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Magnetic Field Effects on the Spin Dynamics of the
Linear Spin-1/2 Heisenberg Antiferromagnet

Gerhard Müller, 1 Harry Thomas, 1 Hans Beck, 2 and Jill C. Bonner 3

1 Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland
2 Institut de Physique de I’Université, CH-2000 Neuchâtel, Switzerland
3 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

We present a new approach to the low temperature dynamics of a quantum Heisenberg antiferromagnetic
chain, which employs a combination of techniques: exact finite chain calculations; exact Bethe Ansatz calcu-
lations; and exact sum rules and selection rules. A striking property of the selection rules is that the contribu-
tion of several classes of states to the dynamics in non-zero field for finite systems is shown to vanish in the
thermodynamic limit. Many novel quantum field-dependent effects appear such as soft modes, and multiple
peak structure in the structure factor, which should be experimentally observable.

Spin dynamical calculations on the one-dimensional (1D) Heisenberg antiferromagnet (HB AF)

H = J

N∑
l=1

~Sl · ~Sl+1 − gµBH

N∑
l=1

Szl (1)

in zero and nonzero magnetic field have relied heavily on classical theory because of the relative
ease of solvability of the classical as compared to the quantum HB AF. However evidence is
increasing, both experimental and theoretical, that quantum effects are extremely important at low
temperatures. The S = 1

2 HB AF (1) has so far resisted rigorous analytic attack for both statics and
dynamics. Semi-classical calculations or approximate many-body techniques have therefore been
employed. In the belief that such approaches are ineffective in providing detailed information on
the dynamics, we have pioneered a new approach [1,2] which is based on four main techniques: (i)
analytic calculations of excitation energies and densities of states of a special class of Bethe-Ansatz
states; (ii) exact finite chain calculations of matrix elements for chains of 4 through 10 spins; (iii)
derivation and application of two different kinds of selection rules; and (iv) the use of various kinds
of sum rules. Major emphasis has been placed on zero temperature studies.

Results obtained for the S = 1
2 HB AF (1) in zero magnetic field have already been published

[1,2]. Several novel features have been found which are purely quantum effects. The purpose of
this short communication is to highlight many interesting results which appear when a magnetic
field is applied. Spin dynamics of the 1D HB AF (1) in nonzero magnetic field is of current
experimental interest as a result of very recent neutron scattering experiments on the quasi-lD AF
compounds CPC (S = 1

2 ) [3] and TMMC (S = 5
2 ) [4] both in a field of 70kOe. Active experimental

investigation is also underway of proton spin-lattice relaxation rates in the quasi-lD S = 1
2 AF

systems CuSeO4 · 5H2O, CuSO4 · 5H2O [5] and α-CuNSal [6]. This presentation is directed towards
experimentalists in the hope of eventual experimental verification of the new features. A longer
publication containing calculational details will appear in due course [7].

The quantity which contains moat detailed dynamical information and which is of direct exper-
imental interest is the dynamic structure factor Sµµ(q, ω), the Fourier transform of the dynamic
two-spin correlation function 〈Sµl (t)Sµl+R〉. At T = 0, the number of excitations contributing to
Sµµ(q, ω) is considerably reduced by selection rules which result from the symmetry properties of
H. The translational symmetry along the chain (due to periodic boundary conditions) allows for a
classification of the eigenstates according to wave numbers k = (2π/N)n, n = 0,±1, . . . and gives
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rise to the selection rule

〈k . . . |Sµ(q)|k′ . . .〉 ∝ δk′,k+q+2πn, n = 0,±1, . . . (2)

The rotational symmetry in spin-space allows for the introduction of the quantum number of the
total spin ST and its z-component STz , providing the following selection rules

〈ST . . . |Sµ(q)|S′T . . .〉 = 0 if |ST − S′T | > 1 or ST = S′
T = 0, (3)

〈STz . . . |Sz(q)|S′
T
z . . .〉 = 0 unless STz = S′

T
z , (4)

〈STz . . . |S±(q)|S′Tz . . .〉 = 0 unless STz = S′
T
z ± 1. (5)

These selection rules tell us which classes of states have nonzero matrix elements with the ground
state (whose character changes, of course, with the magnetic field). For the special case of h = 0
(we use a reduced field h = gµBH/J) the ground state is a singlet (ST = 0). According to (3) the
only contributing states to Sµµ(q, ω) are triplets (ST = 1, STz = 0,±1). Let us consider the general
case when at h 6= 0 the ground state has quantum numbers ST = STz = Nσ, where σ (0 ≤ σ ≤ 1

2 )
is the magnetization. The selection rules (3)-(5) now allow six classes of excitations to contribute to
Sµµ(q, ω). At h = 0 the six classes reduce to three classes. A most striking feature for h 6= 0 is the
presence of additional selection rules with N -dependent coefficients which cause three out of the
six classes to be excluded from the h 6= 0 dynamics in the thermodynamic limit. These selection
rules for the “macroscopic system” are a consequence of the Wigner-Eckart theorem relating matrix
elements involving states belonging to the same multiplet.

In the next step of our approach we are able to identify those excitations which predominate
in Sµµ(q, ω) as special eigenstates in Bethe’s fformalism [8], to calculate their energies in the
thermodynamic limit and to estimate their spectral weight distribution in Sµµ(q, ω). Before coming
to the more complex h 6= 0 case, let us briefly summarize the results for h = 0. Here, the new
approach yields an approximate analytic expression for Sµµ(q, ω) which fits excellently into the
fragmentary picture of the few available exact results [1,2]:

Sµµ(q, ω) = A
Θ
(
ω − (πJ/2) sin q

)
Θ
(
πJ sin(q/2)− ω

)√
ω2 − (πJ/2)2 sin2 q

, (6)

where Θ is the step function and Ais a constant of order unity. Sµµ(q, ω) is governed by a two-
parameter continuum of spin-wave-type triplet (ST = 1) excitations. We call them spin-wave
continua SWC 1, 3, 4, depending on the component of Sµµ involved. Expression (6) “switches
on” at the lower continuum boundary ε1(q) = (πJ/2) sin q (first derived by Des Cloizeaux and
Pearson [9]), where there is a divergence. A tail of decreasing spectral weight extends to the upper
continuum boundary ε2(q) = πJ sin(q/2)), where there is a cut-off. This expression is not rigorous,
but exact sum rules are violated by only a small amount. A plot of Szz(q, ω) for two fixed values of q
is shown as Fig. 2a of Ref. [1]. Expression (6) predicts increasing asymmetry in the spectral weight
distribution as q → π, which has recently been verified by neutron scattering data (see Fig. 7 of
Ref. [3]). This asymmetry is a quantum effect, since a classical spin-wave calculation would result
in a delta function at the classical spin-wave frequency. The integrated intensity derived from (6) is
in much better agreement with neutron scattering data on CPC [10] than the semiclassical result.

For nonzero magnetic field the longitudinal structure factor Szz(q, ω) behaves differently from
the transverse counterparts, Sxx(q, ω) ≡ Syy(q, ω). In comparison with the classical model where
the system enters a spin-flop state for h > 0, the S = 1

2 system displays behavioral anomalies in
the dynamics in the limit h→ 0+. Even more drastic differences occur between the classical spin-
wave dispersion spectra and the lowest excitation branches of the S = 1

2 chain as h progressively
increases from zero to h = hc = 2. For example, the classical transverse spin-waves develop a gap
at q = 0 and the h = 0 sine curve distorts into a cosine-like curve at h = hc [3]. In the quantum
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case, on the other hand, we have obtained for the lowest-lying excitations contributing to Sxx(q, ω)
the dispersion curve

ω(q) = 2D(h)
∣∣∣cos

q

2
sin
(q

2
− πσ(h)

)∣∣∣ (7)

with 2D(h) = π+h(1−π), in qualitative agreement with Pytte’s result in a Hartree-Fock approx-
imation [11] and with Ishimura and Shiba’s numerical result based on an exact calculation [12]. A
striking non-classical feature of (7) is the existence of a zero-frequency mode which progressively
moves from the zone center (q = 0) to the zone boundary (q = π)) as the field increases from
h = 0 to h = hc. Moreover, our calculations make clear that (7) is only the lower boundary of
a two-parameter continuum of excitations. A careful analysis shows that there are in total six
continua of excitations, SWC 1 to SWC 6, contributing to Sµµ(q, ω) for h 6= 0 and N finite [7]. As
a consequence of the selection rules for the “macroscopic system” only three continua (SWC 2, 3,
6) survive in the thermodynamic limit [7].

Figure 1. Spectral representation of Szz(q, ω) for the HBAF with N = 10 and h & 1.116. For
each value of the wave number q = 2πr/10, r = 0, 1, . . . , 5; Szz(q, ω) is a sum of delta functions.
Full symbols denote “Bethe Ansatz” states and open symbols “anomalous” states. The numbers
give the corresponding spectral weights. Excitations not shown have spectral weights smaller by
at least an order of magnitude. The full lines represent the boundaries of SWC 1 and SWC 2.

Let us consider the longitudinal fluctuations in more detail. Fig. 1 shows the excitations for
N = 10 which contribute to Szz(q, ω) in a field somewhat greater than half the critical field.
By solid triangles and solid squares we have distinguished those excitations which exhaust most
of the spectral weight, and for which we can calculate the energies in the framework of Bethe’s
formalism. In the thermodynamic limit they form the continua SWC 1 and SWC 2 with lower and
upper boundaries shown as solid lines in Fig. 1. In Fig. 2 we have sketched how the shapes of SWC
1 and SWC 2 change as the field varies over the complete range from h = 0 to h = hc = 2. In zero
field SWC 2 vanishes and SWC 1 dominates Szz(q, ω) for both finite and infinite N . At h 6= 0 SWC
2 appears with zero-frequency modes at q = 0 and q = π(1−2σ). Note that as soon as the smallest
field is applied, the broad SWC 1 is completely suppressed in the infinite system, leaving only the
fairly narrow SWC 2. The effects of this dramatic limiting process as h→ 0+ are, however, masked
to some extent by “anomalous” states appearing in Szz(q, ω) which lie beyond the upper boundary
of SWC 2 [7]. For N = 10 they are denoted as open squares in Fig. 1. Experimentally observable
features are the “soft mode” at qp = π(1− 2σ) and the gap at q = π with energy Egap/J = h.
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Figure 2. The two SWC contributing to Szz(q, ω) shown schematically as H varies between 0
and Hc.

Let us now briefly discuss the transverse fluctuations. Here we have found that there are four
SWC’s contributing to Sxx(q, ω) for finite N , and only two of these survive in the thermodynamic
limit. Details are given in Ref. [7]. The surviving continuum SWC 3 has zero frequency modes at
q = qs = 2πσ and q = π as also does SWC 6 (SWC4 and 5 vanish [7]). At q = 0 the spectrum
has a gap of the same magnitude as the gap appearing in Szz(q, ω) at q = π. These characteristic
features should be experimentally observable.

An important quantity for experimental observation is the integrated intensity. Figs. 3 and
4 show Izz(q) and Ixx(q), respectively, at T = 0 for various values of the magnetic field, as ob-
tained from finite-chain calculations. Fig. 3 shows the relative importance of the various modes
contributing to the longitudinal fluctuations. At h = 0, the q = π mode is dominant, giving rise
to a logarithmic divergence in Izz(q). With increasing field, the dominant mode corresponds to
q = π(1 − 2σ). The singularity for h 6= 0 appears to be weaker (finite cusp) than for h = 0. The
dashed curve is our prediction for CPC (Hc ' 330kOe) in a field of 70 kOe. Fig. 4 shows Ixx(q),

Figure 3. Finite chain results (N = 10) for the T = 0 longitudinal integrated intensity at various
reduced fields (solid lines). The dashed line is an interpolation for the special field h = 0.21
corresponding to 70 kOe in CPC.

4



Magnetic Field Effects on the Spin Dynamics of the Linear Spin-1/2 Heisenberg Antiferromagnet

Figure 4. Finite chain results (N = 10) for the T = 0 transverse integrated intensity at various
reduced fields (solid lines). The dashed line is an interpolation for the special field h = 0.21.

the integrated intensity of the fluctuations perpendicular to the field. Whereas the dominant mode
in Izz(q)) moves away from the zone boundary with increasing field, the dominant mode in Ixx(q)
remains at q = π independent of h, although its weight decreases as h becomes larger. Again the
dashed curve shows our prediction for CPC at H = 70 kOe.

Figure 5. Comparison of theoretical predictions for the peak positions in Sxx(q, ω) with cor-
responding experimental data for CPC by Heilmann et al. (see Ref. [3]). The three scans at
q = π/2 are for reduced fields h = 0.21, h = 0.105 and h = 0, respectively. The vertical lines
represent special energies corresponding to continuum boundaries.
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Fig. 5 compares our theory with low T inelastic neutron scattering measurement on CPC at
zero field, and in fields of 35 kOe and 70 kOe [3]. Crystal orientation appears to correspond to our
Sxx(q, ω). The vertical lines denoted A, C correspond to energies of the lower and upper boundaries
of SWC 3 and SWC 6, where our theory predicts discontinuities in the T = 0 Sxx(q, ω). Line B
represents approximately the upper boundary of the non-negligible “anomalous” states associated
with SWC 6 [7].

Fig. 5a corresponds to CPC data at 70 kOe. They reveal two peaks which both are well under-
stood by our theory. The peak at the lower energy corresponds to the lower boundary of SWC 3,
6 given by line A at 3.2 meV. The peak at higher energy is clearly due to the combined effect of
the special energies and the upper boundary of SWC 3, shown as lines Band C at 4.2 meV and 4.5
meV, respectively.

In Fig. 5b comparison is made with the data at 35 kOe, yielding also fair agreement with our
theory. At this field the lines B and C are more separated and the data indicate in addition to
the peaks corresponding to lines A (3.45 meV) and B (3.9 meV) a third additional weak signal,
corresponding to the line C at 4.8 meV.

At h = 0 the maximum intensity is expected to be close to the des Cloizeaux-Pearson energy
of 3.63 meV as required by expression (6) and as verified in Fig. 5c (lines A,B).

Finally we should comment on recent work by Ishimura and Shiba [13], which covers some of the
same ground here discussed. However Ishimura and Shiba do not take account of upper continuum
boundaries, and fail to be aware of the fact that certain classes of states lose their weight in the
thermodynamic limit.
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