed the glass 

capillary tubes and stored blood samples at 4.4° C.  

We immediately released 90 eiders (approximately 30 each in early, mid, and 

late-winter) after collecting these post-injection blood samples, whereas we used cervical 

dislocation to kill the 21 eider that were used for the validation study.  In the field, we did 
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not measure structural size (i.e., head and bill characters, tarsus length, wing chord) 

because of the limited time we held the eider to minimize handling stress, and because 

accurately measuring these structural size characters is difficult in small skiffs on the 

ocean during winter. Consequently, these structural measures were measured only in the 

21 validation birds transported to the laboratory (see below). We stored euthanized eiders 

in the field for a maximum of 6 hrs in zip-lock bags at ambient temperature until we 

returned to the laboratory.  In the laboratory, we reweighed each specimen using an 

electronic balance (± 0.1 g), double-bagged each bird in a freezer zip-lock bag, and stored 

frozen specimens (-17° C) until we completed total carcass analysis.  

We conducted all methods with approval of the University of Rhode Island 

Institutional Animal Care and Use Committee (Protocol # AN 11-09-004).   

     Laboratory methods: total carcass analysis.   We used the 21 eider selected as 

validation birds to develop the predictive relationship between total body water 

(estimated using deuterium dilution) and body composition as directly measured from 

carcass analysis (Eichhorn and Visser 2008, McWilliams and Whitman 2013). We used 

standard techniques outlined by Dobush et al. (1985) and Speakman (2001) to directly 

measure body composition (total body fat mass, lean mass, water, protein, and feathers) 

of the 21 eider. Briefly, we thawed frozen eider carcasses for approximately 2 hrs and 

weighed each on an electronic scale (± 0.1 g).  We measured the following structural 

characters with calipers to the nearest 0.01 mm: culmen length, culmen width at nares, 

head length, and tarsus length (Dzubin and Cooch 1992). We also measured flattened 

wing chord to the nearest mm.  We repeated structural measures 5 times and used the 

mean of the replicates for statistical analysis.  We then shaved and reweighed each eider 
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and used the difference between unshaved and shaved body mass to estimate feather 

mass.  We used a butcher’s saw to section the carcass into smaller pieces and then ground 

the carcass using a commercial meat grinder (Hobart Corporation, Troy, Ohio).  To 

ensure complete homogenization, we ground and homogenized each carcass 4 times.  We 

sub-sampled the homogenized carcass for measurement of water, protein and fat as 

described below. 

     Measuring total body water.   We dried 6, 50-g samples of each homogenized carcass 

in aluminum trays at 90° C until constant mass.  We calculated water content (%) of the 

sample as the difference between the fresh wet mass and dry mass of the sample divided 

by the fresh wet mass of the sample. We estimated total body water by multiplying the 

mean water content (%) of the 6 subsamples by the shaved carcass mass.   

     Measuring fat mass.   We dried 4, 50-g samples of each homogenized carcass in 

aluminum trays at 60° C until mass was constant (Dobush et al. 1985).  Once dry, we 

combined the samples and homogenized them using a blender.  From this dry, 

homogenous mixture, we weighed 5, 1.0-g subsamples into cellulose thimbles that we 

had previously dried at 60° C and weighed.  We placed thimbles into a Soxhlet extractor 

and refluxed the samples with petroleum ether (Dobush et al. 1985) for a minimum of 8 

hrs.  After a visual inspection verified that the ether flushing through the thimbles was 

clear and free of fat, we removed the thimbles and dried them overnight at 60° C.  We re-

weighed the dried thimbles and calculated fat (%) as the difference between dry sample 

mass and lean-dry sample mass, divided by the dry sample mass.  We estimated total fat 

as the mean percent fat of the 5 samples multiplied by the dry shaved carcass mass. 
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     Measuring protein.   We combined and re-homogenized the lean, dry samples resulting 

from fat extraction from each carcass.  Using a Wiley Mill (screen size 40), we further 

homogenized the lean, dry samples. We measured 5, 1-mg replicates of lean, dry 

homogenate, into 4 × 6 mm aluminum capsules (Costech Inc., Valencia, CA).  We 

directly measured nitrogen content using a continuous flow isotope ratio mass 

spectrometer (Elementar Americas, Mt. Laurel, NJ).  For 11 of 21 eider, our 

measurement of nitrogen content had CV > 5%, so we re-measured nitrogen content for 5 

additional replicates to reduce the CV < 5%.  We estimated nitrogen content of the 

carcass as the mean percent nitrogen of the replicates multiplied by the lean, dry shaved 

carcass mass.  We determined the amount of protein in each bird by multiplying the 

nitrogen content by 6.25 (Parker and Holm 1990). As expected, total protein estimated 

from nitrogen content was closely related to total lean dry mass across individuals (R
2
 = 

0.865, P < .0001), so we report below only the results for total lean mass. 

     Measuring deuterium concentration.   We measured the deuterium concentration (atom 

%) in each blood sample from the 111 eider to estimate the total body water and body 

composition of eider throughout winter. We first microdistilled each blood sample 

following procedures described by Nagy (1983) to recover a blood water sample.  

Deuterium concentration in blood water was measured by the University of Arkansas 

Stable Isotope Laboratory (UASIL, Fayetteville, AR, USA) using a high temperature 

conversion elemental analyzer (TC/EA) (Thermo Finnigan, Waltham, MA) interfaced 

with a Conflo III (Thermo Finnigan) to a Delta plus XP with electrostatic filter mass 

spectrometer (Thermo Finnigan).  We analyzed 4 1-ul sub-samples of each blood water 

sample, with the last 2 retained and averaged while the first 2 replicates were discarded to 
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minimize carry over from the previous sample.  We converted deuterium enrichment in 

parts per million (ppm) to atom percent concentration using the following equation: 

Atom % = (100 × 0.0001557 × (X / 1000  + 1) / (1 + 0.0001557 × (X / 1000 + 1) 

Where 0.0001557 was the mole fraction of deuterium in VSMOW (Coplen et al. 2002), 

and X was the measured deuterium enrichment (ppm) of the sample.   

     Measuring background deuterium.   We measured background deuterium 

concentration (atom %) in 4 eiders that were not used in the validation of the deuterium 

dilution method or for estimation of body composition.  Mean background deuterium 

concentration was 0.01536 ± 2.091 e
-5

 atom %. We corrected measured deuterium 

concentrations of all blood samples by subtracting the mean background deuterium 

concentration. 

     Estimating total body water.   We used the following equation from Karasov and 

Pinshow (1998) and McWilliams and Whitman (2013) to estimate deuterium space (total 

body water): 

E = 100 × {0.999 × (B/20)/ [0.999× (B/20) + 0.001× (B/18) + (S/18)]} 

Where E was the measured enrichment (atom %) of deuterium in the sample after background 

correction, 0.999 was the proportion of injected solution that was deuterated water, 0.001 was the 

proportion of injected solution that was unlabeled water, B was the injection mass in grams, 20 

was the molar mass of deuterated water, 18 was the molar mass of unlabeled water and S was 

deuterium space (or body water) in grams.  Knowing actual amount of deuterium injected (B) 

and measured enrichment (E), we rearranged the equation to estimate the deuterium space (total 

body water): 

S (g) = 18 × (((100 × (0.999 × (B/20)))/E)-(0.999 × (B/20)) - (0.001 × (B/18))) 
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Estimating Body Composition 

     Model development.   We used multiple regression analysis to compare predictive 

models to estimate wet lean and fat mass of eider given deuterium-estimated total body 

water, structural size, body mass, and sex of each bird.  We used principal component 

analysis to condense the 5 structural measurements and body mass into 2 orthogonal 

principal components that were then included in the multiple linear regression analyses. 

We used Levene’s test and examination of Q-Q plots to ensure the dependent variables 

met the assumptions of normality and homoscedasticity. We used SAS 9.2 (SAS 

Institute, Inc., Cary, NC) to perform all statistical analyses unless otherwise noted. We 

also used non-linear regression (SYSTAT, Version 5; Wilkinson 1992) to estimate fat 

mass given deuterium-estimated body water and body mass as described in previous 

studies (Campbell and Leatherland 1980, Karasov and Pinshow 1998, McWilliams and 

Whitman 2013). 

     Model selection and evaluation.   We used Akaike’s information criterion (AIC) 

corrected for small sample sizes (AICc) and estimates of the accuracy of model 

predictions to select the best model(s), and a jack-knife approach for model validation.  

Briefly, we ran 19 iterations of each model, excluding the measured water, lean and fat 

mass for 1 individual bird during each of the iterations and used the measured values 

from the remaining 18 birds to estimate the total water, wet lean mass, and fat mass of the 

excluded bird. The accuracy of these estimated values was assessed by comparing the 

root mean square error (RMSE), absolute error, and relative errors for each model.  Root 

mean square error was calculated using the following equation: 

√ (∑(ƴp – ƴm)
2
/n) 



14 

 

where ƴp is the predicted value, ƴm is the measured value and n is the number of birds 

over which the squared difference between predicted and measured was summed. We 

also calculated for each individual bird the Absolute error (g) as |predicted - measured| 

and the relative error (%) as (absolute error/measured) × 100. 

     Estimating body composition of unknowns.   We used the predictive models to estimate 

the body composition of 90 eiders (approximately 30 each seasonal period) that we 

injected with deuterium, bled ca. 100 min after injection, and then released during early, 

mid and late winter.  We used analysis of variance (ANOVA) with Tukey’s multiple 

comparisons (SAS Institute, Inc., Cary, NC) to compare body mass, estimated wet lean 

mass and estimated fat mass between males and females across the 3 winter time periods. 

In order to compare our model-estimated body composition to other studies (e.g., 

lesser snow geese (Chen caerulescens) (Campbell and Leatherland 1980) and songbirds 

(Karasov and Pinshow 1998, McWilliams and Whitman 2013)), we also used non-linear 

regression to estimate fat mass given deuterium-estimated total body water and body 

mass using the following equation:  

fat = mb – deutmw – (deutmw/Bo) 

where fat is wet fat (g), mb is body mass (g),  deutmw is deuterium-estimated total body 

water, and Bo is the ratio of deuterated water mass to dry fat mass (Karasov and Pinshow 

1998). We used nonlinear regression to estimate Bo (3.092), which was within the range 

of other validation studies (Karasov and Pinshow 1998, McWilliams and Whitman 2013), 

and then fat mass of each bird given their mb and deutmw.  

RESULTS 

Capture of Eider 
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From 2011-2012, we captured 148 adult and 75 hatching year eider. Body mass of 

all adult eider was on average 1934.8 g (range = 1420-2320 g, n = 148) whereas that of 

adult eider used to assess body composition throughout winter was on average 1960.1 g 

(range = 1420-2320 g, n = 19). Adult eiders selected for the deuterium dilution validation 

included light and heavy birds as well as individuals from throughout the normal 

distribution of body mass of all adult eider (Table 1).      

Body Composition and Size of Validation Eider 

Male eiders averaged 280 g heavier than females (t17 = -3.41, P = 0.003), had 133 

g more water (t17 = -2.99, P = 0.008), 210 g more wet lean mass (t17 = -3.31, P = 0.004) 

and 68 g more dry lean mass (t17 = -4.03, P < 0.001) than females. Wing chord of male 

eiders averaged 14 mm longer than females (t17 = -3.08, P = 0.007), heads were 10 mm 

longer (t17 = -4.55, P < 0.001) and culmen length was 6 mm longer (t17 = -5.72, P < 

0.001). There were no differences in fat and feather mass, culmen width, or tarsus length 

between male and female eider (Table 2).   

Structural Size of Eider 

The first principal component (PC1= 0.894(head) + 0.831(wing chord) + 

0.823(body mass) + 0.705(culmen length) + 0.616(culmen width) + .261(tarsus)) 

accounted for 52% of the total variance.  The second principal component (PC2 = 

0.868(tarsus) – 0.47684(culmen width) + 0.267(culmen length) + 0.132(head) – 

0.163(wing) – 0.126(body mass)) accounted for an additional 19% of the total variance. 

Eider with higher loadings for the first principal component (PC1) had a larger head, 

wing and culmen, and were heavier, whereas those with higher loadings for the second 

principal component (PC2) had a longer tarsus and shorter culmen width. We used these 
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first 2 principal components in our predictive models to account for the contribution of 

body size to variation in body composition. 

Predictive Models for Estimating Body Composition of Eider 

Deuterium-estimated total body water was strongly related to measured total body 

water (Fig. 2) although deuterium dilution overestimated measured total body water by 

13.30 ± 0.73% (8.63 – 20.86 %) as found in previous studies (Karasov and Pinshow 

1998, Speakman 2001, Eichhorn and Visser 2008, McWilliams and Whitman 2013).  The 

highest ranked model for predicting total body water included sex and deuterium-

estimated total body water; however, sex was not a significant parameter in the model 

(f1,16 = 2.01, P = 0.176). Furthermore, the slope of the relationship between the measured 

and deuterium-estimated total body water for each sex was similar and the intercepts did 

not differ from zero (P > 0.20 in all cases). We therefore excluded sex from the final 

model for predicting total body water (pwat) given estimated deuterium space (pwat = -

97.5109 + .9571(deutmw)). This model predicted total body water within 21.54 ± 4.67 g 

absolute error and 1.90 ± 0.45 % relative error. 

The best supported model for estimating lean mass (Model 1) of the 6 candidate 

models (Table 3) included deuterium-estimated body water, both of the principal 

components that described structural size, and sex. The best supported models without 

structural measures (Models 3 and 4) included deuterium-estimated body water and sex 

with the most parsimonious of the 2 models (Model 4) providing the lowest RMSE and 

lowest absolute and relative error of the 6 competing models. 

The best supported models for estimating fat mass (Models 1 and 2) of the 6 

candidate models (Table 4) included deuterium-estimated body water, sex and either 
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structural size or body mass, although Model 1 provided a much lower RMSE and among 

the lowest absolute and relative error of the 6 competing models. The predictive model 

developed using non-linear regression explained a significant amount of the variation in 

fat mass (R
2
 = 0.936), although this model produced less accurate estimates of fat mass 

(RMSE = 55.94 g, absolute error = 42.09 g, relative error = 25.93 %) than the best 

supported multiple linear regression models (Table 5).  

Estimating Body Composition of Field-Caught Eider 

Given the results from the AIC model selection described above, we used the 

following predictive models for estimating fat and lean mass of field-caught eider: we 

estimated fat mass given deuterium-estimated total body water, body mass, and sex 

(Model 1 in Table 4), and we estimated lean mass given deuterium-estimated total body 

water and sex (Model 4 in Table 3). Two of the original 90 eiders had deuterium-

estimated water levels that were biologically unreasonable (<50% or >80% of body 

mass), and 1 eider was lighter and another heavier than those used in the validation. Thus, 

we used 86 eiders to investigate body composition changes of male and female eider 

throughout the winter.   

Body mass changed across the 3 winter periods (F2, 80= 4.39, P = 0.016), differed 

between males and females (F1, 80 = 32.62, P < 0.001), and the interaction between sex 

and sampling period was not significant (F2, 80 = 0.93, P = 0.399). On average, male 

eiders (2048.3 g ± 18.7 g) were 153.0 g heavier than females (1895.3 g ± 15.2 g).  Eiders 

in late winter (2045.6 g ± 25.9 g) were 132.0 g heavier than birds in early winter (1913.6 

g ± 20.4 g) (Figure 3A).   
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Fat mass changed across the 3 winter periods (F2, 80 = 22.98, P < 0.001), did not 

differ between males and females (F1, 80 = 2.07, P = 0.155), and the interaction between 

sex and sampling period was not significant (F2, 80 = 1.09, P = 0.3398). On average, 

eiders had 241.8 ± g of fat during winter and eiders in late winter (311.4 g ± 16.9 g) 

averaged 133.4 g more fat than eiders in early winter (178.0 g ± 12.7 g) (Figure 3B). 

Wet lean mass changed across the 3 winter periods (F2, 80= 5.32, P = 0.007), 

differed between males and females (F1, 80 = 49.91, P < 0.001), although the interaction 

between sex and sampling period was significant (F2, 80 = 3.12, P = 0.049).  On average, 

males (1687.0 g ± 17.2 g) had 146.2 g more wet lean mass than females (1540.8 g ± 18.0 

g).  Males in late winter (1695.5 g ± 24.1 g) did not differ from males in early winter 

(1716.0 g ± 36.7 g); however, females in late winter (1435.5 g ± 53.5 g) averaged 163.0 g 

less wet lean mass than females in early winter (1598.5 g ± 17.5 g) (Figure 3C).  The sex 

and sampling period interaction was not significant when the female with the lowest wet 

lean mass during late-winter was removed from the analysis. 

DISCUSSION 

Validation of the Deuterium Dilution Method for Estimating Body Composition of 

Eider 

We provide the first validation of the deuterium dilution method for indirectly 

measuring body composition of a sea duck, the American common eider. Deuterium 

dilution accurately estimated wet lean mass with a RMSE of 39.1 g, an absolute error of 

32.4 ± 5.18 g and relative error of 2.0 ± 0.4 %, while fat mass was estimated with a 

RMSE of 43.0 g, an absolute error of 35.9 ± 5.6 g and relative error of 20.2 ± 3.9 % 

(Table 5).  These predictive models required measurement of body mass, determining age 
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and gender of each bird, and estimating total body water using the deuterium dilution 

method. These models will enable biologists to obtain relatively accurate estimates of 

body composition without having to use direct lethal methods. Jamieson et al’s (2006a) 

models for indirectly estimating total carcass lipid (fat) of northern common eiders 

required measures of body mass and structural size and estimated fat mass with RMSEs 

of 32.7-38.9 g compared to direct measures of fat mass with a RMSE of 14.6 g.  In a 

validation of the deuterium dilution method for estimating body composition of barnacle 

geese, fat mass was estimated with a relative error of 10.1 ± 10.1 % while fat free (lean) 

mass was estimated with a relative error of 1.2 ± 1.4 % (Eichhorn and Visser 2008).  

Recently, McWilliams and Whitman (2013) used deuterium dilution to estimate fat and 

lean mass of 3 migratory passerines, with relative errors of 26.36 ± 18.6 to 34.13 ± 10.25 

% for fat mass and 1.96 ± 0.70 to 5.31 ± 1.55 % for lean mass.  Previously, Karasov and 

Pinshow (1998) used deuterium dilution to estimate lean mass of blackcaps (Sylvia 

atricapilla) with a relative error of 6.7 ± 1.2 %.  In summary, the relative errors of the 

models we developed to estimate wet lean mass (ca. 1-3%) and fat mass of eiders (ca. 

20%) are within the range of those values reported by previous studies using deuterium 

dilution (1-5% and 10-34%, respectively).   

Methodological Considerations 

Deuterium dilution and the associated predictive models that we presented should 

only be used to estimate body composition of eiders of the same sub-species (S. m. 

dresseri) during winter that are within the range of body masses used for the validation 

(1595 and 2298 g) because differences could exist between different sub-species or 

different populations (Castro and Myers 1990).  Other validation studies will be required 
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to estimate body composition of female eiders during spring and summer because the 

physiological changes associated with preparations for reproduction, egg laying and 

incubation (Milne 1976, Korschgen 1977, Parker and Holm 1990) are unlikely to be 

accurately predicted by the models that we present.   

 Biologists should also carefully consider the instrument that they plan to use for 

measuring deuterium concentration in blood water because it influences the amount of 

deuterium that must be injected into eiders.  If measuring deuterium concentration with 

an Isotope Ratio Mass Spectrometer (IRMS), approximately 1 ml of deuterium should be 

injected into each eider that range in body mass between approximately 1500-2500 g.  If 

measuring with an Infrared Spectrophotometer (IRSPEC), approximately 3ml of 

deuterium should be injected to ensure the diluted concentration is accurately measured 

by the instrument.  Measurement of deuterium concentration with an IRSPEC requires 

less sample preparation and is easier to accomplish, but the higher injection volume may 

be more difficult to successfully inject in field settings. 

Our highest ranked models for estimating wet lean mass necessitate measuring 

body mass and taking structural measures of all eiders injected with deuterium. Future 

investigations of eider body composition during winter are likely to be carried out over 

water and in challenging field conditions making it difficult to accurately measure these 

structures in the field prior to release of captured eider.  Our jackknife validation of 

models used to estimate wet lean mass showed no difference in the predictions of the top 

ranking model that included PC1 derived from structural measures and the model that 

only included sex and predicted total body water.  We recommend that whenever 

possible, biologists should obtain structural measures from the eiders they capture; 
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however, in the event that taking structural measures is not practical, biologists should 

measure body mass and record sex in addition to carrying out a deuterium injection in 

order to be able to predict wet lean mass and fat mass given the models that we provide.   

Size and Body Composition of Eiders in Southern New England 

As expected, we found gender differences in size and body composition of eiders, 

and that American common eiders wintering in southern New England were larger and 

heavier than northern common eider. We found males were heavier and had more total 

body water, and wet and dry lean mass than females.  Males were also larger than 

females, with longer wing chords, culmen and head lengths whereas tarsus length and 

culmen width were similar between sexes.  The wing chord, tarsus and culmen lengths 

that we reported are larger on average than those reported by Palmer (1976), but the 

differences were minor. The mean body mass of the eiders used in our study was 50 g 

heavier than the mean of 70 birds used to develop and 9 g less than the mean of 22 birds 

used to test body composition models for northern common eider (Jamieson et al 2006a). 

The eiders in our study had 17 g and 20.2 g more fat, 89 g and 41 g more water and were 

structurally larger (wing chords 22 mm longer, tarsus 5mm longer and head-bill lengths 

12 mm longer) than those in Jamieson et al.’s (2006a) study. Our measures support 

knowledge of size differences between American and northern common eiders. 

Body Composition Changes During Winter 

The observed increases in body mass of male and female eiders in late winter in 

southern New England are in contrast to the insignificant changes in body mass of male 

northern common eiders in Scotland (Milne 1976), although body mass of females in this 

paper significantly increased in late winter. Similarly, Guillemette et al. (1992) found 
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insignificant changes in body mass for male and females throughout the winter period; 

however, flock size partially explained body mass as those eiders sampled from large 

flocks (>300 individuals) had higher body masses than those from smaller flocks during 

early and mid winter. Changes in eider body mass during winter are variable within and 

between locations during winter and are likely related to local habitat conditions, 

disturbance and climatic events. 

Male American common eider had more wet lean mass than females throughout 

winter which is similar to the gender differences in body protein reported in northern 

common eiders by Jamieson et al (2006b). The decrease in wet lean mass of female 

American common eider during late-winter that we documented was not observed in the 

northern subspecies (Milne 1976, Jamieson et al. 2006b) whereas all studies of common 

eider to date found that wet lean mass of males did not significantly change during winter 

(Milne 1976, Jamieson et al. 2006b, our study). Loss of wet lean mass during winter has 

been observed in other waterfowl (Ballard et al. 2006, Meissner et al. 2012) and may be 

related to local environmental conditions, different migration or breeding strategies. 

In general, female and male American common eiders during winter in southern 

New England had more fat mass (mean 232 and 242 g, respectively) than eiders during 

winter in Maine (mean 175 g; Korschgen 1977), Scotland (females ~ 160 g, males ~ 170 

g; Milne 1976), Quebec (males 17 - 170 g; Guillemette et al. 1992), and Greenland 

(females 205 g, males 221 g; Jamieson et al. 2006b, Merkel et al. 2006) although these 

comparisons do not account for body size differences. Male and female American 

common eider had significantly more fat in late winter than they did in early winter and 

this accounted for the majority of the increase in body mass over winter. Milne (1976) 
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also reported a significant increase in fat during winter for female northern common 

eider, although he found no increase in fat for males. Merkel et al. (2006) reported a 

decrease in fat for male and female northern common eiders. Many possibly explanations 

exist for the changes in body composition that we observed during winter. 

Previous studies on waterfowl body composition dynamics suggest that body 

weights and reserves peak in early winter before decreasing throughout the winter, likely 

due to temperature or food availability (Peterson and Ellarson 1979, Blem 1990, Gates et 

al. 2001).  Blem (1990) hypothesized that fat storage is linked to photoperiod and that 

during the shortest days birds would store the most fat in order to get through the longest 

nights. However, eiders in southern New England during winter did not follow these 

trends, possibly indicating that food availability was sufficient to maintain body reserves 

throughout the winter.  Body reserves were likely not impacted by colder air temperatures 

as this period (October 2011- March 2012) was the warmest on record for southern New 

England (NOAA 2012). Eider are sensitive to hunting disturbance (Bell and Owen 1990) 

and hunting-related disturbance may have decreased time spent foraging and displaced 

birds from preferred foraging sites (Gaston 1991, Laursen and Frikke 2008, Merkel et al. 

2009).  This may have prevented eiders from attaining maximum reserve levels during 

early winter when hunting occurred, whereas thereafter eiders were able to increase their 

reserves. Additional studies over multiple years that measure hunting pressure, time 

budgets, environmental factors and body composition may provide further insight into the 

factors driving body composition changes of eiders in southern New England.  

MANAGEMENT IMPLICATIONS 
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 Deuterium dilution provides field biologists and managers with an indirect 

method for accurately estimating the body composition of eider during winter.  As an 

indirect method, deuterium dilution alleviates the need for killing the bird and eliminates 

the time consuming and complex total carcass analyses needed to obtain measures of 

total fat, lean mass and total body water of birds. Managers working to conserve eider 

populations in the southern portions of their range may use deuterium dilution to better 

understand the ecology of the Wellfleet Bay Virus, which may enable managers to 

predict the severity of die offs and the potential for population level impacts. Finally, as 

offshore wind developments become more prevalent in the coastal waters of the eastern 

United States, managers will be able to assess the potential impacts of habitat 

displacement by measuring changes in body composition of eiders given those reported 

here.  
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Table 1-1. Number and percent of captured adult common eiders within certain body 

mass ranges, those that were injected with deuterium but not used in the validation 

(injected-only), and those 19 adult eiders selected for the validation study that involved 

developing predictive models for estimating body composition. All eiders were captured 

during winters 2011-2012 and 2012-2013 in Rhode Island and Massachusetts, USA. 

 

All adult 

eider
a
 

Injected-

only 

Validation-

only
b
 

Mass (g) n % n % n % 

1,350-1,500 1 0.7 - - - - 

1,501-1,650 5 3.5 1 1.1 1 5.3 

1,651-1,800 28 19.6 13 14.4 5 26.3 

1,801-1,950 49 34.3 35 38.9 3 15.8 

1,951-2,100 36 25.2 25 27.8 4 21.1 

2,101-2,250 21 14.7 15 16.7 4 21.1 

2,251-2,400 3 2.10 1 1.1 2 10.5 
a
Mass was not measured for 5 of the 148 adult eider that were captured. 

 

b
Two of the 21 eider that were originally selected for the validation study were later 

excluded because their estimated total body water was biologically unrealistic (see text). 
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Table 1-2. Body composition and morphometrics of 19 adult common eiders captured 

during the winters of 2011-2012 and 2012-2013 in Rhode Island and Massachusetts, 

USA, and used for the validation study that involved relating estimated and measured 

body composition. Values presented are the mean ± standard error (SE), with the range 

given in parentheses. 

 

Sex Test statistic 

Component Males Females t17 P 

Body mass (g) 
2075 ± 54.6            

(1742-2298) 

1795 ± 60.2                

(1595-2030) -3.41 0.003 

Wet lean mass (g) 
1731 ± 36.2               

(1515-1949) 

1521 ± 44.5                   

(1387-1765) -3.31 0.004 

Dry lean mass (g) 
507 ± 10.6               

(450-562) 

439 ± 13.3                      

(400-502) -4.03 < 0.001 

Fat mass (g) 
226 ± 36.6            

(122-569) 

162 ± 16.3               

(108-256) -1.40 0.178 

Water mass (g) 
1231 ± 28.5             

(1065-1388) 

1098 ± 34.1               

(987-1263) -2.99 0.008 

Feather mass (g) 
111 ± 6.3               

(80-141) 

96 ± 3.6                      

(77-108) -1.91 0.073 

Tarsus length (mm) 
56 ± 1.1                    

(50-61) 

54 ± 0.6                     

(51-56) -0.93 0.366 

Culmen length (mm) 
60 ± 0.7                  

(56-64) 

54 ± 0.7                         

(51-57) -5.72 < 0.001 

Culmen width (mm) 
22 ± 0.2                       

(21-24) 

22 ± 0.4                       

(20-23) -1.97 0.065 

Head length (mm) 
135 ± 1.6                  

(127-145) 

125 ± 1.4                 

(120-132) -4.55 < 0.001 

Wing chord (mm) 
308 ± 3.1               

(293-320) 

294 ± 3.1                

(285-306) -3.08 0.007 

n 11 8       
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Table 1-3. Results of best fitting models for estimating wet lean mass of adult common 

eider captured in Rhode Island and Massachusetts, USA during the winters of 2011-2012 

and 2012-2013 given deuterium-estimated body water, 2 principal components of 

structural size, sex, and body mass. Akaike information criterion corrected for small 

sample size (AICc), difference in Akaike information criterion (Δ AICc) from top model, 

root mean square error of the prediction (RMSE g), absolute (Abs g) and relative errors 

(Rel %) are provided for each model.  

    

Error 

Model  Variables AICc Δ AICc 

RMSE 

(g) 

Abs (g) 

(SE) 

Rel (%) 

(SE) 

1 pwat, PC1, PC2, sex 169.4 - 55.65 44.81 2.82 

     (7.78) (0.53) 

2 pwat, PC1, sex 176.0 6.6 51.31 41.83 2.63 

     (7.01) (0.49) 

3 pwat, mb, sex 184.1 14.7 63.13 43.53 2.73 

     (10.78) (0.70) 

4 pwat, sex 184.4 15.0 48.59 38.62 2.45 

     (6.95) (0.49) 

5 pwat, mb 194.2 24.8 64.76 43.75 2.75 

     (11.25) (0.73) 

6 mb 213.6 44.2 82.49 49.80 3.00 

          (15.50) (0.96) 
a
pwat is predicted total body water given deuterium-estimated body water (figure 2; 

(pwat) = -97.5109 + .9571(deutmw)); PC1 is the first principal component; PC2 is the 

second principal component; mb is body mass; and sex is 1 for female and 0 for male. 
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Table 1-4. Results of best fitting models for estimating wet fat mass of adult common 

eider captured in Rhode Island and Massachusetts, USA during the winters of 2011-2012 

and 2012-2013 given deuterium-estimated body water, 2 principal components of 

structural size, sex, and body mass.  Akaike information criterion corrected for small 

sample size (AICc), difference in AICc (Δ AICc) from top model, root mean square error 

of the prediction (RMSE g), absolute (Abs g) and relative errors (Rel %) are provided for 

each model.  

    

Error 

Model  Variables AICc Δ AICc 

RMSE 

(g) 

Abs (g) 

(SE) 

Rel (%) 

(SE) 

1 pwat, mb, sex 189.9 - 79.64 53.43 27.31 

     (13.92) (5.82) 

2 pwat, PC1, PC2, sex 191.2 1.3 122.34 72.80 34.48 

     (23.17) (8.56) 

3 pwat, mb 199.7 9.8 80.70 51.52 25.93 

     (14.64) (6.09) 

4 pwat, PC1, sex 200.5 10.6 118.41 72.48 35.07 

     (22.07) (7.63) 

5 pwat, sex 211.7 21.8 108.28 61.24 30.00 

     (21.05) (6.72) 

6 mb 215.8 25.9 88.43 52.01 23.26 

          (16.86) (4.29) 
a
pwat is predicted total body water given deuterium-estimated body water (figure 2; 

(pwat) = -97.5109 + .9571(deutmw)); PC1 is the first principal component; PC2 is the 

second principal component; mb is body mass; and sex is 1 for female and 0 for male.

 

  



 

 

Table 1-5. Final predictive models for estimating wet lean and wet fat mass of adult eiders given predicted water, 2 principal 

components of body size, body mass and sex constructed using measurements of all 19 validation eiders collected during winters 

2011-2012 and 2012-2013 in Rhode Island and Massachusetts, USA. Root mean square error (RMSE g), absolute (Abs g) and relative 

(Rel %) errors ± standard errors (SE) are provided as measures of accuracy.   

  

Error 

Component Model 

RMSE 

(g) 

Abs (g) 

(SE) 

Rel (%) 

(SE) 

     Wet lean y= 209.99 + 1.2427(pwat) + 10.2941(PC1) + 2.6881(PC2) - 39.1209(sex) 39.14 32.39 2.04 

 

  

(5.18) (0.36) 

     

 

y= 169.45 + 1.2819(pwat) - 52.0223(sex) 39.40 32.03 2.02 

      (5.41) (0.38) 

     Wet fat mass y= -99.4324 - 1.0591(pwat) + .7813(mb) + 32.0247(sex) 42.98 35.86 20.24 

      (5.58) (3.94) 
a
pwat is predicted total body water given deuterium-estimated body water (figure 2; (pwat) = -97.5109 + .9571(deutmw)); PC1 is the 

first principal component; PC2 is the second principal component; mb is body mass; and sex is 1 for female and 0 for male.
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Figure 1-1. Southern New England study area where 223 common eiders were captured 

as part of a body composition study conducted during winters 2011-2012 and 2012-2013 

in Rhode Island and Massachusetts, USA. 

Figure 1-2. Relationship between deuterium estimated water (g) and measured water (g) 

in adult common eider collected during winters of 2011-2012 and 2012-2013 in Rhode 

Island and Massachusetts, USA.  Measured water was strongly and linearly related to 

deuterium estimated water (deutmw): (pwat)= -97.5109 + .9571(deutmw), R
2
=0.931 for 

19 adult eiders used in the validation of the deuterium dilution method. 

Figure 1-3. Comparison of (A) body mass (B) fat mass and (C) wet lean mass of 86 adult 

common eiders captured in Rhode Island and Massachusetts, USA during early winter 

2011-2012, 2012-2013, mid and late winter 2011-2012. Box and whisker plots represent 

the 10
th

, 25
th

, 75
th

 and 90
th

 percentiles, the mean of each group is represented by a dashed 

line and the median is represented by the solid line. Sample sizes are given as numbers 

below each plot. Same letters above each time period indicate no significant difference 

determined using Tukey’s multiple comparisons. 
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Figure 1-1. 
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Figure 1-2. 
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Figure 1-3. 
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ABSTRACT There has been little documentation regarding the movement ecology and 

habitat selection of common eiders (Somateria mollissima) that spend the winter in 

southern New England. We used satellite telemetry to quantify migratory phenology, 

home range size, fidelity, and resource selection of 24 adult female eiders during winter 

in nearshore waters of Rhode Island, USA. Eiders spent on average 39% of their annual 

cycle during winter in southern New England during the winter of 2012-13.  During 

spring migration, eiders took on average 16 days (range 2-47) and 20 days (range 1-61) in 

2012 and 2013, respectively, to migrate from wintering grounds to summer areas, 

whereas fall migration averaged 47 days (range 7-115). Satellite-tagged eiders exhibited 

high site winter fidelity with 83% (n = 19) returning to the study area the following 

winter. Eider roosted approximately 1 km farther offshore at night compared to diurnal 

foraging locations. Compared to other species of sea ducks, during winter eiders were 

relatively sedentary with mean individual core use areas that averaged 38.5 km
2
 and 

utilization distributions that were 199.3 km
2
. Based on habitat selection models, eiders 

preferred habitats with shallower waters, that were closer to shore, that had relatively fine 

sediments and a higher probability of hard bottom. Only 3% of the study area was 

classified as having a high relative probability of use and 10% was classified as having a 

medium-high relative probability of use. There is potential overlap between eider habitat 

use and offshore wind energy development in southern New England; therefore future 

developments should avoid shallow, nearshore waters preferred by eiders to minimize 

potential impacts on this species.  
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KEY WORDS.—common eider, migratory phenology, offshore wind energy 

development, satellite telemetry, southern New England, winter fidelity, winter habitat 

use. 

INTRODUCTION 

Understanding habitat use and movement ecology of wildlife is vital for effective 

conservation and management, yet difficult to ascertain for species that migrate long 

distances to inaccessible areas (Webster et al. 2002, Robinson et al. 2009).  Research on 

the movements and habitat use of migratory waterfowl has led to the conservation and 

management of vital habitats throughout their annual cycle (Smith et al. 1989, Davidson 

and Stroud 1996) although such information about the movement ecology and resource 

selection of sea ducks is lacking (Robertson and Cooke 1999, Goudie et al. 2000, 

Johnsgard 2010).  There is a pressing need to understand movement dynamics and habitat 

use patterns of North America’s sea ducks because populations of many species are 

declining (Merkel 2004) and may face additional conservation challenges from a variety 

of factors including climate change (Lovvorn et al. 2009), offshore wind energy 

developments (OWED; RI Ocean SAMP 2010, Bureau of Ocean Energy Management 

2012), disease (Ellis et al. 2010), and liberal hunting seasons (Caithamer et al. 2000, 

Raftovich et al. 2011).   

Most studies of sea duck movement dynamics in North America have occurred on 

the Pacific Coast (Petersen et al. 1999, Iverson and Esler 2006, Phillips et al. 2006, Lok 

et al. 2008, De La Cruz et al. 2009, Oppel and Powell 2009, Petersen 2009, Dickson 

2012); whereas, less is known about their local and regional movement ecology on the 

Atlantic Coast (Mosbech et al. 2006, Zipkin et al. 2010, Loring 2012). Our current 
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understanding of the winter distribution, abundance, and habitat associations of sea ducks 

on the Atlantic Coast is somewhat limited because it is primarily based on sporadic aerial 

(Zipkin et al. 2010, Silverman et al. 2013) and land-based surveys (McKinney et al. 2006, 

Winiarski et al. 2011), and citizen-science counts (National Audubon Society 2010, New 

Jersey Audubon 2013) that were primarily conducted during daylight hours under 

favorable weather conditions. Therefore, on the Atlantic Coast, we know little about local 

and regional movement ecology throughout the annual cycle for most species of sea 

ducks. We also lack a detailed understanding of habitat preferences by sea ducks on their 

wintering grounds in the Atlantic region (but see Loring 2012).      

One of the most abundant sea ducks using nearshore habitats in northeastern 

North America during winter is the common eider (Somateria mollissima) (hereafter 

eider; Silverman et al 2013), with two recognized subspecies: northern common eider (S. 

m. borealis) and American common eider (S. m. dresseri) (Goudie et al. 2000).  Eiders 

are thought to be highly philopatric to their breeding grounds (Reed 1975, Robertson and 

Cooke 1999), and northern common eider exhibit high site fidelity to their wintering 

grounds (Merkel et al. 2006). Local fidelity is thought to be driven primarily by local 

prey abundance (Guillemette et al. 1996, Larsen and Guillemette 2000), but site fidelity 

to breeding and wintering grounds has never been studied for American common eiders 

that spend the winter in southern New England. Eiders generally inhabit nearshore waters 

with water depths up to 20m (Goudie et al. 2000) where they forage on blue mussels 

(Mytilus edulis), crustaceans and other benthic invertebrates typically associated with 

rocky sublittoral substrate (Ydenberg and Guillemette 1991). Available evidence suggests 

that eiders fly offshore to roost at night (Mackay 1890, Winiarski et al. 2011); however, 
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no research to date has accurately assessed nocturnal habitat use patterns, or documented 

the location of offshore roost sites in southern New England.    

Assessing potential impacts of anthropogenic disturbances on seaducks has 

become increasingly important with the advent of OWED, although all such research to 

date has been conducted in western Europe where OWED has occurred. Anthropogenic 

disturbances associated with future OWED potentially threaten eiders wintering in 

southern New England, either through habitat displacement or direct mortality. Several 

small and large-scale OWED projects are proposed for the coastal waters of southern 

New England, with many others proposed or being explored along the Atlantic Coast of 

the United States (Musial and Ram 2010, RI Ocean SAMP 2010, Bureau of Ocean 

Energy Management 2012, New York Department of State 2013).  In Europe, sea ducks 

have been displaced from preferred feeding habitats at the Nysted and Horns Rev 1 

offshore wind facilities, Denmark (Petersen et al. 2006). There is some evidence that 

habitat displacement can be short-term, as the distribution and abundance of common 

scoters (Melanitta nigra) did not differ inside and outside the wind farm’s footprint after 

approximately five years, however, the authors found no evidence that other species, 

including eiders had changed their distribution relative to the wind farm (Petersen and 

Fox 2007). Radar monitoring at Denmark’s offshore wind farms has shown that wind 

turbines are a barrier to migratory movements of birds, causing most eiders to fly around 

the wind farm (Desholm and Kahlert 2005; but see Masden et al. 2009). Lastly, Larsen 

and Guillemette (2007) also documented significant behavioral shifts and avoidance of 

the wind turbines by eiders in Denmark.  
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The specific objectives of this study were to assess the movement dynamics of 

American common eider by: 1) using satellite telemetry to quantify movement patterns 

throughout the annual cycle of eider tagged during winter in southern New England, 2) 

determining site fidelity and utilization distributions of satellite-tagged eiders during 

winter in southern New England, 3) identify the biotic and abiotic factors associated with 

winter habitat selection of tagged eiders in southern New England, and 4) develop a 

spatially-explicit model of the probability of eider use for all nearshore and offshore 

waters of southern New England in relation to proposed OWED in the region.  Studying 

the winter habitat use and movements of eiders in southern New England prior to the 

construction of OWED will allow biologists to make informed siting recommendations 

that could potentially minimize the effects of OWED disturbances on eiders. 

STUDY AREA 

Southern New England 

Our study area included 6,405 km
2
 of nearshore and offshore waters of the south-central 

New England continental shelf, which we define as the waters extending east from 

Fishers Island, New York to the western edge of Martha’s Vineyard, Massachusetts, 

including the waters of Block Island and Rhode Island Sound (Figure 2-1). Water depths 

in Rhode Island and Block Island Sounds range from 0 to 65 m, with approximately 

18.7% of the study area ≤ 20 m. Southern New England provides extensive habitat for 

eiders and other sea ducks that typically feed in water depths of 20 m or less (Goudie et 

al. 2000). Rocky reefs and scattered mussel beds occur throughout the sea floor off 

southern New England and provide eider excellent foraging opportunities for benthic 

invertebrates (Theroux and Wigley 1998) such as blue mussels (Mytilus edulis) and green 



 

50 

 

crabs (Carcinus maenas) (Loring et al. 2013), which are preferred food sources of eider 

(Ydenberg and Guillemette 1991). With the combination of habitat and foraging 

opportunities, this study area lies within one of the highest density areas of wintering sea 

ducks on the Atlantic Coast (Silverman et al. 2013).   

METHODS 

Capture and Marking  

We used floating mist nets surrounded by decoys (Brodeur et al. 2008) to capture eiders 

during November and December 2011 (n = 139).  We deployed 3 pairs of mist nets (net 

size: 1.3 m x 18 m, 127-mm mesh) over near shore (<1 km) feeding locations from pre-

dawn until 2-4 hrs after sunrise. Teams of 2-4 biologists in 6-7 m outboard skiffs closely 

monitored mist nets from approximately 100 m away.  We immediately removed 

captured birds from mist nets, determined their age and gender based on wing plumage 

characteristics (Carney 1992), measured body mass with a Pesola spring scale (± 5g) and 

banded them using a United States Geological Survey size 7 aluminum butt-end leg band.   

We selected the 26 heaviest adult female eiders (1650-2120 g) to receive an 

implantable satellite transmitter. Recently, Petersen et al. (2012) assessed winter site 

fidelity of Pacific common eider (Somateria mollissima v-nigrum) using a similar sample 

size (24 female and 1 male), and a minimum of 20 birds has been recommended for avian 

satellite telemetry studies; although this depends on project goals (Lindberg and Walker 

2007).  We selected only females because eiders form mixed gender flocks on the 

wintering areas (Campbell 1978, Guillemette et al. 1993, Systad et al. 2000) and Spurr 

and Milne (1976) found that 57% of female eiders are paired with males by mid-winter.  
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Therefore, we were confident that selecting only adult females would be representative of 

the movement dynamics of wintering male common eider in southern New England. 

We used 44 g coelemic-implant Platform Transmitter Terminals (PTTs) equipped 

with external antennas (Microwave Telemetry Inc., Columbia, Maryland, USA) that were 

wrapped with sterile surgical mesh prior to surgery (Mulcahy 2001). Licensed 

veterinarians implanted a PTT into the abdominal cavity of each adult female eider, with 

the antenna protruding from the dorsal surface of the bird following procedures 

developed by Korschgen (1996).  After surgery, eiders were housed using individual pet 

crates (48.26 cm x 31.75 cm x 26.04 cm ht), received subcutaneous fluids 3 hrs post-

surgery as described by Ford et al. (2011), and were subsequently released at the capture 

location within on average 4 hr 28 min ± 17 min after PTT implants.   

We programmed transmitters with a duty cycle of 4 hrs on, 24 hrs off for 118 duty 

cycles, which lasted until the end of winter (Season One).  Thereafter transmitters 

switched to a duty cycle of 4 hrs on, 96 hrs off until the end of the battery life (Season 

Two), which was expected to be approximately 1-1.5 yrs.  In order to minimize potential 

bias in habitat use associated with the trauma of surgery, we excluded the first 14 days of 

location data collected after release (Esler et al. 2000, Loring 2012), although when we 

calculated length of stay during the first winter we started with the release date.  

Collection of data used for home range estimation and habitat selection analyses began 

between 28 November and 25 December 2011 with a median date of 20 December 2011.  

The PTTs switched from the Season 1 duty cycle to the Season 2 duty cycle between 3 

April and 5 May 2012, with a median date of 27 April 2012.   
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We conducted all methods with approval of the University of Rhode Island 

Institutional Animal Care and Use Committee (Protocol # AN 11-09-004).   

Location Data 

We used a similar protocol described by Loring (2012) to process the satellite-telemetry 

data.  Briefly, we used the Argos satellite-based location and collection system (Collecte 

Localisation Satellites 2011) to receive transmission signals from the eiders and 

processing centers reported accuracy for location classes (LC) 3, 2, 1 and 0, with 

accuracies of <250m, 250-500m, 500-1500m and > 1500m, respectively (Argos 2011).  

We did not assign location accuracy for LC’s A and B, and LC Z was an invalid location. 

We used SAS 9.2 (SAS Institute, Inc., Cary, NC) to run the Douglas-Argos Filter to 

remove unlikely locations and retained the single location with the highest accuracy from 

each duty cycle for subsequent analyses. We used a hybrid filter to retain the best quality 

locations during winter and during migratory periods with longer movements (Douglas et 

al. 2012). We produced all maps, managed and analyzed telemetry data using ArcGIS 

10.0 (Environmental Systems Research Institute, Inc. Redlands, CA), and used SAS 9.2 

(SAS Institute, Inc., Cary, NC) to perform statistical analyses unless otherwise stated.   

Length of Stay and Phenology 

We assessed duration of stay at the winter and summer areas as well as migratory 

phenology as outlined by De La Cruz (2009).  In brief, we defined the first winter length 

of stay as the period of time between transmitter deployment and spring departure from 

the study area. The second winter length of stay was defined as the period between the 

fall arrival and spring departure date from the study area, and one day was added to the 

calculated length of stay to account for the possibility that the bird was on the study area 
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for part of the arrival and departure days.  We defined fall arrival date as the median date 

between the first location within the study area and the previous location outside the 

study area during fall migration. We defined spring departure as the median date between 

the first location outside the study area during spring migration and the previous location 

within the study area.   

 Following De La Cruz et al. (2009), we used linear regression to model the 

relationship between body composition at the time of capture and transmitter 

implantation and wintering area departure date. We defined body composition as 

estimated water, fat and lean mass at the time of capture determined using deuterium 

dilution (see Chapter 1 for complete methods).   

 For length of stay on winter and summer areas and duration of migratory periods 

we present mean ± SE. Arrival and departure dates are presented as mean (range).   

Diurnal and Nocturnal Habitat Use 

To compare characteristics of diurnal and nocturnal locations, we analyzed distance to 

shore and water depth at locations of eiders that spent the entire winter 2011-12 in the 

study area. We used sunrise and sunset times obtained from the United States Naval 

Observatory for New Shoreham, Rhode Island (U.S. Naval Observatory 2013) to divide 

the day into 4 periods: dawn (1 hr before and after sunrise), dusk (1 hr before and after 

sunset), diurnal (between dawn and dusk), and nocturnal (between dusk and dawn) and 

assigned each location to one of the periods (Loring 2012).  

We selected the best quality locations (LC 3 [accuracy <250m] and LC 2 [250-

500m]) for each day using the Douglas-Argos filter (Douglas et al. 2012) for each eider 

during the winter 2011-12.  We used the Euclidian Distance tool within Arc GIS Spatial 
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Analyst to calculate a distance (km) to shore grid.  Distance to shore for each cell within 

the raster grid is calculated as the distance between the cell midpoint and the closest 

vector of the Northeastern United States State Boundary Line (1:24,000; Connecticut 

Department of Energy and Environmental Protection (CT DEEP) 2006). We overlaid 

diurnal and nocturnal point locations onto the distance to shore grid and extracted 

distance values for each point.  We used the National Oceanic and Atmospheric 

Association (NOAA) U.S. Coastal Relief Model from the NOAA National Geophysical 

Data Center to obtain 3 arc second resolution bathymetry data (m) (NOAAa 2012) at 

each diurnal and nocturnal point.  We averaged diurnal and nocturnal distance to shore 

and water depth values for each individual bird (Table 2-3) and used quantile-comparison 

plots to assess the distribution of the data.  Mean values for diurnal distance to shore were 

not normally distributed, thus we used Wilcoxon signed rank tests for paired data to test 

for differences. Values for distance to shore and water depth at diurnal and nocturnal 

locations and differences between diurnal and nocturnal locations are reported as mean (± 

SE). 

Winter Utilization Distributions 

We calculated utilization distributions within our study area by first randomly selecting 

50 locations from the highest quality (LC 3 and LC 2) locations for each individual. We 

excluded the first 14 days after initial deployment to remove any effects due to recovery 

from surgery on eider movements. We calculated individual kernel utilization 

distributions using the Gaussian kernel and least squares cross validation bandwidth 

estimator using Geospatial Modeling Environment (GME; Beyer 2012).  Using GME, we 

then pooled the 50 locations for eiders that spent the entire 2011-12 winter within the 
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study area (1,050 locations total) and estimated individual and composite 95% kernel 

utilization distributions and 50% kernel core-use areas. We removed locations on land 

because eiders are not known to occur inland during winter, thus we assumed these 

locations were errors. Finally, we then calculated total surface area (km
2
) of the 

individual and composite 95% kernel utilization distributions and 50% kernel core-use 

areas.     

 We report the area of individual core use areas and utilization distributions and 

the percent of time spent inside or outside of the study area as mean ± SE. 

Habitat Selection During Winter 

We used the composite 95% kernel utilization distributions (available) and 50% kernel 

core use areas (used) to assess eider habitat selection during winter 2011-12. We were 

interested in quantifying habitat selection for the entire 24-hr period; thus, we combined 

diurnal and nocturnal locations for this analysis. Following Loring (2012) we used habitat 

data in raster format that we resampled to a cell size of 250m
2
 (6.25 ha).  To estimate the 

distance to shore for randomly selected used and available cells, we used Spatial Analyst 

in Arc GIS to calculate the Euclidian Distance (m) of each raster cell to the nearest part 

of the Northeastern United States State Boundary Line (1:24,000, CTDEEP 2006). To 

estimate water depth at used and available cells, we used the National Oceanic and 

Atmospheric Association (NOAA) U.S. Coastal Relief Model from the NOAA National 

Geophysical Data Center to obtain 3 arc second resolution bathymetry data (NOAA 

2012a). To estimate sediment grain size, we obtained sediment size (phi scale) from 

predictive models for the study area (Poti et al. 2012).  To quantify probability of hard 
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bottom, we used a kernel-based probabilistic model of hard-bottom occurrence developed 

by Loring (2012). 

We investigated use of habitat components within the home range of eiders (third-

order resource selection [Johnson 1980]), by quantifying habitat characteristics within 

core areas and comparing them to those within the complete utilization distribution for 

winter 2011-12 (Sampling Protocol-A; Manly et al. 2002).  We used the genrandompnts 

function in Geospatial Modeling Environment (Beyer 2012) to generate the maximum 

number of random points within the composite 95% utilization distribution and the 50% 

core use area, with a minimum separation of 500m. We removed randomly-selected 

points that occurred on land (used: n = 35, available: n = 125) by clipping the point 

dataset to the Northeast United States State Boundary Line (CT DEEP 2006). Values for 

sediment grain size were omitted for 175 of the available points because of incomplete 

spatial coverage of the sediment grain size dataset.  We did not to remove points from the 

used sample because resource selection functions (RSF) are robust to contamination 

(Johnson et al. 2006). Overall, we used 2,839 points within the available area (17% of 

total area) and 580 points within the used area (19% of total) for analysis of resource 

selection. We present mean ± SE when comparing habitat characteristics of used and 

available samples.   

Using SAS, we assessed multicollinearity by generating variance inflation factors 

(VIF) using the proc reg function and used Pearson correlation coefficients to assess 

relationships amongst pairs of habitat variables using proc corr. Correlation between 

pairs of habitat variables was weak to moderate with all values ≤0.619 and VIF values 
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were ≤2.79. Following Loring (2012) we used logistic regression described in Manly et 

al. (2002) to generate beta coefficients for the exponential RSF model.  

We generated 17 a priori models using combinations of habitat variables to 

predict the beta coefficients for the exponential RSF model and report Akaike 

Information Criterion values for each model.  We ranked models using differences in 

Akaike Information Criterion (Δ AIC) and calculated relative likelihood values and 

Akaike weights which we used to evaluate the relative likelihood of each candidate 

model (Burnham and Anderson 2002).   

We predicted relative probability of habitat use by eiders for 6,212 km
2
 of the 

6,405 km
2
 that composed the study area using the RSF derived from our highest ranked 

logistic regression model. We were unable to predict probability of use for 193 km
2
 of the 

study area due to incomplete spatial coverage of sediment grain size habitat data. Our 

RSF model followed the format of equation 5.11 in Manly et al. (2002): 

W(x) = exp(β1x1 + … + βpxp) 

Within Arc GIS we used geometrical interval to classify the distribution into 6 classes to 

represent relative probability of use from unlikely to high. 

 To assess the predictive performance of the resource selection function model we 

used a k-fold cross validation technique modified by Johnson et al. (2006). For the 

validation, we used 10 randomly selected high quality (LC 3 and LC 2) winter 2011-12 

locations from each of the eiders that were not included in the 50 randomly selected 

locations used to derive individual and composite core use areas and utilization 

distributions. We removed locations that occurred over land as well as in areas where 

probability of use was not predicted due to incomplete spatial coverage of the data which 
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resulted in a mean of 9 ± 0.25 (range = 7 – 10) locations per bird. We conducted a Chi-

square analysis of observed and expected proportion of locations within each relative 

probability of use class of the resource selection function model. We also used linear 

regression to compare the observed and expected proportions and concluded that the 

model was proportional to the probability of use if the regression line had a slope 

significantly different from 0 but not significantly different than 1 and the intercept was 

not significant different than zero (Johnson et al. 2006). We also computed Lin’s 

coefficient of concordance to assess the fit of the resource selection model to actual use 

by eiders.         

Site Fidelity 

We quantified site fidelity between winter 2011-12 and winter 2012-13 by first 

determining the number of eiders that returned to the study area.  We then assessed the 

number of winter 2012-13 locations that were within an individual’s 2011-12 core use 

area (50%) and utilization distribution (95%).  We also quantified the number of an 

individual’s 2012-13 locations that were within the 2011-12 composite core use area and 

utilization distribution. We only used locations assigned accuracy ratings of LC3 (<250 

m) and LC 2 (250-500 m) to be consistent with the quality of the locations used to 

develop the core use areas and utilization distributions.   

Body Composition and Wintering Ecology 

We used the deuterium dilution method to estimate water, fat and lean mass of 21 of 26 

eiders at the time of capture and before transmitter implantation (see Chapter 1 for 

complete methods). We did not estimate body composition of 4 eiders because harsh field 

conditions made deuterium injections difficult to complete and 1 additional eider was 
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excluded because its’ deuterium estimated water was 83.4 % which is biologically 

unlikely (Karasov and Pinshow 1998). We then assessed whether body composition at 

the time of capture influenced subsequent movements. We used linear regression to 

model the relationship between body composition at the time of capture and distance 

from capture location 30 days post-deployment.  

 When giving body composition results we present mean ± SE (range) for body 

composition components and distances moved. 

RESULTS 

Transmitter Performance 

Two transmitters failed early in the study (after 1 and 39 duty cycles) and were excluded 

from subsequent analyses.  We collected sufficient data on 24 eider for the entire first 

winter (2011-12) period and 15 transmitters provided location data through the 

termination of data collection (mid Jul 2013) (Table 2-1).  Overall, the 24 eider with 

transmitters were located on average 196 times and 90% of these locations had the 

highest accuracy (LC 3) or second best accuracy (LC 2) (Table 2-1).  Hunters shot 2 of 

the eiders with transmitters, ending data collection after transmitting 169 (PTT 112413) 

and 174 (PTT 112417) usable locations. One eider (PTT 112420, 190 locations) was 

found dead and autopsy determined that the eider died from severe coelomitis caused by 

ingestion of a fish hook (Dr. Jennifer Ballard, pers. comm.). Six transmitters did not 

transmit up to mid-July 2013 (PTTs 112416, 112419, 112421, 112422, 112426, 112433) 

apparently due to exhaustion of battery power after transmitting between 157 and 208 

usable locations (Table 2-1).   

Annual Movements and Summer Areas of Eiders Tagged in Southern New England 
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Twenty-one adult females spent the entire first winter (2011-12) from deployment to 

spring migration in the study area, and length of stay was 128 ± 3 days (Table 2-2). 

Departure from the study area in spring was 4 April 2012 (range = 17 Mar to 13 Apr). 

During spring migration in 2012, eiders took 16 ± 3 days (Table 2-2) to migrate to 4 

distinct summer areas from our study area. Arrival to the summer areas was 19 April 

2012 (range 21 Mar to 20 May 2012). Eiders wintering in Rhode Island waters migrated 

to 4 separate potential breeding or summering areas, which included: Maine, USA (n = 

9), St. Lawrence Estuary (n = 4), Gulf of St. Lawrence (n = 4) and Nova Scotia (n = 4), 

Canada (Figure 2-1; Figure A-2-1).  

One of 3 eiders that did not spend the entire 2011-12 winter in the study area left 

Chatham, Massachusetts on 18 March and migrated north, through the Bay of Fundy, 

around Quebec and into the St. Lawrence Estuary before moving to Maine on the 11 June 

2011, where it spent the remainder of the spring and summer 2012 period.  The other 2 

eiders that did not spend the entire 2011-12 winter in the study area spent the spring and 

summer of 2012 in Maine (n = 1) or Nova Scotia (n = 1).   

Movement phenology between winter and summer areas was generally similar 

among the four distinct potential breeding locations (Figures 2-2A, 2-2B). Eiders spent 

168 ± 10 days (Table 2-2) on the summer areas and departed for fall migration on 21 

October 2012 (range = 27 Aug to 28 Dec). Eider took longer during fall migration (47 ± 9 

days; Table 2-2) to move between summer areas and their wintering areas than during 

spring migration (16 ± 3 days and 20 ± 5 days for 2012 and 2013, respectively). Eighteen 

of the 21 eiders that spent the winter of 2011-12 in the study area returned to the study 

area for the winter of 2012-13. Two eiders stopped before reaching the study area and 
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spent the winter of 2012-13 outside of the study area, and 1 transmitter failed during fall 

migration. One of the 3 eiders that did not spend the entire 2011-12 winter in the study 

area returned for winter 2012-13 and thus was included in summer 2012 departure, fall 

2012 migration and winter 2012 arrival date calculations. For the 19 eiders that returned 

to the study area during winter 2012-13, the arrival date was 15 November 2012 ± 8 days 

(range = 1 Sep 2012 to 31 Jan 2013).  

During winter 2012-2013, 2 eiders were shot, 1 was found dead, and transmitters 

on 2 eiders failed while on the study area. The 14 eiders that transmitted data for the 

entire 2012-2013 winter spent 141 ± 10 days (Table 2-2) in the study area and departed 

for spring migration on 4 April 2013 ± 3 days (range = 18 Mar - 20 Apr 2013).  The 14 

eiders that departed the study area in spring 2013 arrived on their summer area on 23 

April 2013 ± 4 days (range = 30 Mar - 23 May 2013). The spring 2013 migratory period 

was on average 20 ± 5 days (Table 2-2). For summer 2013, the 14 eiders still transmitting 

location data returned to the same summer area that they used during 2012.   

In 2013, the eider that had made an unusual movement in 2012 before settling in 

Maine flew directly to the same location in Maine that it settled at during summer 2012. 

The other 2 eiders that did not spend the entire 2011-12 winter in the study area were 

philopatric to the same summer locations in 2013.   

Diurnal and Nocturnal Habitat Use  

Common eider that spent the winter in the Rhode Island study area (n = 21) were 

accurately located (LC2 or LC3) 30 ± 1.5 (range 13-40) times during the day and 42 ± 

1.7 (range = 33 - 57) times at night during winter 2011-12. Distance to shore at diurnal 

locations (0.9 ± 0.12 km) was 0.92 (± 0.11) km closer to shore than nocturnal locations 
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(1.8 ± 0.15 km) (V = 1, P < 0.001) (Table 2-3).  Median difference for distance to shore 

was 1.01 km. Water depth at diurnal locations (9.4 ± 1.01 m) was 6.35 (± 1.16) m 

shallower than at nocturnal locations (15.8 ± 0.96 m) (V = 219, P < 0.001). Median 

difference for water depth between diurnal and nocturnal locations was 6.26 m. We 

combined diurnal and nocturnal locations for subsequent analyses because the mean 

difference in distance to shore did not exceed the potential 1km of error and because the 

core use, utilization distributions, and habitat use were most useful if estimated over a 24-

hr period. 

Winter Utilization Distributions  

     Individuals within study area.   We delineated individual core-use areas (50% kernel) 

and utilization distributions (95% kernel) for the 21 adult female eiders that remained in 

the study area for the entire 2011-12 winter and for 3 adult females that left the study area 

during winter 2011-12.  Of the 1,050 randomly selected locations used to derive 

utilization distributions and core-use areas for these 21 eiders, 79% were classified as LC 

3 and 21% were LC 2. Seventeen of these eiders had a single core-use area that was 38.5 

± 7.9 km
2
 whereas four eiders had two core-use areas (Table 2-4). Individual 95% 

utilization distributions for these 21 eiders were 199.3 ± 32.7 km
2 

(Table 2-4).  Six eiders 

had a single, continuous utilization distribution whereas 15 eiders had 95% utilization 

distributions that were composed of 2-4 separate areas (Table 2-4).  

     Composite.   We also delineated a composite core-use area (50% kernel) and utilization 

distribution (95% kernel) for the 21 adult female eiders that spent the entire post-

deployment period in the study area. The composite core-use area was 191.2 km
2 

and the 

composite utilization distribution was 1042.1 km
2 

(Figure 2-3). The composite core-use 
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area and utilization distribution encompassed much of the variance in individual core use 

areas and utilization distributions (Figure A-2-2) as shown by the location of the 

centroids of the 21 individual core use areas (Figure 2-3).  

     Individuals outside study area.   Three eider spent 59 ± 17 % of the 2011-12 winter 

period outside the study area.  Core-use areas and the utilization distributions for these 

eiders were 295.2 ± 12.7 km
2
 and 1859.1 ± 330.8 km

2
, respectively (Table 2-4). Two of 

these 3 eiders had a single core-use area, whereas the other eider had 2 separate core-use 

areas (Figure 2-4). Of the 150 randomly selected locations used to derive utilization 

distributions and core areas of these 3 eiders, 81% were classified as LC 3 and 19% as 

LC 2 locations. 

Habitat Selection During Winter 

During winter 2011-12 eider core use areas were shallower, closer to shore, with a finer 

sediment grain size, higher probability of hard bottom, more slope and increased 

roughness compared to habitat in the available area (Table 2-5).  The top 5 logistic 

regression models of eider habitat use had a ΔAIC of <3 and the top 3 were within 2 AIC 

values (Table 2-6). Of the top 3 competing models, we chose the most parsimonious as 

the top-ranked model. The top ranked logistic regression model contained water depth, 

distance to shore, sediment grain size and probability of hard bottom and had an Akaike 

weight of 0.40.  The β coefficients were negative for the intercept, water depth and 

distance to shore whereas sediment grain size and hard bottom probability were positive 

(Table 2-7).  

 The resource selection function calculated values between <0.001 and 14.33 for 

each resource unit within the study area. Using Geometrical Interval within ArcGIS, we 
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classified probability of use as high (4.36-14.33), medium-high (1.32-4.36), medium 

(0.40-1.32), medium low (0.11-0.40), low (0.03-0.11) or unlikely (<0.001-0.03) (Figure 

2-5).     

Within the 6,212 km
2
 study area, 3,451.5 km

2
 (55.6%) was classified as unlikely 

used, 695.1 km
2
 (11.2%) as low probability of use, 602.4 km

2
 (9.7%) as medium-low 

probability of use, 650.4 km
2
 (10.5%) as medium probability of use, 620.6 km

2
 (10.0%) 

medium-high probability of use, and 191.7 km
2
 (3.1%) as high probability of use (Figure 

2-5).  Approximately 0.81 km
2
 (2.4%) of the Block Island Renewable Energy Zone (BI 

REZ) was classified as medium-high probability of use, 20.75 km
2
 (61.3%) as medium 

probability of use, and 12.31 km
2
 (36.3%) as medium-low probability of use by eiders. It 

was unlikely that eiders would use any of the offshore waters where the large Rhode 

Island/Massachusetts Area of Mutual Interest (RI-MA AMI) federal lease blocks are 

located. 

Validation of the resource selection function model showed good fit between 

predictive relative probability of use and actual use (χ
2
 = 0.1607; d.f. = 5; P = 0.9995, R

2
 

= 0.847; Figure 2-6). Lin’s coefficient of concordance also supported good fit between 

predicted relative probability of use and actual use (ρc= 0.919).    

Site Fidelity 

Of the 20 eiders that spent the entire 2011-12 winter in the study area, 90% (n = 18) were 

site faithful and returned to the study area in 2012-13, whereas 2 spent the 2012-13 

winter in Cape Cod Bay, Massachusetts. One of the 3 eiders that spent considerable time 

outside of the study area in 2011-12 returned to the study area for 2012-13 winter.  In 

total, 82.6 % (19 of 23) of eiders that were still transmitting data at the start of winter 
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2012-13 returned to the study area.  Of the 415 locations (LC 2 and LC 3 only) collected 

from the 19 eider during the winter of 2012-13, 50.6 (± 12.2) % were located within the 

individual’s winter 2011-12 core use area and 71.8 (± 16.6) % of locations were within 

the individual’s winter 2011-12 composite utilization distribution. Overall, 28.2 (± 7.6) % 

of winter 2012-13 locations were outside of an individual’s 2011-12 core use areas and 

utilization distribution. Compared to fidelity to an individual’s core use area and 

utilization distribution, eider locations during winter 2012-13 showed very high fidelity 

to the composite core use area and utilization distribution developed from the 21 eiders 

that spent the entirety of winter 2011-12 in the study area. Overall, 75.9 (± 11.8) % of 

winter 2012-13 locations were within the winter 2011-12 core use area and 96.4 (± 16.0) 

% of locations were within the winter 2011-12 composite utilization distribution (Figure 

2-7). Only 3.6 (± 2.2) % of winter 2012-13 study area locations were outside of the 

composite core use are and utilization distribution developed from 21 eiders for winter 

2011-12. 

Body Composition and Movements of Eiders  

Mean body mass of all 26 adult female eiders implanted with a transmitter was 1856 ± 

22.4 g (1650-2120 g). Body composition of 21 of these eiders included 180 ± 17.3 g (5.8 

- 392.9 g) of fat and 1596 ± 18.0 g (1459-1746 g) of wet lean mass.  Twenty of these 21 

eiders (one failed transmitter) moved on average 19.0 ± 7.31 km (0.06-129.6 km) away 

from their capture and deployment location by 30 days post-deployment. We found no 

relationship between the body composition of eiders prior to transmitter implantation and 

distance moved from deployment location at 30 days (R
2
 < 0.05, P = 0.33). Eider that 

spent the entire 2011-12 winter in the study area (n = 19) and that had less wet lean mass 
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at capture tended to depart later from the winter area in spring than eider with more wet 

lean mass at capture (adjusted R
2
 = 0.18, P < 0.05). There was no significant relationship 

between body mass at capture and date of departure from the wintering area (adjusted R
2
 

= 0.02, P = 0.25) and no significant relationship between fat mass and date of departure 

(adjusted R
2 
= ˗0.05, P = 0.69).   

DISCUSSION 

Effects of Satellite Transmitters on Survival and Behavior of Eider 

Most adult female eiders (92%, 24 of 26 birds) tagged with satellite transmitters between 

14 Nov and 11 Dec 2011 survived the first winter (up to Apr 2012). The temperature 

sensors indicated a normal internal body temperature during the last duty cycle of the 2 

eiderthat did not provide location data up until April 2012, so we assumed the 

transmitters failed for these 2 eiders. Previous studies of sea ducks using satellite 

telemetry have documented varying mortality rates associated with implantable satellite 

transmitters. Black scoters (Melanitta americana) tagged during spring migration in 2009 

and 2010 as part of an Atlantic Coast migration study experienced 10% mortality within 

the first 60 days following transmitter implantation (Sea Duck Joint Venture 2012), 

whereas Loring (2012) had nearly 50% mortality within the first 2-3 weeks after 

transmitter implantation for a group of mostly hatch-year black scoters tagged during 

winter 2010. Rosenberg and Petrula (2000) reported surgery-related mortality of 39% for 

black scoters in Alaska. Of 118 long-tailed ducks (Clangula hyemalis) implanted with 

satellite transmitters in the Atlantic Flyway during winters 2009-2012, 42% died or 

stopped transmitting within the first 60 days (Sea Duck Joint Venture 2012). Low 

mortality rates for eider during winter 2011-12 of this study is likely the result of several 
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factors including 1) selecting adult eiders heavier than 1650g and so presumably in good 

condition and able to tolerate and carry 44 g transmitters and 2) temperatures during the 

winter of 2011-12 were among the mildest ever recorded (NOAA 2012b). 

Satellite transmitters play a critical role in studying sea duck ecology; 

nonetheless, the potential negative effects of implanted transmitters on behavior and the 

interpretation of the movement dynamics must be considered. Latty et al. (2010) 

documented slower descents and ascents and longer duration of foraging dives of captive 

eiders implanted with PTTs compared to the same eiders before surgery. In contrast, 

Guillemette et al. (2002) recorded no differences in reproductive activities between 

treatment and control eiders a year after implantation of data loggers that were about 2/5 

the size of surgically implanted PTTs. Korschgen et al. (1996) used captive mallards to 

evaluate the effects of implanted transmitters and found no behavioral or physiological 

effects. Iverson et al. (2006) recommended coelomically-implanted transmitters for long-

term satellite telemetry studies because they were better retained by scoters and surgery-

related mortality was no higher than mortality rates of scoters outfitted with a transmitter 

not requiring surgery. Fast et al. (2011) documented minor short-term behavioral changes 

among 17 female eiders implanted with satellite transmitters such as walking with a limp; 

however, the same birds resighted the following year were no longer limping.  In 

addition, Fast et al. (2011) found lower survival during the first year and no differences in 

survival rate thereafter.   

 Although we did not detect any mortality of eiders that was directly related to 

transmitters, we documented one eider foraging at a nearshore location with considerable 

amounts of ice on the external antenna (J. Beuth, personal observation). Ice retention 
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could increase drag when diving to forage, thus increasing energetic costs and decreasing 

profitability. Ice retention has never before been documented even in colder arctic 

climates (D. Mulcahy, personal communication). Re-sighting sea ducks with implanted 

transmitters is likely rare due to the harsh and often times inaccessible locations that they 

inhabit, therefore it may be impossible to determine the true frequency and significance 

of ice build-up such as we observed. During field work, we recaptured an eider implanted 

with a transmitter earlier in the winter that gained approximately 150 g since original 

capture and surgery. While some of the weight increase could be attributed to presence of 

scar tissue (Korschgen et al. 1996), all indications were that the bird was healthy and 

weight gain was more likely to be attributed to addition of energy stores.  

Transmitter Duty Cycles and Documenting Fine-Scale Habitat Use of Sea Ducks 

Biologists have used a variety of duty cycles to investigate sea duck movement dynamics 

(e.g., Petersen and Flint 2002, De La Cruz et al. 2009, Dickson 2012) in part because of 

different goals of each study. Our study aimed to collect detailed location data in order to 

quantify habitat use during winter 2011-12; therefore, we used a 4 hr on, 24 hr off duty 

cycle to provide adequate number of locations during the winter period.  In comparison to 

black scoters implanted with satellite transmitters programmed with the same 4 hr on, 24 

hr off duty cycle in Rhode Island during December 2010, we obtained higher percentage 

of high quality (LC 3 and LC 2) telemetry locations (89.4%) which enabled us to reduce 

the error associated with poorer quality locations and make more accurate assessments of 

home range sizes and habitat use. Transmitters implanted in black scoters captured in 

New Brunswick, Canada had a 2 hr on, 72 hr off duty cycle which resulted in only 49% 

of randomly selected locations being accurate enough (LC2 and LC3) to assess habitat 
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use during winter; however, these longer off-duty cycles allowed the transmitters to 

provide data for approximately 2.5 years (Loring 2012).  Research such as ours that 

investigates fine-scale habitat use of sea ducks requires more frequent, high-quality 

locations and, at least for black scoters and eider, the 4 hr on period provided more high-

quality locations than the 2 hr on period for seaducks during winter in southern New 

England.  

Body Composition and Movements of Eiders 

We found that eiders with less wet lean mass when transmitters were implanted departed 

later during spring migration than birds with more wet lean mass. Female eiders are 

known to rely on internal energy stores for the entire egg laying and incubation process 

(Korschgen 1977), thus it may be beneficial for those female eiders with less wet lean 

mass to remain on the wintering areas longer to avoid unfavorable conditions on the 

summer areas (Mosbech et al. 2006) and so to accumulate adequate nutrient stores for 

reproduction. We were unable to determine if our eiders nested, as a result the 

relationship between date of departure for spring migration and body composition should 

be interpreted with caution. It is also possible that the surgically-implanted transmitter 

had more of an effect on eiders with less wet lean mass at implantation, thus delaying 

their migration. Nevertheless, our eiders had high survival and showed strong fidelity to 

their wintering areas, therefore we have little reason to believe that the presence of a 

transmitter significantly impacted the timing of migratory movements. Future research 

could investigate the relationship between body composition during early winter, effects 

of transmitters and subsequent initiation of spring migration.        

Length of Stay and Migratory Phenology 
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Eiders in this study spent about 39% of the annual cycle within the southern New 

England study area (Table 2-2) which was slightly shorter than the winter length of stay 

reported for other sea ducks. For example, length of stay was 50% of the annual cycle for 

black scoters wintering in southern New England (Loring 2012), king eiders (Somateria 

spectabilis) wintering in the Bering Sea, Alaska spent approximately 44% of the annual 

cycle on their wintering area (Oppel et al. 2008), and Pacific common eiders (Somateria 

mollissima v-nigrum) wintering in the Bering Sea had a median length of stay of 

approximately 40% of the annual cycle (Petersen et al. 2012). Winter length of stay may 

variy between species and locations possibly due to climatic conditions, food availability, 

and migration strategies; however, our study was not designed to assess these factors.  

Knowing the average length of stay allows sea duck managers to better quantify the 

potential impacts of habitat degradation and the additional energetic costs from 

disturbances such as hunting and OWED. 

 The migration chronology during spring and fall that we documented 

corresponded with timing estimates developed by Winiarski et al. (2011) from land-based 

surveys. In addition, these departure and arrival times were relatively synchronous 

regardless of summer destination (Figure 2-2A, 2-2B). The duty cycles of transmitters in 

eider provided relatively few locations during spring and fall migrations and so our 

estimated durations of migration should be viewed with caution. In general, the average 

duration of spring migration that we report (16 ± 3.4 and 20 ± 4.7 days during 2012 and 

2013, respectively) is shorter and the fall duration longer (47 ± 9.3 days during 2012) 

than those reported for other eiders. Northern common eiders breeding in arctic Canada 

and West Greenland had average spring and fall migratory durations of 27.3 ± 9.8 and 
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16.1 ± 18.7 days, respectively (Mosbech et al. 2006). Similarly, king eiders in Alaska 

averaged 62 ± 24 days for spring migration whereas 32% of the eiders completed fall 

migration within 2 weeks and 60% spent 3 or more weeks on fall migration.  

One working hypothesis to explain the shorter spring migration duration of the 

more southerly wintering S. m. dresseri common eiders compared to the northerly 

wintering S. m. borealis common and S. m. spectabilis king eiders may lie in the foraging 

strategies of females. Guillemette (2001) found that dresseri females spend more time 

feeding than males prior to spring migration and enter a state of hyperphagia; whereas 

borealis females do not significantly increase time spent foraging prior to spring 

migration possibly because weight increases are restricted due to an already high wing 

loading (Guillemette 1994). A combination of shorter migratory distances and decreased 

need to build energy stores resulting from hyperphagia before spring migration may 

explain the shorter spring migratory duration of dresseri eiders. Furthermore, the longer 

duration and high variability in duration of fall migrations that we report is similar to 

those reported above for more northern populations and may be the result of climatic 

conditions and food availability at stopover sites (Gordo 2007). Seasonal weather 

conditions and food availability can drastically change on an annual basis and additional 

monitoring over multiple years is necessary in order to fully understand the factors 

driving the timing and duration of eider migratory movements.  

 Eiders migrating between southern New England and northern summer areas 

appeared to use several different routes, although Goudie et al. (2000) suggested that 

eider generally migrate along coasts and tend to avoid terrestrial and pelagic routes. Due 

to the duty cycles of migratory eider, we could not develop accurate spatially-explicit 
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models of specific routes used by eiders migrating to and from southern New England, 

although some movements are worth noting. Some eiders breeding in the St. Lawrence 

Estuary, Canada use an overland migration route to migrate to coastal Maine (Gauthier et 

al. 1976). We detected 1 eider approximately 60 km inland over Quebec that was 

detected 1 hr later on the eastern shore of the St. Lawrence Estuary. In addition, 4 eiders 

migrated overwater from Cape Cod, Massachusetts to Nova Scotia, Canada based on 4 to 

5 sequential pelagic locations in the Gulf of Maine during single 4-hr duty cycles for each 

bird. One eider spent 2 days in northeast Nova Scotia before migrating to Prince Edward 

Island, Anticosti Island and eventually reached the north shore of the Gulf of St. 

Lawrence. During fall 2012 migration, two of these birds migrated from Nova Scotia, 

Canada to Maine, USA before returning to the southern New England wintering area. We 

also documented a single overwater migration from Cape Cod, Massachusetts, USA to 

Nova Scotia, Canada during spring 2013. To our knowledge, these are the first 

documented cases of eider migrating far offshore during spring migration between 

southern New England and Nova Scotia. The straight-line distance between southern 

Nova Scotia and Cape Cod is 380 km, whereas a northward flight along the New England 

coastline before crossing the Bay of Fundy is likely to exceed 600-700 km. Thus some 

female eiders apparently conserve energy and nutrient reserves by undertaking a more 

direct over-water flight.     

Diurnal and Nocturnal Movements 

The short offshore movements at dusk that we documented in southern New England are 

similar to those recorded for northern common eiders in Southwest Greenland (Merkel et 

al. 2006). At Nantucket, Massachusetts, Mackay (1890) reported eiders flying offshore to 
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roost at night and returning to nearshore waters at dawn. Winiarski et al. (2011) recorded 

eiders flying offshore at dusk; however, they were unable to determine the location of 

offshore roosts. During capture efforts, we rarely encountered eiders at nearshore capture 

locations during pre-dawn hours; however at dawn, eiders started to fly inshore from 

apparently offshore roosts (J. Beuth, personal observation). Analysis of telemetry data 

showed a difference of 0.92 km between diurnal and nocturnal locations; however, this 

difference fell within the < 500m error radius of the diurnal and nocturnal telemetry 

locations, therefore the diel migration distances must be interpreted cautiously. Despite 

nocturnal locations being slightly further from shore and having increased water depth, 

with the exception of one eider (ptt 112416), the average water depth during the 

nocturnal period was within approximately 20 m; thus, the birds were apparently roosting 

in relatively shallow areas. 

Winter Home Ranges  

Core use areas (50%) of eiders in this study averaged 38.5 ± 7.9 km
2
 and utilization 

distributions (95%) averaged 199.3 ± 32.7 km
2
, which was considerably larger than 

average core use areas (8.1 ± 1.3 km
2
) and utilization distributions (67.8 ± 8.3 km

2
) 

reported by Merkel et al. (2006) for northern common eiders (Somateria mollissima 

borealis) wintering in southwest Greenland. However, Merkel et al. (2006) derived core 

use areas and utilization distributions of eiders from an average of 39 tracking days, 

which was far fewer than the 128 days we used (Table 2-2). Of the 32 eiders monitored 

by Merkel et al. (2006), 72% had only 1 winter core use area whereas the other 31 eiders 

averaged 2.1 areas. In contrast, during this study, 17 of 21 eiders had only 1 winter core 

use area and the other 4 eiders each had 2 separate core use areas. Six eiders that we 
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tracked had only 1 continuous utilization distribution and the overall average was 2. The 

geographic layout of the fjords and seasonal ice coverage at Merkel et al.’s (2006) study 

area at Nuuk, southwest Greenland, possibly constrained eider movements and habitat 

use compared to the open ocean environment and lack of ice coverage in southern New 

England.  

Eiders in our study had significantly smaller core use areas and utilization 

distributions than most other subspecies of eider as well as other species of sea ducks. For 

example, Pacific common eiders wintering in 4 distinct polynyas had median core use 

areas of 102 to 1,142 km
2
 and median utilization distributions between 1,247 and 2,938 

km
2 

(Petersen et al. 2012)
 
. Average size of 50% core use areas and 95% utilization 

distributions of black scoters captured in New Brunswick, Canada and wintering in 

southern New England was 686 ± 142 km
2
 and 3,855 ± 688 km

2
, respectively, which 

were larger than the 267 ± 182 km
2
 core use areas and 1,645 ± 1,107 km

2
 utilization 

distributions calculated for black scoters tagged in southern New England (Loring 2012). 

King eiders wintering in the Bering Sea had average winter ranges of 6,905 ± 11,523 km
2 

(Oppel et al. 2008). Many factors may influence the size of core use areas and utilization 

distributions of sea ducks during winter such as the inclusion of juveniles in a study, 

tracking method, transmitter duty cycles and data quality, method of home-range 

estimation, and the duration of the study (Reed and Flint 2007, Oppel et al. 2008, Loring 

2012). Eiders in southern New England were relatively sedentary and had smaller core 

use areas and utilization distributions compared to other sea ducks which may limit 

encounters with OWEDs provided the developments are not sited in areas of high use by 

eiders.  
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Site Fidelity 

Eiders during this study exhibited high intra- and inter-annual fidelity to southern New 

England. Philopatry of eider to specific breeding areas has been well documented (e.g., 

Reed 1975, Wakely and Mendall 1976); however, to our knowledge we present the first 

evidence supporting high fidelity of American common eiders (Somateria mollissima 

dresseri). In contrast, black scoters showed only moderate fidelity with less than half of 

the birds returning to southern New England (Loring 2012). Petersen et al. (2012) found 

that 18 of 19 Pacific eiders were site faithful and, of those that returned, 95% used the 

same home range as the previous winter. The high levels of fidelity we observed for 

eiders were greater than those reported for harlequin ducks (Histrionicus histrionicus) 

(62% females and 77% males) (Robertson et al. 2000).  Roberston and Cooke (1999) 

suggest that “local-knowledge” of food resources and predator avoidance may drive high 

fidelity to wintering areas. Eiders are known to pair relatively early in the wintering 

period and breeding females have been observed with the same mate in consecutive years 

(Spurr and Milne 1976). High site fidelity of eiders to their wintering area facilitates early 

reestablishment of pair bonds and may minimize costs associated with pair-bonding and 

competition (Ashcroft 1976, Spurr and Milne 1976) during winter which already has high 

energetic demands due to shorter day lengths, less time foraging and lower temperatures.  

High site fidelity of eiders to their wintering areas may also have costs including 

increased exposure to anthropogenic disturbances associated with OWED, hunting, 

climate change, and diseases. We estimated little spatial overlap between the proposed 

OWEDs in Rhode Island and habitat with a high probability of eider use. However, the 

cumulative impacts of disturbance associated with construction and maintenance of 
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multiple OWEDs could affect eiders in southern New England. Climate change may lead 

to an increase in the frequency and severity of coastal storms which could scour the 

nearshore habitats of southern New England and decrease benthic food supplies. 

Experiments in Italy showed that increased frequency and severity of climatic events 

negatively affects invertebrate abundance and diversity (Vaselli et al. 2008). For some 

waterfowl species, breeding success has been shown to increase in relation to above 

average foraging conditions during the preceding winter (Ankney and MacInnes 1978).  

High site fidelity could repeatedly subject eider to inadequate food availability and 

decreased profitability of foraging as a result of an increase in severe weather events 

associated with climate change which could lead to lower breeding success.  

In addition, high site fidelity to areas with above average hunting pressure may 

subject eiders to increased mortality, displacement from preferred foraging areas, and 

increased flight times. Analysis of northern common eider harvest in Greenland found 

that harvest levels were unsustainable and models predicted significant population 

declines as a result (Gilliland et al. 2009). Presently it is difficult to measure the effects of 

hunting on American common eiders because harvest data is insufficient (Caithamer et 

al. 2000), thus caution should be used when setting seasons with liberal harvest limits. 

Furthermore, high site fidelity repeatedly exposes eiders to diseases such as Wellfleet 

Bay Virus (WBV) which has killed several hundred to several thousand eiders annually 

over the last several years on the wintering area in Cape Cod Bay, Massachusetts (Ellis et 

al. 2010). Exposure to disease on the wintering areas is less likely to impact entire 

breeding colonies because eiders from many breeding areas mix throughout the winter 

range (Goudie et al. 2000). However, the transmission of diseases such as Wellfleet Bay 
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Virus is not well understood and the potential exists for disease to severely impact large 

flocks that congregate on the wintering grounds. Obtaining a more thorough 

understanding of the effects of climate change, anthropogenic disturbances and disease 

on eiders during the winter period will enable managers to better predict the impact these 

variables will have individually or cumulatively on eider populations.  

Habitat Use and Resource Selection  

Until now, knowledge of habitat use by eiders in southern New England has been limited 

to inferences made from aerial and ship-based surveys in addition to land based surveys 

during daylight hours (McKinney 2004, McKinney et al. 2006, Winiarski et al. 2011). 

Our research is the first to use satellite telemetry to document movements of eider during 

winter and then assess habitat characteristics in those areas most heavily used by eider. 

Habitat characteristics important for eider included sites that were closer to shore with 

shallower water depths, a higher probability of hard bottom, and relatively fine sandy 

substrates (Table 2-6). This corroborates findings by Winiarski et al. (2011) that eider are 

most abundant in areas with water depths of less than 25 m and areas classified as rocky 

headlands in the lower part of Narragansett Bay (McKinney et al. 2006). Benthic 

communities of lower Narragansett Bay are predominately mussel beds (Schwartz 2009) 

which provide preferred foraging opportunities for eiders, thus explaining the frequent 

detections and high abundance counts in previous studies and the high level of use 

observed in our study.   

Overall, 3% and 10% of the study area was classified as high and medium high 

probability of use, respectively. The validation of the resource selection function model 

confirms that the areas classified as medium high and high probability of use are those 
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most likely to be used by eiders; these areas include rocky outcroppings and submerged 

reefs under relatively shallow water extending out from shoreline. The hard bottom 

provided by the rocky outcroppings and reefs provide ideal attachment locations for 

benthic invertebrates, such as mussels on which eiders forage.  

MANAGEMENT IMPLICATIONS 

The portion of the study area where the Rhode Island-Massachusetts Area of Mutual 

Interest (AMI) is located was classified as low probability of use for eiders.  The AMI 

area is far from shore, relatively deep, had fine sediments and low probability of hard 

bottom, which suggests this area would not be regularly used by foraging or roosting 

eiders. However, eiders may fly through the AMI area during spring or fall migration or 

while moving locally throughout the winter, although we have no indication from 

satellite-tagged birds that this would happen often. Research in Europe found that 

collision risk with offshore wind turbines is minimal for sea ducks, although deflection 

may lead to increased flight times (Desholm and Kahlert 2005). Masden (2009) 

suggested that the increased flight distance and times resulting from deflection at one 

offshore wind farm were trivial and unlikely to have significant impacts; however, more 

study is needed on the potential effects of multiple OWEDs within an eider’s utilization 

distribution.  

Although we did not capture any eider for this study off of Block Island, some 

birds we tagged did use nearshore waters near Block Island. Construction of wind 

turbines within the Block Island Renewable Energy Zone (BI-REZ) are more likely to 

impact eiders wintering in southern New England than those within the AMI. The total 

footprint of the BI-REZ is approximately 34 km
2
, of which 0.81 km

2
 (2.4%), 20.8 km

2
 



 

79 

 

(61.3%) and 12.3 km
2
 (36.3%) was classified as medium-high, medium and medium-low 

probability of use, respectively. Based on research conducted at European offshore wind 

farms, we suspect that the construction of offshore wind turbines in this region could 

displace some eiders from foraging habitat (Larsen and Guillemette 2007) and could 

increase flight times between foraging and roosting sites (Desholm and Kahlert 2005, 

Masden et al. 2009).  However, displacement may be relatively short-term given that sea 

ducks, such as black scoters in Europe, may habituate to wind turbine structures and 

eventually reoccupy the development’s footprint (Petersen and Fox 2007). We know of 

no similar studies that document habituation of eiders to offshore wind turbines even 

though eiders are common in areas with OWED in Europe. The habitat that may be lost 

due to displacement by the BI-REZ is 5.3% of the 1873.4 km
2
 of habitat classified as 

medium-high to medium-low probability of use. Monitoring of eider movement ecology 

during and after construction of offshore wind turbines within the BI-REZ would allow 

these effects on sea ducks wintering in southern New England to be quantified and so 

inform future decisions about siting of OWED in the region.        

  Boat traffic associated with the construction and maintenance of the several 

proposed OWEDs in the region may have the most profound effects on wintering sea 

ducks. Schwemmer et al. (2011) found that disturbances caused by ship traffic lead to 

decreased foraging, temporary loss of habitat, and increased flight times and presumably 

energetic costs for sea ducks. Of the 5 species of sea ducks studied by Schwemmer et al. 

(2011), eider showed the highest tolerance of shipping traffic with median flush distances 

from ships of 208 m compared to 804 m for common scoters (Melanitta nigra), 404 m for 

white-winged scoters (Melanitta fusca) and 293 m for long-tailed ducks (Clangula 
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hyemalis). The port at Quonset Point, Rhode Island, has been identified as a likely 

staging area for wind turbine construction and maintenance work. Boats traversing 

between Quonset Point and OWEDs would pass through areas of southern Narragansett 

Bay classified as high and medium-high likelihood of use by eiders. Although 

quantifying increased flight times and energetic costs associated with flushing caused by 

boat traffic linked to offshore developments may be difficult, future research should aim 

to measure these effects on eiders. Information obtained may enable managers to 

recommend staging locations for work associated with OWED that would minimize boat 

traffic through areas of high use and thus minimize disturbance of eiders during the 

winter period.      
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Table 2-1. Performance of 24 satellite transmitters (PTT) deployed on adult female 

common eiders during November and December 2011 in Rhode Island, USA.  Total 

number of locations for each bird (total loc.) is the sum of the single best locations per 

duty cycle from the date of deployment (deploy) until the last location received (last loc.).     

 
Date 

 
Percent of locations per class 

a
  

PTT Deploy 
Last       

loc. 

Total 

loc. 

LC    

3 

LC    

2 

LC    

1 

LC    

0 

LC    

A 

LC    

B 

LC    

Z 

112413 11/15/11 12/15/12 169 88.8 9.5 0.6 0.0 0.6 0.6 0.0 

112414 11/14/11 7/16/13 208 73.1 19.7 3.8 0.0 2.9 0.5 0.0 

112415 11/17/11 7/14/13 201 55.2 23.9 6.0 3.0 8.5 3.5 0.0 

112416 11/17/11 6/17/13 208 81.3 16.3 1.4 0.5 0.0 0.5 0.0 

112417 11/14/11 1/16/13 174 75.3 22.4 2.3 0.0 0.0 0.0 0.0 

112418
b
 11/17/11 7/15/13 178 48.3 15.7 7.9 2.2 12.4 13.5 0.0 

112419 11/18/11 5/27/13 204 86.8 10.3 2.5 0.5 0.0 0.0 0.0 

112420
b
 11/18/11 3/26/13 190 82.6 16.3 0.5 0.5 0.0 0.0 0.0 

112421 11/21/11 4/4/13 191 73.3 18.3 3.7 1.0 2.6 1.0 0.0 

112422 12/6/11 12/13/12 163 89.6 5.5 1.8 0.0 1.2 1.8 0.0 

112423 11/21/11 7/13/13 203 70.4 19.2 2.0 3.0 3.0 2.5 0.0 

112424 11/21/11 6/6/13 202 79.7 9.4 2.5 1.5 5.9 0.5 0.5 

112426 12/6/11 7/13/13 208 88.0 9.1 1.4 0.5 1.0 0.0 0.0 

112428 12/6/11 7/13/13 205 66.8 21.5 2.9 2.4 3.9 2.4 0.0 

112429 12/6/11 7/14/13 203 79.3 15.3 1.5 0.5 1.5 2.0 0.0 

112430 12/6/11 7/16/13 210 85.2 13.3 1.4 0.0 0.0 0.0 0.0 

112431 12/6/11 7/13/13 205 89.8 7.8 1.5 0.0 0.5 0.5 0.0 

112432
b
 12/6/11 7/16/13 208 77.4 15.9 1.4 1.0 2.4 1.9 0.0 

112433 12/6/11 11/15/12 157 36.3 33.1 19.7 4.5 3.8 1.9 0.6 

112434 12/6/11 7/14/13 206 50.5 33.5 11.2 1.5 2.4 1.0 0.0 

112435 12/10/11 7/13/13 205 58.0 26.8 8.8 3.9 1.5 1.0 0.0 

112436 12/10/11 7/16/13 205 62.4 24.4 10.7 0.5 1.0 1.0 0.0 

112437 12/11/11 7/14/13 203 51.2 29.1 12.3 1.0 4.4 2.0 0.0 

112438 12/11/11 7/14/13 204 53.4 26.5 14.7 1.5 3.4 0.5 0.0 

Average 11/28/11 5/26/13 196 70.9 18.5 5.1 1.2 2.6 1.6 0.0 

Std. 

Error 

2.1 16.5 3.2 3.17 1.61 1.06 0.27 0.60 0.55 0.03 
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a 
Location class is defined by accuracy intervals (m): LC 3 (<250), LC 2 (250-<500), LC 

1 (500-<1,500) and LC 0 (>1,500), whereas location accuracy is not assigned for LC A, 

LC B, and LC Z.   

b 
Birds that left the study area before the end of winter 2011-12. 
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Table 2-2. Length of stay during winter and summer, and duration of the migratory 

period (mean no. days, range) for 24 adult female common eiders implanted with satellite 

transmitters during November and December 2011 in Rhode Island, USA. Fewer eiders 

were transmitting over time because transmitters failed almost immediately (2), birds 

departed from the study area during the first winter (3), birds were shot during the 

hunting season (2), and eventually the transmitters stopped transmitting after 1.5 yrs (5).  

The delineation of each seasonal period is described in the text. 

Seasonal period n 
Duration 

(days)  

Range 

(days) 

Winter 2011-12 21 128 103-152 

Spring 2012 Migration 21 16 2-47 

Summer 2012 21 168 93-253 

Fall 2012 Migration 19 47 7-115 

Winter 2012-13 14 141 55-223 

Spring 2013 Migration 14 20 1-61 
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Table 2-3. Average distances to shore (km) and water depths (m) for high quality diurnal 

and nocturnal locations (LC 3 and LC 2) of 21 adult female common eiders that remained 

on the southern New England study area (Figure 2-1) for the entirety of winter 2011-12.   

Transmitter 
Distance to Shore 

(km) 

Water Depth      

(m) 

ID Diurnal Nocturnal Diurnal Nocturnal 

112413 0.28 1.59 6.4 18.7 

112414 0.65 1.88 11.9 20.6 

112415 1.85 2.36 8.7 11.1 

112416 1.36 2.23 15.7 22.5 

112417 0.51 1.06 11.3 14.3 

112419 1.75 2.98 11.5 16.3 

112421 1.71 2.41 8.0 10.6 

112422 0.26 0.46 4.4 8.4 

112423 0.95 1.10 6.9 8.1 

112424 1.46 2.17 10.9 19.2 

112426 0.46 1.47 9.1 17.7 

112428 0.38 1.44 11.9 19.5 

112429 0.50 2.17 15.7 21.3 

112430 1.59 3.05 6.8 12.5 

112431 0.61 0.57 16.8 13.4 

112433 0.31 1.68 1.8 19.8 

112434 0.68 2.02 14.2 20.5 

112435 0.62 2.03 4.0 16.0 

112436 0.74 1.07 14.2 10.1 

112437 0.51 1.84 7.1 16.5 

112438 0.69 1.56 0.2 13.9 

Average 0.85 1.77 9.4 15.8 

Standard Error 0.12 0.15 1.01 0.96 
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Table 2-4. Total area (km
2
) of core-use (50% core) and utilization distributions (95% 

UD), and number of UD’s per bird for 21 adult female common eiders (Trans #) that 

spent the entire winter 2011-12 period within the study area and for 3 adult female eiders 

that spent most of the winter period outside the study area. 

Winter 

region 

Trans.   

(#) 

50% Core 

(km
2
) 

95% UD    

(km
2
) 

UD areas 

(#) 

Within 

study     

area 

112413 13.6 102.7 2 

112414 46.0 252.7 2 

112415 10.9 95.1 2 

112416 121.4
a
 516.6 2 

112417 11.7 43.3 1 

112419 126.8
a
 602.3 1 

112421 12.7 102.6 3 

112422 12.8 72.7 3 

112423 13.1 89.7 3 

112424 15.7 116.4 1 

112426 36.6 216.3 2 

112428 17.3
a
 103.9 1 

112429 41.3 228.2 2 

112430 14.4 89.8 1 

112431 11.4 66.6 3 

112433 99.5
a
 359.0 2 

112434 62.2 285.2 2 

112435 51.6 281.1 2 

112436 15.8 93.6 1 

112437 52.2 262.9 2 

112438 20.8 204.3 4 

Average 38.5 199.3 2 

Outside 

study 

area 

112418 310.7 2412.5 2 

112420 304.9
a
 1896.5 2 

112432 270.1 1268.3 2 

Average 295.2 1859.1 2 
a
 Eiders with two core-use areas. All other eider had only one core-use area. 
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Table 2-5. Mean (    ) ± standard error (SE) and values for each habitat variable sampled 

within 95% utilization distributions (available) and 50% core use areas (used) of adult 

female common eiders in southern New England during winter 2011-12.  Sample size (n) 

is the number of resource units sampled within the composite available and used areas. 

  Available Used 

Habitat variable    ± SE n    ± SE n 

Distance to shore (km) 2.94 ± 0.044 3,014 1.57 ± 0.055 580 

Water depth (m) 20.38 ± 0.25 3,014 15.45 ± 0.43 580 

Grain size (phi scale) 1.34 ± 0.019 2,839 1.76 ± 0.054 580 

Hard bottom probability (0-1) 0.20 ± 0.003 3,014 0.30 ± 0.006 580 

Slope (degree) 0.53 ± 0.012 3,014 0.70 ± 0.030 580 

Roughness
1
 0.33 ± 0.006  3,014 0.42 ± 0.014 580 

1
 Roughness of a resource unit is the standard deviation of the slope within a 1,000 m   

   radius.      



 

100 

 

Table 2-6. Model parameters, Akaike Information Criterion (AIC), difference in AIC 

(ΔAIC), relative likelihood and Akaike weights (wi) for 17 a priori logistic regression 

models used to estimate beta coefficients for an exponential resource selection function 

for common eider habitat use during winter 2011-12. Habitat characteristics used as 

model parameters include water depth (WD), distance to shore (DS), grain size (GS), 

relative probability of hard bottom (HBP), roughness (RG) and slope (SL).    

Model parameters AIC ΔAIC 
Relative 

likelihood 
wi 

WD, DS, GS, HBP 2675.67 0.00 1.00 0.40 

WD, DS, GS, HBP, RG 2677.15 1.48 0.48 0.19 

WD, DS, GS, HBP, SL 2677.47 1.80 0.41 0.16 

DS, GS, HBP 2677.88 2.20 0.33 0.13 

WD, DS, GS, HBP, SL, RG 2678.36 2.69 0.26 0.11 

WD, DS, GS, SL, RG 2769.09 93.42 0.00 0.00 

WD, DS, GS 2771.91 96.24 0.00 0.00 

WD, DS, GS, SL 2773.69 98.02 0.00 0.00 

WD, GS, HBP 2817.44 141.77 0.00 0.00 

WD, DS, HBP 2867.58 191.91 0.00 0.00 

DS, HBP 2878.76 203.09 0.00 0.00 

WD, DS 2978.03 302.36 0.00 0.00 

DS 2982.68 307.01 0.00 0.00 

WD, HBP 3001.44 325.77 0.00 0.00 

HBP 3034.55 358.88 0.00 0.00 

GS 3046.65 370.98 0.00 0.00 

WD 3111.57 435.90 0.00 0.00 
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Table 2-7. Habitat characteristics and coefficients (β) of the top ranked resource selection 

function derived for common eiders during winter on the nearshore and offshore waters 

of southern New England during winter 2011-12.   

Habitat characteristic β 
Standard 

error 

Intercept -2.3073 0.143 

Water depth (m) -0.0112 0.0054 

Distance to shore (m) -0.4437 0.0403 

Grain size (phi scale) 0.4883 0.0464 

Hard bottom probability 2.8395 0.2885 
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Figure 2-1. Northeast region (inset) and southern New England study area where 26 adult 

female common eiders were captured and implanted with satellite transmitters during 

November and December 2011 in Rhode Island, USA. Inset shows areas where eiders 

were located during summer including: Maine (ME), Nova Scotia (NS), St. Lawrence 

Estuary (SLE) and Gulf of St. Lawrence (GSL).   

Figure 2-2. Movement phenology of 21 adult female common eiders implanted with 

satellite transmitters in Rhode Island, USA during November and December 2011, their 

latitudes during summer in (A) St. Lawrence Estuary (n = 4 birds), Maine (n = 9 birds), 

(B) Gulf of St. Lawrence (n = 4 birds) and Nova Scotia (n = 4 birds), and their 

subsequent latitudes until the study ended in July 2013.   

Figure 2-3. Winter 2011-12 composite core use area (50% core) and 95% utilization 

distribution (95% UD) of 21 adult female common eiders implanted with satellite 

transmitters during November and December 2011 in Rhode Island, USA that spent the 

entire winter in the study area. Centroids represent the center of each of 21 individual 

core areas. 

Figure 2-4. Winter 2011-12 core use areas (50% core) and 95% utilization distributions 

(95% UD) of 3 adult female common eiders implanted with satellite transmitters during 

November and December 2011 in Rhode Island, USA that spent 59 ± 17% of the winter 

outside of the study area. 

Figure 2-5. Relative probability of use of nearshore and offshore waters by common 

eiders during winter 2011-12 in relation to the Block Island Renewable Energy Zone (BI 

REZ) and the Rhode Island/Massachusetts Area of Mutual Interest (RI-MA AMI).  
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Relative probability was derived from top-ranked logistic regression model (Table 2-6) 

and mapped using a resource selection function of the β coefficients from the top ranked 

model (Table 2-7).  

Figure 2-6. Chi-Squared Goodness of Fit test results and linear regression analysis of 

expected and observed proportions of common eider locations within each probability of 

use class determined using Geometric Interval classification of the resource selection 

function values.   

Figure 2-7. Site fidelity of eiders to the southern New England wintering areas. Locations 

of 19 adult female eiders during winter 2012-13 that were implanted with satellite 

transmitters in November and December 2011 are overlaid onto the composite utilization 

distribution and core use area derived from locations of 21 eiders during winter 2011-12. 
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Figure 2-2 A. 
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Figure 2-2 B.  
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Figure 2-3. 
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Figure 2-4. 

 

 



 

 

 

Figure 2-5. 
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Figure 2-6. 
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Linear regression equation: 

y = 0.8984x + 0.0169 

R2 = 0.847 

Goodness-of-fit: 

χ5
2 = 0.1607; P = 0.999 
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APPENDIX 

Figure A-2-1. Locations of adult female eiders in the Gulf of St. Lawrence, Canada (A; n 

= 4), Maine, USA (B; n = 9), Nova Scotia (C; n = 4) and the St. Lawrence Estuary, 

Canada (D; n = 4) during June, July and August, 2012. These 21 eiders were implanted 

with satellite transmitters on the southern New England study area during November and 

December 2011. 

 

Figure A-2-2. Composite core use area (50% core) of 21 adult female common eiders 

implanted with satellite transmitters during November and December 2011 in Rhode 

Island, URA overlaid onto individual core use areas of the same 21 eiders (A) and 

Composite utilization distribution (95% UD) of the same 21 adult female common eiders 

implanted with satellite transmitters during November and December 2011 in Rhode 

Island, URA overlaid onto individual utilization distributions of the same 21 eiders (B).   

 

 

 

 

 

 

 

 

 

 



 

113 

 

 

Figure A-2-1.  

A. 
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Figure A-2-2. 

A. 

  

B. 
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