Depth Profiles of Persistent Organic Pollutants in the North and Tropical Atlantic Ocean

Caoxin Sun

Thomas Soltwedel

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use
This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1021/acs.est.5b05891

This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Depth profiles of persistent organic pollutants in the North and Tropical Atlantic Ocean

Caoxin Sun¹, Thomas Soltwedel², Eduard Bauerfeind, Dave A. Adelman¹, Rainer Lohmann¹,*

¹Graduate School of Oceanography, University of Rhode Island, South Ferry Road, Narragansett, 02882 Rhode Island, United States

²Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g. sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L⁻¹) were similar to previous measurements. At both sites, PCB concentrations showed sub-surface maxima (tropical Atlantic Ocean – 800 m, North Atlantic – 500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners’ sub-cooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26 % of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.
INTRODUCTION

Open ocean seawater measurements of persistent organic pollutants (POPs) are scarce due to the difficulties associated with the sampling procedure, contamination and costs of cruises. There are even less data on POPs in the deep ocean, since most of the measurements of POPs in the open ocean were limited to surface seawater. Little is known of the role played by deep ocean compartments in storing POPs from the surface. Of the few previous measurements of deep oceanic POPs, two were based on active sampling, targeting polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in deep waters in the North Atlantic (near the South-Western edge of the Porcupine Abyssal Plain and around Iceland), and PCBs in the central Arctic Basins (Nansen, Amundsen, and Makarov). More recently, concentrations of PCBs, PAHs, hexachlorobenzene (HCB) and dichlorodiphenyldichloroethylene (DDE) were detected using passive sampling at 0.1-5 km depth in the Irminger Sea, the Canary Basin and the Mozambique Channel. These studies reported the existence of POPs in the deeper ocean and indicated that the deep oceans could be an important compartment for storing POPs.

The study by Booij et al. was the first to use passive sampling (semipermeable membrane devices, SPMDs) to study the POPs vertical distribution in the ocean. Even though active sampling has been traditionally used, it bears the disadvantage of extensive labor and extreme care of controlling blank levels. Polyethylene sheets (PEs) is one common form of passive sampling devices. It has many advantages including simplicity in its chemical makeup, low cost, easy handling and a high enrichment of POPs. Passive sampling was recently suggested a useful tool used monitoring POPs in open ocean.
Unlike active sampling, passive samplers only take up ‘truly’ dissolved compounds, not those bound to colloids.

Under the circumstances that the time to reach equilibrium is not known, the sampling rate (R_s) can be used to derive the state of equilibrium upon retrieval. One way to calibrate R_s is to use performance reference compounds (PRCs). PRCs are chemicals that are artificially made which share similar properties to target compounds. However, due to the extensive long time of pre-spiking samplers with PRCs, another approach has been suggested by Bartkow et al. using different thickness to confirm that equilibrium has been reached.

In this study, polyethylene passive samplers of different thickness were deployed at two deep ocean sites (eastern Fram Strait and Cape Verde Abyssal Plain) in the Atlantic Ocean to determine vertical distributions of truly dissolved concentrations of several classes of POPs, including PCBs, organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs) and PAHs. The objectives of this study were to (i) measure a wide range of POPs in vertical profiles at two locations in the North Atlantic; (ii) contrast north-south and surface-to-deep gradients and (iii) improve the knowledge of fate and transport of POPs to the deep ocean.
METHODS

Sampling

PE sheet samplers preparation

PEs of three thickness were used in the study: 800, 1600 and 50μm. Polyethylene samplers preparation details are given in Supporting Information. Only 50μm PEs were pre-spiked with PRCs using the method described by Booij et al.8

Deep mooring sampling

Samplers were strung on stainless steel wires and attached to stainless porous cages. Cages were attached to deep mooring systems and deployed in North Atlantic (79° N, 4° E) and Tropical Atlantic (25° N, 38° W) (Figure 1). Deployment depths were 213 m, 468 m, 1173 m, 1736 m and 2535 m for the North Atlantic and 26 m, 84 m, 251 m, 800 m and 1800 m for the tropical Atlantic Ocean, respectively. Two sampling sheets were deployed at each depth. Sampling time was around one year for both deployments (North Atlantic: July 21st 2012 ~ July 8th 2013; Tropical Atlantic: Sep 14th 2012 ~ Oct 1st 2013). Current velocities were also measured at different depths by current meters during the entire mooring period. Current velocities were averaged over the deployment time for discussion in this paper. After samples were collected, they were wrapped in clean aluminum foil, shipped back to lab and stored at -4°C until analysis.
Figure 1. Sampling locations of the deep moorings in 2011-12.

Sample analysis

Sample extraction

After being wiped clean using Kimwipes, PEs were cut into pieces and extracted in hexane overnight twice with surrogate injected. Extracts were then concentrated into GC-vials and analyzed by GC-MS/ GC-MS-MS. Details on sample extraction and instrumental analysis are given in the Supporting Information.

Quality assurance/quality control

Matrix spike and lab blanks were performed for each batch of approximately 10 samples. Field blanks were taken during the North Atlantic deployment. All blanks were extracted in the same method as samples. Limits of detection (LOD) were derived from field blanks.
and determined by three times the standard deviation of field blank samples. Detailed QA/QC information are in the Supporting Information (detection limits of all the compounds quantified in this study are given in Table S3; recoveries are given in Table S4).

PE concentration (C_{PE}) conversion to environmental concentration

Concentration of target compounds in the PEs (C_{PE}, ng g⁻¹) were converted to freely dissolved water concentrations (C_w, kg L⁻¹) by equation (1)

\[
C_w = \frac{C_{PE}}{K_{PEw}} \times \frac{1}{\% \text{ equilibrium}} \tag{1}
\]

where

- \(K_{PEw}\) is the compound specific partitioning coefficient between PE and water (L kg⁻¹)
- whose temperature correction for \(K_{PEw}\) was done using equation (2), and
- \(\%\text{equilibrium}\) is the percentage of equilibrium achieved by individual compound in the sampling period which is given by equation (3)

\[
K_{PEw}(T) = K_{PEw}(298) e^{\left(\frac{\Delta H_{PEw}}{R} \right) \frac{1}{298} \frac{1}{T}} \tag{2}
\]

where

- \(K_{PEw}(T)\) and \(K_{PEw}(298)\) are PEw partitioning coefficients at temperature \(T\) (K) and 298 K, respectively;
- \(\Delta H_{PEw}\) is the enthalpy of PEw partitioning (kJ mol⁻¹);
- and R is the universal gas constant (8.3143 J mol⁻¹ K⁻¹);

\[
\% \text{ equilibrium} = 1 - e^{\left(\frac{-R_{PEw}}{K_{PEw} V_{PE}}\right)} \tag{3}
\]
where

\[R_s \] is the sampling rate (L/day) for one whole sampling sheet;

\[t \] is sampling time (days); and

\[V_{PE} \] is the volume of the PE (L).

Estimations of sampling rates

Using different thickness

Sampling rates were estimated based on the assumption that PEs deployed at the same
depth/cage were exposed to the same truly dissolved concentration \(C_w \), and that the same
sampling rate applied to all compounds. \(R_s \) pairs were assumed to be from different
combinations of integers from 1~X L/day \((X=100, 50, 40, 30, 20, 10) \). For each
combination, \%equilibrium was calculated using equation (6) and the environmental
concentration was further determined using equation (1). The aim was to find the exact pair
of \(R_s \) that minimizes the total of standard deviations of all detected compounds. The total
of standard deviations is defined as

\[
\sum_{i=1}^{n} s_i
\]

\[(4) \]

where

\[n \] is the number of pairs of data, and

\[s \] is the standard deviation of the derived environmental concentration \((x_i) \) by the two PEs
in the same cage

\[
s = \sqrt{\frac{1}{N-1} \sum_{j=1}^{N} (x_j - \bar{x})^2} \quad (N=2)
\]

\[(5) \]
Using PRCs

Site specific sampling rates were also calculated via a nonlinear least-squares method adapted from Booij and Smedes. This method only applies to PEs that were pre-spiked with PRCs, i.e., the 50 μm thick ones in the tropical Atlantic 84 m and 251 m deployment.

Latitudinal Fractionation

The ratio of the concentration of each individual compound near the surface layer (231 m) at 79° N divided by the surface concentration at 24° N (26 m) was plotted as a function of their subcooled liquid vapor pressure (P_L).

Estimation of water age using chlorofluorocarbons, CFCs

Transient tracers, including CFCs, are useful as a water mass tracer because their atmospheric concentration can be uniquely related to a calendar year. In turn, water at the ocean surface records this unique concentration based upon air-water gas partitioning. The equilibrium partitioning between CFC concentration in the air and water is described by Henry’s Law. Dissolved CFCs concentration \(C_w \) (mol kg\(^{-1}\)) at the locations of interest were obtained from Carbon Hydrographic Data Office (CCHDO). Temperature and salinity data were obtained from the same origin and were used for deriving the Henry’s Law Constant \(H \) (mol kg\(^{-1}\)). The molar ratio of CFCs in the atmosphere \(\chi \) (mol CFC mol\(^{-1}\) air) were then calculated using

\[
\chi = \frac{C_w}{H}
\] \(\text{(6)} \)
The results represented the molar ratio of CFCs in the atmosphere when the water were at the surface. They were compared to recorded atmospheric CFCs concentrations from Carbon Dioxide Information Analysis Center (CDIAC) to determine the calendar year when the water was last contact with the air. SF$_6$ data were of the highest priority if available; if not, CFC-12 data were used instead.

RESULTS AND DISCUSSION

Truly dissolved surface concentrations of POPs

Tropical Atlantic

Σ_{14}PCBs concentrations near the surface of the tropical Atlantic (Cape Verde Abyssal Plain) were 8.5 pg L$^{-1}$ (Table S12), with Σ_{ICES}PCBs (PCB-28, 52, 90/101, 118, 138,153 and 180) of 6.2 pg L$^{-1}$; they constituted ~73% of all the Σ_{14}PCBs detected. Σ_{14}PCBs was close to the high end of reported value of (Σ_{27}PCBs , 0.24-5.7 pg L$^{-1}$) by Gioia et al. but lower than the measurement (Σ_{36}PCBs North Atlantic, 26 pg L$^{-1}$) by Iwata et al. Σ_{ICES}PCBs was larger than (mean 2.5 pg L$^{-1}$) by Lohmann et al. and (0.071-1.7 pg L$^{-1}$) by Gioia et al.

HCB concentration was found at 6.0 pg L$^{-1}$ near surface, higher than what was found in the North Atlantic (0.1-3 pg L$^{-1}$) by Lohmann et al. but within the range of Northern Hemisphere average (2-9 pg L$^{-1}$) by Booij et al. p,p'-DDT, o,p'-DDT and p,p'-DDE were all within the range of 0.2-0.5 pg L$^{-1}$, which was in agreement with North Atlantic (0.1-3 pg L$^{-1}$) by Lohmann et al. and close to the lower end of Northern Hemisphere average (0.3-1.4 pg L$^{-1}$) by Booij et al. and detected near 30°N Atlantic (0.5 pg L$^{-1}$) by Iwata et al.
The only detectable PBDEs were 47, 100 and 99. Concentrations were 1.4, 0.3 and 1.6 pg L\(^{-1}\), slightly higher than (~ 0.5 pg L\(^{-1}\) for 47 and around 0.1 pg L\(^{-1}\) for 99 and 100) by Lohmann et al.\(^{15}\) and (0.02-1.05, nd-0.11 and 0.01-0.53 pg L\(^{-1}\) respectively) by Xie et al.\(^{16}\)

Detected \(\sum_7\)PAHs was 83 pg L\(^{-1}\) near surface at the tropical Atlantic. This is within the range (\(\sum_{10}\)PAHs, 58-1070 pg L\(^{-1}\)) reported by Nizzetto et al.\(^{17}\) near the northwest coast of Africa, which was potentially influenced by emerging oil industry, biomass burning and natural source of PAHs in Africa. PAH concentrations measured here were lower than (\(\sum_3\)PAHs, average of 270 pg L\(^{-1}\)) by Lohmann et al.\(^{18}\) near the coast of North America. As to individual PAHs, phenanthrene, fluoranthene and pyrene were dominant, which is in agreement with other studies.\(^{17,18}\)

North Atlantic

In the North Atlantic (Fram Strait), surface \(\sum\)PCBs concentration of the dissolved phase was 0.8 pg L\(^{-1}\) in this study (Figure 3 & Table S12), which was comparable to what was observed for \(\sum_7\)PCBs (0.7 pg L\(^{-1}\))\(^4\) and \(\sum_6\)PCBs (< 1 pg L\(^{-1}\))\(^{19}\). As for individual congeners, the highest concentration was determined by PCB-28, followed by 18, 44, 52 and then 101, 138, 153. This result is in agreement with result from Gioia et al.\(^{19}\) PCB-18, 28, 52, 101, 118, 138, 153 were the most detected congeners in previous studies; they were also the dominant PCBs in this study.

HCB was the OCP detected at the highest concentration. The near surface concentration was 10 pg L\(^{-1}\), higher than those reported from the North Atlantic Bloom Experiment (NABE)\(^{20}\) but close to results from the RV Polarstern cruise ARK-XX (high Arctic , 4-10 pg L\(^{-1}\)),\(^{21}\) results for the East Atlantic Ocean (2-9 pg L\(^{-1}\))\(^{14}\) and for the Arctic Ocean (7 pg
It was mentioned by Lohmann et al.21 that $[\text{HCB}]_{\text{diss}}$ was negatively correlated with water temperature (T_w): $[\text{HCB}]_{\text{diss}} = 6.4 - 0.57 \times T_w$. Considering the higher averaged temperature from the NABE study (10 °C), $[\text{HCB}]_{\text{diss}}$ was close to the other reported values after temperature corrections.

There were no HCHs detected, possibly due to the less hydrophobic nature of HCHs which reduced their uptake by PEs. $p,p'-\text{DDE}$ and $p,p'-\text{DDD}$ are two breakdown products of $p,p'-\text{DDT}$. Their concentrations were around 0.1-0.4 pg L-1, which were also close to previous studies.20,21 $p,p'-\text{DDT}$ concentration was lower than $p,p'-\text{DDE}$ and $p,p'-\text{DDD}$, indicating that there is no new source of $p,p'-\text{DDT}$ to the central Arctic Basin.

The only PBDEs detected were BDE-99 and BDE-100. Surface seawater concentrations in the dissolved phase were 0.4 pg L-1 and 0.025 pg L-1, respectively. Concentrations were similar to those observed in the Asian Arctic by Möller et al.23 While BDE-47 was one of the dominant PBDEs in the other studies, it was not detected in Fram Strait (this study).

$\sum\text{PAHs}$ was 148 pg L-1, higher than (16-65 pg L-1) by Schulz-Bull et al.24 PAH compounds detected tend to vary among studies conducted at different regions. Among all the PAHs, fluoranthene was the one more consistently detected. Concentration of fluoranthene at 213 m (94 pg L-1) in this study fell in the range of other studies2,21 in the same region.

In summary, the concentrations of various POPs near the surface of the tropical and northern Atlantic were in agreement with previous measurements reported for the remote Atlantic. Comparisons (sampling year, sampling location, etc) are summarized in Table S13. Overall, the comparison validates the use of PE samplers and the derived concentrations.
A detailed discussion on the certainty of estimated concentrations can be found in the Supporting Information.

Latitudinal fractionation

Next, we investigated whether there are large scale trends in PCB profiles reflecting global processes. As our sampling sites are not directly linked by one major current, any differences in PCB profiles should mainly stem from atmospheric deposition to the surface ocean. As discussed in the methods, linear regression was used to investigate whether there was a trend of the ratio of the compounds detected at the two sites and their physico-chemical properties. Results are given in Figure 2. The overall correlation was not strong \(R^2 = 0.25 \), \(p \)-value = 0.25), due to an outlier (PCB-28). An outlier was defined as a value outside of 1.5 times of interquartile distance (IQD = Q3-Q1) subtracted from or added to the first quartile (Q1) and the third quartile (Q3). \(^{25}\) A significant higher concentration of PCB-28 in the north could be resulted from an unknown emission source near the sampling area. After removing PCB-28, the correlation between north-south ratio of POP concentrations and log \(P_L \) was much improved \((R^2 = 0.95) \) and became significant \((p\)-value = 0.001). The results imply that higher mobility compounds (higher log \(P_L \)) display a relatively greater abundance up north than compounds with lower mobility. This supports the ideas formulated in the cold condensation theory, driven by large-scale atmospheric transport. \(^{26}\) Our results agreed with an increasing trend of concentration ratios of PCBs \((88^\circ \text{ N} : 62^\circ \text{ N})\) along with log vapor pressure observed by Sobek and Gustafsson. \(^{27}\) We note, however, that the two samples we used for the comparison were not real surface samples, especially for North Atlantic site.
Figure 2. Ratio of the concentration at 79° N and 24° N for PCBs detected at the depth nearest to the surface at both sites, as a function of log sub-cooled liquid vapor pressure (Pa) at 25°C (Table S2). (Grey: all detected PCBs; Black: PCB-28 removed)

Depth profile - comparison with the other deep ocean POP measurements

Depth profiles were plotted as in Figure 3 (values are given in Table S12). Comparisons were made with the other two studies: Booij et al.² and Schulz-Bull et al.²⁴. Good agreement was achieved between the three studies. In the tropical Atlantic Ocean, most dissolved PCBs were detected at ~100 fg/L level with a few major PCBs (e.g. PCB-101, 118, 153, 138) detected at concentrations larger than 1,000 fg/L, HCB at around 6,000 fg/L and PAHs within 1-200 fg/L. In the North Atlantic Ocean, PCBs were at ~100 fg/L, HCB at ~10,000 fg/L in the upper water column and PAHs within 1-100 pg/L (North Atlantic). Details are given in Table S14.

Depth profile - Tropical Atlantic site
Depth profile shapes

PCBs, OCPs and PAHs congeners displayed similar depth profiles; mostly with a maximum at 800 m. Vertical profiles for PBDE are significantly different from the other compounds. All BDEs congeners exhibited a drastic decline in truly dissolved concentrations below ~250 m. Little BDEs were detected at depth, possibly linked to the fact that production of BDEs peaked 20~30 years later than those for PCBs and OCPs. Thus, PCBs and OCPs had more time to penetrate the deeper layers of the oceans, while PBDEs have only touched the surface ocean.

Explanations for depth profile

No measurements were done above 1400 m at the Canary Basin site of Booij et al. and due to the similar concentrations found near the surface at other locations in the Atlantic, the authors concluded that no large concentration gradients existed in the upper 1400 m at Canary Basin. However, in the present study, a concentration maximum existed at 800 m which was significantly different from the other depths. We note that neither study was able to fully resolve depth profiles satisfactorily as only a few samplers were deployed, potentially missing important vertical features in POPs concentration. In the present study, sampling depths were restricted to specific coupling points in the mooring line, thus we were not able to add more in addition to the present stations.

Two reasons were investigated to explain the shapes of the PCBs, OCPs and PAHs depth profiles: i) Particle binding/sinking; and ii) Water current transport. Chemicals with higher K_{ow} (partitioning coefficient between octanol and water) tend to bind to particles more strongly. With particles sinking and getting remineralized in the deep ocean, POPs are
released back into the water. PCBs, for instances, have different levels of chlorination and those with high chlorination degrees have higher tendency to bind to particles. The composition from different PCBs chlorination groups were plotted in Figure S3. There is an increase of di- and tri-PCBs with depth, particularly at 800 m and below. No trend of increasing contribution from higher chlorinated-PCBs can be seen, suggesting that particle binding/sinking processes did not dominate the 800 m maximum in PCB concentrations. We note that greatest concentrations of hexa- and hepta-chlorinated congeners were found in the surface samples of the tropical Atlantic, not at depth. Once exported from the surface Ocean, photodegradation will not affect PCBs any longer. There is little evidence that biodegradation has affected PCBs, in light of concentrations profiles with depth that are not decreasing. Booij et al. also pointed out that particle-associated transport is insignificant in transferring contaminants to the deep ocean. The existence of Mediterranean water has been observed in East Atlantic. Mediterranean water sinks and mixes with Eastern Atlantic water after it flows out of the Strait of Gibraltar, reaches equilibrium around 1000 m in depth and spreads across the North Atlantic. So-called ‘Meddies’ are anticyclonic rings that were formed after Mediterranean water flows out of the Strait of Gibraltar. They are 100 km in diameter and 800 m in thickness and could last as long as two or more years. It was estimated that some 25% of the Mediterranean outflow originates in Meddies and this makes Meddies one tool to trace Mediterranean water. Meddies are normally associated with temperature and salinity anomalies, resulting from the warmer, saltier and younger feature of Mediterranean water. Figure S5 is the vertical section along East Atlantic. There is anomaly at 24.58°N, 800 m in depth in all vertical profiles in Figure S5. Temperature, salinity and CFC-11 data
indicated a ring of warmer, saltier and younger water mass than surroundings. Although our sampling location was not exactly the same as where the anomaly occurred, considering the size of Meddies and the close proximity of these two locations, intruding from Mediterranean water cannot be ruled out. Another evidence towards the influence of Mediterranean water on the sampler at 800 m in depth is the comparison to reported POPs in the Mediterranean water. From the study conducted in 2006-2007, concentrations in seawater were reported as $\sum_{41} \text{PCBs} 2-84 \text{ pg L}^{-1}$ and HCB up to 1.7 pg L$^{-1}$ in the Mediterranean Sea and Black Sea. The importance of penta- and hexa-chlorinated biphenyls were in agreement with tropical Atlantic samples reported here. Reported concentration of HCB in coastal water of Alexandria, Egypt were much higher (surface water: 27 pg L$^{-1}$).

The implication from our results is that the upper 1800 m of the water column was not well mixed with respect to POPs concentrations, and there were multiple water layers which potentially had different water mass origins, possibly affecting POPs concentrations and profiles.
Figure 3. Depth profiles of POPs (PCBs, OCPs, PBDEs and PAHs) in the tropical Atlantic. Lines are for connecting points only and do not represent any measurements.

Depth profile - North Atlantic site

Depth Profile Shapes

Depth profiles were plotted as in Figure 4 (values are given in Table S12). Most compounds showed similar depth profiles, such as PCBs, HCB and BDE 99. They exhibited a general decrease trend towards the deep and some maximum concentration appearing at 500 m in depth. Decreasing profiles of PCBs\(^3,24\) and PAHs\(^24\) were observed in the 1990s in North Atlantic, while a nutrient-like profile was shown recently addressing the importance of advective flow-off from the continental shelf.\(^4\) The distribution pattern observed in this study neither follows a decreasing nor an increasing trend. Different distribution patterns observed for the other compounds can be partly explained by their separate degradation processes and emission pathways.

Explanations for depth profile
Similar to the discussion above, particle binding and sinking origination was tested by PCBs chlorination composition plotted in Figure S3. Compared to the results from the tropical Atlantic site, smaller degrees of chlorination tend to yield larger contribution of the ∑PCBs in the North Atlantic, which means the contribution from each group has the order of tri- > tetra- > penta- > hexa-. This composition pattern of chlorinated groups are in line with other studies. No significant fraction of higher chlorinated PCBs was observed along depth, indicating that particle sinking was not a major contributor to the PCBs in depth in North Atlantic either.

The Fram Strait is the pathway for water exchange between the North Atlantic and the Arctic Basin. Warm and saline Atlantic water flows into the Arctic Ocean at the eastern side of Fram Strait; cold Arctic water flows out of the Arctic Mediterranean in the western Fram Strait. Different branches of the Norwegian Atlantic Current (NwAC) converge and form the West Spitsbergen Current (WSC). A significant part does not enter the Arctic Ocean, mixes with the outflowing Arctic water and recirculates into the Nordic Seas. The deep mooring site in this study was influenced by these recirculation water masses. From 1997 onwards, a deep oceanographic mooring array at 78°50′N as well as three individual moorings at the LTER (Long-Term Ecological Research) observatory HAUSGARTEN were maintained in the Fram Strait. From the mooring data, it was noticed that deep water (~ 2500 m deep) in the plateau area near the Fram Strait Sill (~ 0° E) reflects mixing properties from two end members: the Greenland Sea Deep Water (GSDW) and the Eurasian Basin Deep Water (EBDW); at mooring site HG-IV (central HAUSGARTEN site), the water near bottom is almost purely EBDW. The mean flow at HG-IV is locally topographically steered but does not achieve the cross sill advection. Unlike the Tropical
Atlantic sampling site, it is hard to derive the water mass origins for certain depths at the North Atlantic sampling site due to the complexity and vigorousness in the water mixing processes.

Figure 4. Depth profiles of POPs (PCBs, OCPs, PBDEs and PAHs) in the North Atlantic. Lines are for connecting points only and do not represent any measurements.

CFCs ventilation ages and plots against PCBs profiles

Tropical Atlantic
There was no available SF\textsubscript{6} data for tropical Atlantic close to our deployment period; CFC-12 data were used instead to assess water mass origin and age. CFC-12 derived ventilation age was plotted against the \sumPCBs in Figure S4. Detailed information for ventilation age calculation was given in Table S15. The three sites chosen from CCHDO for the tropical Atlantic gave close CFC-12 data throughout the water column, indicating little variance of water composition around (24° N, 38° E). Ventilation age was then derived by averaging out the available ventilation age from SITE1 to SITE 3 (Table S15).

The concentration maximum of \sumPCBs had a ventilation age of around 40 years, coinciding with the peak in PCBs emission in the 1970s.36 However, some other depths that were not sampled may exhibit larger \sumPCBs than 800 m. It is also unknown whether there is a lag in the response time of oceanic POPs to global emission, and how long it might be. As discussed previously, the peak in PCB concentrations at 800 m could also be due to Mediterranean water masses. Therefore, we conclude here that \sumPCBs detected at the tropical Atlantic site generally followed the emission history of PCBs; yet it is unclear whether the 800 m maximum reflected the 1970s PCBs emission peak.

North Atlantic

SF\textsubscript{6} data was used for deriving the ventilation age of water masses in the North Atlantic. Large variations occurred between different sites chosen for the SF\textsubscript{6} data, most probably resulting from the complexity in bathymetric and water current conditions in this area. The closest sampling SF\textsubscript{6} location to our PE sampling site which also covers the whole PE sampling depths was included in Table S15. Figure S4 indicated a maximum in \sumPCBs at a ventilation age of \sim10-20 years, younger than the maximum at tropical Atlantic site.
Again, due to the limited data points, it is hard to accurately determine where the \sumPCBs maximum would occur. The overall distribution pattern of \sumPCBs with ventilation age still followed the global emission pattern, with one peak in the middle and decrease on both sides. The shift in the concentration peak of ~20 years could be an oceanic POPs response time lag not captured by the tropical Atlantic site measurement.

Mass balance implications for POPs in the Ocean

We selected HCB for calculating mass balance in the Atlantic Ocean because the vertical profiles reported here show no significant difference in absolute concentrations across the Atlantic Ocean and the trend is similar. However, for PCBs, OCPs (other than HCB), PBDEs and PAHs either the concentration or the trend lacks consistency between the two sampling sites.

For HCBs, we assumed a uniform spatial distribution across the Atlantic Ocean. Pilson37 estimated the whole surface area of Atlantic as 8.65×10^7 km2 with average depth of 3,700 m. The upper ocean (0-1,200 m) is loaded with HCB at a concentration of 9.6 ± 3.5 pg L$^{-1}$ (mean ± standard deviation), while the deep ocean (1,200-3,700 m) has a concentration of 4.4 ± 1.6 pg L$^{-1}$, based on the results of this work. The total amount of HCB residing in the Atlantic Ocean is $1,947 \pm 709$ t; it accounted for $45 \pm 16\%$ of the total HCB stored in the ocean if using the estimation from Barber et al (4,300 t).38 The total global production of HCB was estimated as $>100,000$ t.39 The contemporary environmental burden of HCB was calculated as 10,000-26,000 t.38 Hence, the Atlantic Ocean stores less than 2.6 % of HCB ever produced, but contains 4.8-26 % of the global HCB environmental burdens.
IMPLICATION

The current study confirmed that it is possible to deploy passive samplers to determine vertical POPs gradients in the Oceans. Yet deployment times of around 1 year were insufficient for most POPs to reach equilibrium in 800 and 1,600 um thick sheets. The slow equilibration was in part due to the need to use deployment cages to guarantee safe deployment and retrieval of passive samplers. We were able to constrain sampling rates by combining results from different thicknesses, PRC-laden sheets and modeling. Future deployments would benefit from more PRC-impregnated samplers to derive in situ sampling rates.

Results from this study supported previous work in highlighting the important role of deep ocean as a compartment storing POPs. The presence of numerous POPs in deeper water suggests that the deep ocean carries a significant mass already, particularly of the legacy POPs. An intriguing observation from the two sites considered here is that lateral water mass transport might be more important than vertical POP transport on settling particles. As an example, PBDEs had penetrated the deep water masses of the Atlantic Ocean to a much smaller degree than the legacy PCBs and OCPs. Clearly, additional work, ideally both at numerous sites and with greater vertical resolution could help constrain the importance of water mass versus particle-bound transport of POPs to depth.

ASSOCIATED CONTENT

Supporting Information
Additional details related to the physicochemical constants, sampling setup, instrumental analysis, quality control and CFC information are available. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: lohmann@gso.uri.edu; Tel 401-874-6612; fax 401-874-6811

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge funding from the National Science Foundation (ARC 1203486) to study the transport of POPs into the Arctic Ocean. We thank J. Thomas Farrar (WHOI) for sampler deployment and current data at the tropical Atlantic site, Brice Loose (URI) for assistance with CFC data, and the ship’s crew and of Normen Lochthofen for the deployment and recovery of the mooring in Fram Strait during R/V Polarstern cruise ARK-XXVII/2. This is publication e39092 of the Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Germany.
474 REFERENCES

