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Abstract: For a user-centered deployment of electric vehicle supply equipment (EVSE) infrastructure,
it is vital to understand electric vehicle user charging behavior. This study identifies user behavioral
patterns by analyzing data from more than 7000 charging stations in Canada, comparing residential vs.
public Level 2, and public direct current fast (DCFC) vs. public Level 2 charging. A novel algorithm,
CHAODA, was applied to identify differences between DCFC and other Level 2 charging options.
Through a multivariate and holistic methodology, various patterns emerge, identifying differences
in the utilization and seasonality of different EVSE types. The study provides evidence of an “EV
Duck Curve” that amplifies the baseline of the power production “Duck Curve,” confirming future
challenges for grid stability. Implementations of this study can support future EVSE infrastructure
planning efforts and help improve the overall service of electric vehicle supply equipment and
grid stability.

Keywords: electric vehicle; charging behavior; residential; public; DC fast; level 2; charging demand

1. Introduction

Over the past decade, efforts have intensified worldwide to electrify the transportation
sector and reduce emissions. All over the world, programs and incentives have been
introduced to increase electric vehicle (EV) adoption and EV charging station deployment,
going as far as future bans on conventional vehicle sales [1]. For example, Canada is only
allowing the sales of zero-emission vehicles (ZEVs), including battery electric vehicles
(BEVs), plug-in hybrid electric vehicles, and fuel cell electric vehicles by 2035 as part of the
Incentives for Zero-Emission Vehicles Program [2,3]. Similarly, the California Air Resource
Board implemented its Zero-Emission Vehicle Program, obligating certain manufacturers
to meet ZEV sales targets incrementally in the future [4]. The Zero-Emission Vehicle
Program has since been adopted by nine other states and the Canadian provinces of Quebec
and British Columbia [4–6]. To satisfy the charging demand for a growing number of
EVs, policies such as the Zero Emission Vehicle Infrastructure Program incentivize the
deployment of charging stations [7]. As a consequence of these programs, EV sales have
grown significantly, requiring the intensified and ubiquitous deployment of electric vehicle
supply equipment (EVSE) [8,9]. To meet EVSE infrastructure goals, most chargers are yet
to be deployed in several countries [10]. However, EVSE allocation itself can function as
a stimulus for EV adoption [11–15], creating a reinforcing loop that naturally fuels the
demand for electricity needed to recharge these vehicles.

While a thorough understanding of EV user behavior is important for an optimal
placement of EVSE infrastructure, Faria et al. [16] emphasized the importance of seasonality
for EV life cycle emission assessments. More specifically, the underlying electricity mix
used to charge EVs is a key aspect of EV lifecycle emission assessment [16,17]. While
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lifecycle emissions are not the focus of this paper, charging habits regarding time and
location should be carefully understood to derive conclusions about the benefits of EVs.

Furthermore, exploring and understanding user behavioral patterns is vital to ensure
grid stability. The additional electricity demand during peak times through widespread
EV adoption may produce excessive loads and cause damage to transformers [18–21].
Risks for the grid may be further amplified by direct current fast charging (DCFC), which
multiplies the grid’s peak load during peak charging times [22–26]. Nevertheless, DCFC
has become more prevalent in recent years due to its faster charging times [27,28], which
is particularly convenient for long-distance travel [10,29]. A detailed review of charging
systems and plug types can be found in [26,30]. Global DCFC deployment growth rates
have surpassed standard chargers in recent years despite their relatively high installation
and electricity costs [9,31]. While the severity varies based on charger type and time of
use, EVSE utilization plays a significant role in future grid stability. Constrained charging
and load management are broadly mentioned as a solution to prevent grid instability and
damage through EV charging demands [21–23,32,33] and require an understanding of EV
user charging behavior and its main drivers.

Therefore, this study aims to contribute to the literature by applying a holistic approach
to exploring and understanding EV user charging behavior in Canada. Charging session
data from residential and public EVSE in Quebec and British Columbia were analyzed.
The analysis included the application of a computational group of algorithms named
clustered hierarchical anomaly and outlier detection algorithms (CHAODA) and advanced
statistical methods to identify charging behavior in terms of energy demand, time of
charging, duration of charging, and station utilization. Potential differences in charging
habits between public and private charging and between public DCFC and public Level
2 charging will be identified. Findings are expected to support policymakers, electric
utilities, and infrastructure planners in improving their user-centered EVSE infrastructure
deployment strategies to ensure grid stability, energy efficiency, and high utilization.

2. Literature Review

Several studies have examined EV user charging behavior in the past decade, varying
in focus, approach, and data source. Early research on early adopter charging behavior has
mainly focused on residential charging behavior [34–36]. Quirós-Tortós et al. investigated
residential charging behavior in the UK, finding that 70% of users are connected once a
day, regardless of the day of the week [34]. Franke and Krems studied charging behavior
using driving surveys from 79 participants over six months [35]. With 80% of all charging
events being conducted at residential locations, the results of this early study reveal little
about behavioral patterns at public EVSE [35]. Similarly, Smart and Schey analyzed driving
data to analyze charging events undertaken in predominantly residential settings [36]. The
results included findings on the starting state of charge (SOC) and the frequency of charging
on a vehicle level [36]. Present and future widespread adoption of EVs requires intensified
investments in public EVSE infrastructure, making a detailed understanding of public
EVSE utilization critical for future planning and allocation efforts. More recent studies have,
therefore, examined charging behavior under higher adoption levels, including public and
work charging.

While recent research efforts have shifted to including public charging behavior, stud-
ies often lack a holistic approach in analyzing contemporary charging behavior, including
public and residential charging. For example, Flammini et al. analyzed data collected at
1750 public charging stations between 2012 and 2016 in the Netherlands [37]. Similarly,
Gellrich et al. investigated charging events from public EVSE units in Switzerland [38].
The authors state that the utilization of public chargers is concentrated on workdays and
normal work hours, depending on the location. Both studies lack consideration of DCFC,
which is crucial with further and accelerated demand for this charging infrastructure.

Yang et al. [39] aimed to model DCFC demand based on more than 2000 charging
events from 130 private BEVs in Beijing, China, collected over seven months. Starting SOC,
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driving behavior, weather, and previous user habits were identified as the main factors
impacting charging behavior [39]. However, differences in station utilization between Level
2 and public DCFC have been shown, making a differentiation essential [40,41].

Morrissey et al. provided evidence that charging behavior between standard (in-
cluding Level 1 and Level 2) and fast charging can differ considerably, applying various
methods to explore charging behavior in Ireland [40]. While more than 40,000 charging
events at Level 2 and DCFC public and residential charging stations were analyzed, results
come from the early phases of EV adoption. Updated insights on public EVSE utilization
were performed by Borlaug et al., who studied the United States nationwide public Level 2
and DCFC stations [41]. The authors state that the sensitivity of station utilization is signifi-
cantly different between Level 2 and DCFC. While venue type was not significant for station
utilization, Borlaug et al. found that EV adoption rates greatly affect the utilization of both
types of chargers, amplifying the importance of updated and repeated station utilization
analyses [41]. Another study by Lee et al. [42] used a survey of California EV owners to
identify different socio-economic factors related to EV charging behavior. According to
their results, vehicle characteristics, commute behavior, and the availability of workplace
charging play an important role in the consumer choice of charging locations.

As shown above, studies exploring charging behavior were primarily conducted in
the early phases of EV adoption [34–36,40] or do not focus on actual EV charging behavior
alone [35,36,38,39]. With increased adoption and station deployment, charging behavior
and station utilization are subject to change, making recurring analyses crucial to ensure
user-centered infrastructure planning [41]. Gnann et al. summarized that current research
on EV user behavior still lacks the necessary empirical data to fully understand DCFC
behavioral patterns and their impacting factors [38].

This paper aims to contribute to the literature by empirically analyzing current public
and residential EVSE data across Canada. The following research questions are explored:
(1) How does residential charging behavior differ from public charging behavior? (2) Do
users use DCFC differently compared to Level 2 charging? (3) Does charging behavior
follow a seasonal pattern?

3. Materials and Methods

The goal of this study was to develop a holistic understanding of EV user charging
behavior with regard to utilization, charging times, and seasonality. Charging-session-
specific data collected at residential and public charging points in British Columbia and
Quebec, Canada, were analyzed. For this study, only Level 2 charging sessions were
compared to understand the differences in charging behavior between functional locations,
as they are both used residentially and publicly. Similarly, only data from public Level 2
and public DCFC stations were compared to explore differences in behavior by type of
charger. For the comparison of charging types, public DCFC and public Level 2 could be
considered because there are currently no DCFC stations in residential locations.

For the purpose of this study, the user behavior at charging stations was investigated
based on a consideration of charging time, energy consumption, charging duration, and
total duration. This study aims to provide detailed insights on user behavior at EV charging
stations that can be used by policymakers, electric utilities, and station network providers
to improve the overall service of the infrastructure.

3.1. Data

The data utilized in this study include session-specific information for every charge
conducted at FLO smart chargers in Quebec and British Columbia, Canada, in partnership
with FLO Services USA, Inc. Smart chargers can store and transfer data when connected to
the internet. This enables the analysis of session-specific data from the considered stations
shared for this study which were collected between 2018 and 2019. The data did not include
any sensitive information about the users or their vehicles. Sessions were categorized
by the functional location (i.e., residential chargers, public chargers). Public chargers are
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chargers that are generally available to the public. However, the activity related to the
use of these stations remains unknown. For example, public chargers could be used as
workplace chargers if they are located close to office buildings or similar. The data did not
allow for further differentiation of public charging events (e.g., charging while at work,
charging during recreation). For every charging event at Level 2 chargers, the following
information was available per charging session: charging station identifier, session start
time, session end time, charging duration (minutes), total plug-in time (minutes), and
energy consumption (kilowatt-hours). The total duration of charging events conducted at
DCFC stations was not recorded and, thus, not included in the analysis. Instead, DCFC
charging sessions exclusively contained information about the SOC of the vehicle before
and after charging. The charging frequency for every station was calculated by dividing
the total number of charges by the number of days between the first and last reported use
conducted at the station.

The raw data included 2,298,801 charging sessions from 7873 distinct charging stations.
Data cleaning was undertaken to remove erroneous entries in the data set. These entries
included sessions with an energy consumption of 0 kWh or greater than 100 kWh, sessions
with a start date later than the end date, and sessions with a charging duration of more
than 24 h. The maximum upper bound of 100 kWh for the energy consumption was
determined based on the largest battery capacity available in EVs at the time. Following
cleaning procedures described in the literature, Level 2 charging sessions with a charging
duration of less than one minute [40] and DCFC sessions with a charging duration of fewer
than three minutes were removed from the data. After cleaning the data, 2,012,248 data
points from 6694 different EVSEs remained for analysis. Table 1 summarizes the data by
their functional location (i.e., residential vs. public) and the EVSE type (i.e., Level 2 vs.
DCFC). Of all the public chargers, 42 DCFC and 657 Level 2 stations were located in British
Columbia. Consequently, 3321 Level 2 and 17 DCFC public charging locations were in
Quebec. Due to a lack of GPS location, a differentiation of residential chargers by province
was not possible.

Table 1. Overview of Charging Session Data by Location and Type of Charger.

Functional Location Charger Type Number of Chargers Number of Sessions

Residential Level 2 2657 675,560

Public
Level 2 3978 1,285,610
DCFC 59 51,078

3.2. Methodology

Various analyses were utilized to understand differences in charging behavior based
on functional location and type of EVSE. First, a novel algorithm, CHAODA, was applied
to identify the possible differences between the functional location and the EVSE type data
when considering energy consumption, charging duration, and total duration. Then, tests
comparing means between the functional locations and the EVSE types were performed
based on key utilization variables. Lastly, the differences in start and end times and patterns
in station occupancy, trends, and seasonality were also explored. The holistic methodology
of applying these multi-methods in series is novel, and advances how such multifaceted
data should be approached in the future.

3.2.1. Clustered Hierarchical Anomaly and Outlier Detection Algorithms

The first part of the analysis utilizes the Clustered Hierarchical Anomaly and Out-
lier Detection Algorithms (CHAODA). CHAODA is based on Clustered Hierarchical
Entropy-Scaling Search (CHESS) [43] and Clustered Learning of Approximate Manifolds
(CLAM) [44]. CLAM maps a manifold in a Banach space defined by an underlying distance
metric and clusters to a depth at which every datum is assigned to one cluster [44]. This
approach induces a tree from the cluster graph through decision functions learned from



Energies 2023, 16, 1592 5 of 19

training data sets. Every datum in the data set is represented by one vertex in the graph.
By applying an ensemble of six algorithms (i.e., relative cluster cardinality, relative compo-
nent cardinality, graph neighborhood, child-parent cardinality, random walks, stationary
probabilities) on the graph to calculate anomalousness scores for every datum in the data,
CHAODA is built on the base of CLAM [44]. While the scores of each algorithm can form a
wide range of values, a lower score generally represents lower anomalousness. The final
score for each datum can be derived by computing the gaussian-normalized mean of the
six scores. CHAODA was selected as the preferred algorithm because it has outperformed
18 existing approaches in 16 out of 18 datasets [45].

The distribution of CHAODA results may differ with the respective subset of data
as specific subsets could be concentrated within a certain range of scores. While analyz-
ing large multivariate data sets often requires multi-method approaches, CHAODA can
efficiently explore anomalousness in multidimensional data sets. The variables inserted
into CHAODA (i.e., energy consumption, charging duration, and total duration) were
normalized before calculating the anomalousness score. With CHAODA, it is possible to
identify general differences between data subsets as an initial step of the holistic approach
underlying this study. CHAODA was applied to identify differences between public and
residential chargers as well as differences between Level 2 and DCFC chargers.

3.2.2. Comparison of Station Utilization between Different Cases

After the application of CHAODA, descriptive statistics for different considered
variables (i.e., energy consumption, charging duration, total session duration, parking time,
and charging frequency) for each of the specific subsets (i.e., residential chargers, public
Level 2 chargers, and public DCFC chargers) were calculated. Total charging time and
parking time were not available for DCFC sessions; therefore, the comparison between Level
2 and DCFC charging behavior was limited to energy consumption, charging duration, and
charging frequency. Potential differences in charging behavior between functional locations
and charger types were explored statistically using Mann-Whitney U tests as a standard
comparison technique for non-parametric data. The null hypothesis was tested using a
significance level of α = 0.05 for all considered variables.

In addition, potential differences in patterns of charging behavior with respect to
time of day and day of the week were explored. Density plots were provided for session
start and end times in 30-min intervals. Chi-square tests were conducted at a α = 0.05
significance level to determine whether there were statistical differences in start times and
end times. Following the same procedure, potential differences in the day of the week the
sessions were initiated were investigated.

While charging start and end times can represent temporal charging behavior, they lack
a representation of the likelihood that a charging station is occupied in a given time period.
Therefore, for every 30-min time interval in a day, it was tallied how often each charging
station was occupied. Probability density plots displaying the occupation throughout the
day were explored, and Chi-square tests were conducted to identify differences between
the subsets at a significance level of α = 0.05.

Finally, charging behavior at the various functional areas and EVSE station types was
investigated for trends and seasonality. Time series were computed by day and month
for session counts, average energy consumption, average charging duration, and average
frequency. Dickey-Fuller tests for stationarity were conducted to determine trends of
charging behavior in the time series data at a significance level of α = 0.05. Temporal
autocorrelation tests were then carried out for all variables and subsets in the time series
data by day with a time lag of 1–7 for days and 1–12 for months to explore patterns
throughout the week and year.

4. Results

First, the results of CHAODA are described to identify differences in charging behavior
at stations based on anomalousness scores computed for every session. Second, results of
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comparing charging behavior between residential and public Level 2 chargers are presented.
To this end, summary statistics for key utilization variables, comparison of means, temporal
charging behavior results, and trend analyses are described. Finally, the comparison results
between public Level 2 and public DCFC stations are outlined and summarized.

4.1. CHAODA

The results of CHAODA computed with the underlying normalized variables (i.e., energy
consumption, charging duration, and total duration) are displayed as kernel density plots
in Figure 1. For residential Level 2 and public Level 2, most charging events within these
subsets resulted in anomalousness scores between 0.35 and 0.45 (Figure 1a); thus, there
are no apparent differences in the concentration of anomalousness scores. Public Level
2 and public DCFC indicate differences in the score density, as shown in Figure 1b. The
highest density of DCFC sessions resulted in scores between 0.44 and 0.47, with a small
number of sessions ranging between 0.56 and 0.58, indicating high anomalousness. Equal
anomalousness scores for Level 2 and DCFC are found between 0.35 and 0.45 for a limited
number of charging sessions.
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4.2. Differences in Charging Behavior between Residential and Public Level 2 Charging Stations

For a general understanding of charging station utilization between functional areas,
descriptive statistics of key utilization variables for residential and public Level 2 chargers
are summarized in Table 2. The mean energy consumption at public Level 2 charging
stations is 8.83 kWh (SD = 8.04), with a median total session duration of approximately
three hours. Residential sessions have an average energy consumption of more than 12 kWh
(SD = 10.28) and a median plug-in duration of almost 10.5 h. On average, a vehicle remains
plugged in for an additional eight hours (SD = 12.05 h) after the charging has ended at
residential chargers. The average parking time at public stations is 5.15 h (SD = 20.36 h).
Results of the Mann-Whitney U test demonstrated differences between residential and
public Level 2 charging across all utilization variables (p < 0.001), with the statistically
greater charging session distribution from residential stations (p < 0.001).

Figure 2a displays the density of charging starts and ends over 30-min intervals for
residential and public Level 2 charging events. The highest density of start times for public
events is between 7:30 a.m. and 8:30 a.m. A second local peak is between 12 p.m. and
1:30 p.m., before dropping slowly towards the end of the day. Charging events at residential
chargers are typically initiated later in the day, with a peak between 5 p.m. and 6 p.m.



Energies 2023, 16, 1592 7 of 19

Table 2. Summary statistics of utilization variables for residential and public Level 2 charging stations.

Subset n M SD Min. Q25 Median Q75 Max

Energy Consumption (kWh)

Residential 675,560 12.06 10.28 0 4.77 9.12 16.37 99.51
Public 1,285,610 8.83 8.04 0 3.54 6.66 11.74 99.67

Charging Duration (minutes)

Residential 675,560 156.61 115.64 1 72.98 132.33 213.33 1431.72
Public 1,285,610 144.56 119.03 1 61.23 121.23 196.68 1439.82

Total Duration (minutes)

Residential 675,560 642.04 749.11 1.05 167.92 627.16 855.52 65,535.00
Public 1,285,610 454 1277.07 1 75.13 179.07 410.27 67,047.37

Parking Duration (minutes)

Residential 675,560 485.43 722.81 0 37.45 417.85 681.58 65,515.62
Public 1,285,610 309.45 1244.34 0 0.18 5.83 179.1 66,023.95

Charging Frequency (Number of Charges Per Day)

Residential 2657 0.73 0.43 0.01 0.42 0.67 0.96 3.3
Public 3975 0.63 0.81 0 0.2 0.4 0.72 10.1
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(b) session ends.

The distribution of charging ends over time of the day is displayed in Figure 2b. Most
residential events end in the morning between 7:30 a.m. and 8 a.m. Contrarily, two peaks
of charging ends are observed at public stations, one between 12 p.m. and 12:30 p.m. and
one between 4 p.m. and approximately 5 p.m. before dropping sharply. Chi-square test
results show a significant relationship between session start time and the functional location
(p < 0.001), with the highest contribution for the three time intervals before, at, and after
9 p.m. Additionally, Chi-square test results for the end time interval and functional location
confirmed a statistically significant relationship (p < 0.001), with the highest contribution
found for the three intervals before, at, and after 7:30 a.m.

The density plot of station occupation over 30-min time intervals for residential and
public Level 2 charging events is depicted in Figure 3. Residential charging stations are
most likely in use between the evening, around 5 p.m., and the morning hours, around
8 a.m., before the occupation likelihood drops. Public charging stations are most likely used
between approximately 8 a.m. and 4:30 p.m. The Chi-square test confirmed a significant
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relationship between the time slot and the functional location of the stations (p < 0.001),
with the highest contribution found at 2 p.m. and midnight.
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Figure 3. Distribution of public and residential charging station occupation over 30-min time slots.

Figure 4 displays the density of charging starts over the day of the week for residential
and public Level 2 chargers. In both areas, charging sessions happen more often between
Monday and Friday than on weekends. However, session counts drop on Saturday and
Sunday at public charging stations. At residential chargers, the difference in event counts
between weekends and weekdays is marginal. A Chi-square test was conducted for a
relationship between the day of charging and the functional location, and a statistically
significant relationship was found between the two variables (p < 0.001). The highest
contribution was found for Sunday, followed by Saturday.
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Trend and seasonality analysis were conducted for Level 2 charging session data from
both functional locations. In addition, time series data of all variable means by day and
month were created from the charging data of both subsets. The Dickey-Fuller test showed
that no utilization variables at public charging stations were stationary. Instead, a positive
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public Level 2 behavior trend was found (p > 0.05). More specifically, the test revealed
that average consumption, average charging duration, average total duration, and average
frequency increase over time on a daily and monthly basis. The daily and monthly charging
behavioral trend at residential charging stations was also not found to be stationary, as
the results of the Dickey-Fuller test indicated (p > 0.05). Contrarily, the monthly average
duration of residential charging sessions was found to be stationary (p = 0.01).

In a final step, both residential and public time series data were examined for temporal
autocorrelation. Temporal autocorrelation was computed for time lags between one and
twelve for time series data by month and one to seven for time series data by day. The time
lag with the highest autocorrelation varied by the considered variable. For public charging
data, session counts (0.98), average energy consumption (0.94), and average charging
duration (0.90) showed the highest correlation for a 12-month time lag. However, the mean
frequency of public chargers had the highest correlation for the previous month (0.72). This
shows that, with the exception of charging frequency, the monthly charging utilization
of public charging stations follows a somewhat seasonal pattern as it had the highest
correlation to the utilization from twelve months prior. Contrarily, across all residential
charging time series variables, the highest temporal autocorrelation was found for a time
lag of one (>0.8), indicating that the utilization is correlated with that of the previous month.

To analyze patterns in behavior throughout the week, autocorrelation was also com-
puted for time series data by day for time lags between one and seven. Public charging
behavior showed the strongest temporal correlation with a time lag of seven, indicating
that the utilization on a given day correlates with that day the previous week. This held
for session counts (0.90), average energy consumption (0.91), average charging duration
(0.90), and average charging frequency (0.87). Residential charging behavior, however,
depends on the specific utilization variable and is either autocorrelated most strongly with
the previous day or the same day a week earlier. For example, session counts (0.98) and
mean duration (0.72) showed the highest autocorrelation value for a time lag of one. On the
other hand, the average daily energy consumption of residential charging sessions showed
the highest autocorrelation at a time lag of seven (0.72). Similarly, the highest yet most
relatively weak autocorrelation was found for charging frequency (0.34) at a time lag of
seven. Figure 5 displays the seasonality of charging demand in terms of session counts for
residential and public chargers as an example. Spikes in demand between November and
December can be observed at both functional locations.
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4.3. Differences in Charging Behavior between Public Level 2 and Public DCFC Stations

After analyzing and comparing charging behavior at residential and public Level 2
chargers, behavioral patterns at public DCFC stations were explored and compared to
public Level 2 charging behavior. Descriptive statistics for the considered and available
utilization variables for DCFC charging station data are summarized in Table 3. The average
energy consumption for DCFC sessions was 12.895 kWh (SD = 9.631). The average energy
consumption at public Level 2 chargers was 8.83 kWh (SD = 8.04). Furthermore, DCFC
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stations were used more frequently, with a median of once a day, than public Level 2
chargers, with a median of 0.4 charges per day. A maximum SOC before charging of 100%
indicated that users plugged in although they had a fully charged battery. On average,
users plugged in their vehicles when the SOC showed 34% and unplugged their vehicles
when their SOC reached approximately 73%. 50% of all DCFC sessions ended with a vehicle
battery SOC of at least 80%.

Table 3. Summary statistics of utilization variables for DCFC stations.

n M SD Min. Q25 Median Q75 Max

Energy Consumption (kWh)

51,078 12.895 9.631 0.099 6.056 10.37 16.674 89.628

Charging Duration (minutes)

51,078 25.749 19.208 3 12.717 20.45 32.167 229.75

SOC Before Charging (%)

51,078 33.969 19.039 0 19 31 47 100

SOC After Charging (%)

51,078 73.379 18.454 0 63 80 86 100

Charging Frequency (Number of Charges Per Day)

59 1.644 2.085 0.008 0.461 1 1.745 9.606

Across all variables that were available for both the public Level 2 charging data and
the public DCFC data (i.e., energy consumption, charging duration, charging frequency),
Mann-Whitney U tests showed that the samples were significantly different (p < 0.001).
More specifically, energy consumption and charging frequency were significantly greater
in the DCFC session data (p < 0.001), while the charging duration was significantly lower
at DCFC stations than at Level 2 stations (p < 0.001).

Figure 6 displays the distribution of SOC before charging and SOC after charging at
DCFC stations. Most charging events start with around 20–35% charge left and end when
the SOC reaches approximately 80%.
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Figure 6. Histogram of DCFC SOC before and after charging.

Figure 7 displays the density of charging session start times and end times in 30-min
intervals for public Level 2 and DCFC sessions. The number of DCFC plug-ins picks
up slowly in the morning and plateaus between noon and 5:00 p.m., before decreasing
steadily toward midnight (Figure 7a). The main difference in session density over start time
intervals between the two subsets can be observed in the morning, where the session starts
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for Level 2 chargers peak between 7:30 and 8:30 a.m. However, the session ends between
the two subsets seem to be more similarly distributed throughout the day, as shown in
Figure 7b. The density of DCFC session ends is similar to that of the DCFC start times,
with a plateau between 12:30 p.m. and approximately 5:30 p.m., whereas two peaks in the
number of Level 2 session ends are apparent, one between 12 p.m. and 12:30 p.m. and one
between 4 p.m. and 5 p.m.
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Figure 7. Distribution of DCFC and Level 2 charging event counts over (a) session starts and
(b) session ends.

It was found that there is a relationship between session start times and public EVSE
type by applying the Chi-square test (p < 0.001). A start time of 8 a.m. was found to
have the highest contribution to the test statistic. Similarly, a significant relationship was
found between session end time intervals and public EVSE type (p < 0.001). The highest
contribution to the test statistic was for the time slot at 10:30 p.m.

Figure 8 depicts the density of charging station occupation for the two types of EVSE.
Fast chargers are most likely in use between noon and approximately 9 p.m. compared to
other times. No statistically significant relationship was found between the 30-min time
slot and the EVSE type for station occupation based on the Chi-square test (p = 0.997).
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The density of sessions categorized by the day of the week for public DCFC and
Level 2 is displayed in Figure 9. The highest density of DCFC sessions was found on
Saturdays, followed by Fridays and Sundays. In other words, a high percentage of DCFC
events are concentrated towards the end of the week. Charging between Monday and
Friday is less popular at DCFC stations than at Level 2 chargers. Conversely, DCFC demand
is high on weekends when Level 2 charging is less popular. The Chi-square test statistic
showed that the relationship between the day of the week and EVSE type is statistically
significant at six degrees of freedom (p < 0.001). Sunday had the highest contribution,
where the lowest density of Level 2 charging can be observed.
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A trend analysis was conducted for DCFC time series data by day and month for
the following variables: session counts, average energy consumption, average charging
duration, and average charging frequency. Similar to public Level 2 data, the Dickey-Fuller
test statistic did not suggest stationarity for any of the variables in the DCFC data over
time by day and month. In other words, on a daily and monthly basis, the utilization of
DCFC utilization seems to follow a positive trend over time in the number of sessions
(autocorrelation for months: p = 0.54, autocorrelation for days: p = 0.53), average energy
consumption, (p = 0.98, p = 0.64), mean charging duration (p = 0.75, p = 0.85), and average
charging frequency (p = 0.25, p = 0.23).

A seasonality analysis using temporal autocorrelation resulted in differences between
public DCFC and Level 2 patterns over time. The DCFC mean duration by month showed
the highest correlation with a time lag of 12 months (0.91), showing the same pattern as
public level 2 charging. Differences in monthly patterns between the two EVSE types were
found for session counts (0.90), mean energy consumption (0.97), and mean frequency
(0.84), where the utilization of two consecutive months correlated the most. This indicates
that the utilization of DCFC stations for these variables can be predicted most accurately
based on the utilization of the previous months. The seasonality of session counts for both
types of EVSE is depicted in Figure 10. When looking at the daily utilization of DCFC, the
autocorrelation of station counts and mean duration showed the highest autocorrelation for
a time lag of seven (0.76 and 0.49, respectively). Hence, a weekly pattern at DCFC stations
was found for these variables. The average frequency of DCFC charges per day showed
the highest temporal correlation to the previous day (0.76).
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5. Discussion

Compared to previous studies on charging behavior in the literature, this study applied
a holistic, multifaceted approach to EV user charging behavior at EVSE in Canada. A novel
algorithm, CHAODA, was introduced to identify behavioral differences between session
samples based on anomalousness scores calculated for each charging session. Furthermore,
detailed comparisons in utilization, temporal behavior, trends, and seasonality between
different functional areas (i.e., residential and public chargers) and types of EVSE (public
DCFC and Level 2 chargers) were assessed. For the first time, charging behavior and
charging station utilization were analyzed in this manner to identify disparities between
subsets based on key utilization variables (i.e., energy consumption, charging duration,
plug-in duration, charging frequency, and SOC).

With respect to Research Question 1, the results revealed that residential charging
sessions were related to longer charging times and higher energy consumption than public
chargers and that vehicles at residential chargers remained plugged in long after active
charging was completed. In combination with findings on charging times at which resi-
dential chargers are mainly used, it can be assumed that the long parking time is due to
overnight charging. Electric vehicle users with access to home charging seem to predomi-
nantly charge their EVs when returning from work in the afternoon and leave their vehicles
plugged in until the following day. This would also explain why the charging frequency
at residential chargers is significantly higher than at public chargers during the night and
early morning hours. However, a high average parking time of more than five hours was
found for public Level 2 sessions, indicating that stations remain occupied for long periods
although the vehicle is fully charged. Extensive parking durations reduce the available
time for other users to actively charge their vehicles, consequently affecting the overall
service level. It was concluded in Caperello et al. that extensive parking times and lacking
etiquette inhibit users from using public charging stations [46]. This creates a potential
barrier to charging station deployment as it may negatively impact station profitability and
convenience. The occurrence of long charging and parking times may also be caused by
the fact that public charging in this study possibly includes workplace charging.

The findings of this study further provided evidence of an inverse relationship between
public charger occupation and residential charger occupation (Figure 3). More specifically,
residential stations are most likely to be in use when public stations are not, and vice versa.
The difference was most significant at noon where public sessions are more likely to be in
use than residential sessions. High-demand residential and public charging times found in
this study align with previous findings [34,47]. While previous studies have focused solely
on charging session start and end times alone, this study expanded the understanding of
charging station utilization based on the probability of stations being in use over the time
of the day. The probability of charging station utilization throughout the day offers insights
on immediate station utilization. The intensity of utilization in terms of charging demand
seems to switch twice throughout the day between residential and public chargers. This
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switch in charging peak demand between locations aligns with the EV commuting patterns
identified in the literature [45,48]. Accordingly, EV users commute to work between 6 a.m.
and 9 a.m. and return from work around 5 p.m. These temporal patterns have important
implications for electric utilities and decision-makers.

More specifically, the concentration of residential charging demand during nighttime
challenges the production of the charging-based electricity demand and amplifies the
electricity power production “Duck Curve” problem. The phenomenon was first discovered
in California, where the non-solar electricity demand curve throughout the day follows the
shape of a duck [49]. Therefore, the “Duck Curve” issue indicates the necessity of electricity
production through fossil fuels during peak demand times when there is not enough sun to
produce energy [49]. Since residential charging is predominantly undertaken at nighttime,
solar as a source for the electricity needed to charge is ruled out. However, in British
Columbia and Quebec, the primary source of energy exceeding 90% of their electricity
generation is hydroelectric power [50]. In areas where hydropower is not available to
form part of the renewable energy mix, non-renewable energies are used to produce
the energy to charge vehicles overnight. This, in return, affects the EV GHG emissions
during the operation phase, impacting the life cycle emission assessment results of EVs
negatively [16,17]. Therefore, residential charging behavioral patterns form a new “EV Duck
Curve” that amplifies the previous baseline of the electricity supply “Duck Curve” issue by
shifting electricity demand specifically from EVs to nighttime. Meanwhile, the residential
charging demand drastically decreases during the daytime, which also exacerbates the
general decline of electricity demand residentially at that time. While dynamic pricing
strategies have been investigated as a possible solution, shifting electric vehicle charging
behavior towards the use of public EVSE and, therefore, to daytimes could potentially
ease the curve. Implementing incentives for a broad deployment of Level 2 charging
stations can potentially move charging demand to times where charging with electricity
from renewable energies is more likely, thus, improving the effect of EV adoption on GHG
emission reduction. Future research could explore what methods can shift the charging
demand toward public EVSE usage during the day and potentially mitigate the “Duck
Curve” dilemma.

To address Research Question 2, differences between public Level 2 and public DCFC
charging behavior were examined. By applying the novel algorithm CHAODA, fundamen-
tal differences between DCFC and Level 2 charging sessions became apparent, making
a practical application of CHAODA useful in a different context. For example, electric
utilities may specifically apply CHAODA on electricity demand and demand times as
input variables to identify EV-owning households. This identification may better detect
high-demand areas and could indicate possible grid overloads. A similar data-mining
approach has been successfully applied in the literature to analyze household charging
patterns [51].

Detailed analysis and comparison of public DCFC and Level 2 data confirmed their
multifaceted differences. As previously found in Morrissey et al. for charging behavior
in Ireland, this study supported evidence of shorter charging duration and higher energy
consumption at DCFC stations compared to Level 2 charging [40]. Since DCFC naturally
offers faster charging, this effect on charging behavior was to be expected. Shorter charging
durations at DCFC allow for higher charging frequencies at this type of EVSE as it offers
more distinct users the opportunity to charge their vehicle throughout the day. The DCFC
data revealed that many charging sessions began with a SOC between 20–30%, presumably
due to users receiving charge level warnings. A correlation between vehicles’ charge level
warnings and starting SOC levels was previously indicated by Franke and Krems [35].
However, vehicle data used in Yang et al. [39] showed the highest number of DCFC charges
starting with 0–10% SOC remaining. The higher average SOC before charging found in this
study would explain the shorter charging duration compared to previous studies [39,40].
A high percentage of DCFC sessions ended with a SOC of around 80%, which aligns
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with previous findings in the literature [38], presumably caused by the vehicle’s battery
management system to maintain a high level of the battery’s state of health.

Another key finding of this study is the difference in charging times between public
DCFC and public Level 2. While both types of EVSE are preliminary used during the
day, the main DCFC demand period is slightly shifted to a later point during the day. In
other words, fast charging demand picks up a little later than that of Level 2 and remains
plateaued after Level 2 demand starts to decrease. The peak in DCFC charging mirrors
charging behavior found in Sweden and Norway, where most charges were initiated
between 3 p.m. and 4 p.m. [38]. With an increasing demand for the installation of DCFC
and incentives to deploy fast chargers, this could lead to an increase in the “Duck Curve”
issue. In other words, the DCFC charging demand overlaps with general load peaks
in the evening when EV users plug-in residentially, thus compounding the issues and
drastically requiring more non-renewable power generation onboarding during the later
afternoon or early evening hours. Currently, various governmental policies are targeted
toward increasing the minimum required charging power of DCFC, potentially increasing
peak loads even further in the future. This may result in a tradeoff between grid stability
and EVSE service levels as DCFC is more convenient for users but can bear risks for
the electricity grid during peak demand times. The “EV Duck Curve” effect may even
be amplified by DCFC charging behavior throughout the week. Although also publicly
accessible, DCFC charging does not follow the weekly patterns found for Level 2 sessions.
Instead, most DCFC charging sessions occur between Friday and Sunday, with the highest
number of sessions conducted on Saturday. The opposite is true for public Level 2 charging
sessions. The results have further provided evidence that DCFC follows an increasing trend
but is not showing the same seasonal pattern as Level 2 charging.

Concerning Research Question 3, the study also led to novel findings in charging
patterns throughout the week and year for Level 2 chargers. While residential charging
was found to be somewhat evenly distributed between different days of the week, there is
a distinct drop in public Level 2 charging demand on weekends. These returning weekly
patterns, especially for public Level 2 charging, were reflected in temporal autocorrelation
at a seven-day time lag. It can be assumed that public Level 2 charging stations are more
popular on weekdays because users primarily charge their vehicles at these stations while
they are at work or following weekly routines. This public charging behavior should be
an essential consideration for infrastructure planners and electric utilities to accurately
predict and satisfy charging demand in the future while ensuring overall grid stability. In
other words, grid infrastructure should be designed to handle high EV energy demand
on weekdays. Furthermore, there is a general trend in EV utilization, represented by an
increase in charging demand over time. This trend would also explain differences between
the findings of this study and the conclusions by Morrissey et al., who found generally
lower values for utilization variables [40].

With respect to seasonal patterns, it was found that the monthly time series data of
residential charging stations showed less of a seasonal pattern and is rather impacted
by the behavior of the previous month. Contrarily, the results of this study revealed
seasonal patterns in public EVSE charging station utilization. The number of sessions, the
average energy consumption, the average duration, and the average frequency indicated
seasonal user behavior with more intense utilization around November and low utilization
in December and January. The winter vacation period in British Columbia and Quebec
falls between December and January and may be related to lower demand during these
months. A relationship between vacation times and charging demand was previously
presumed in Gnann et al. [38]. However, neither Gnann et al. nor this study investigated
this potential relationship directly [38]. While EV GHG emissions during the operation
phase vary throughout the year depending on the electricity mix of the specific country,
Faria et al. provided evidence that EV operation GHG emissions peak in November when
electricity production through wind and solar is lower [16]. This causes an EV efficiency
dilemma as EV electricity demand reaches its peak when EV operation is least GHG-
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efficient. Consequently, the seasonal pattern of EVSE utilization should be considered in
EV emission life cycle analyses as it can adversely impact outcomes.

Additionally, to the authors’ best knowledge, this paper is the first to analyze charging
data from more than 7000 distinct charging stations, significantly surpassing data from
previous studies [46]. Yet, the analysis was limited by the specific data available for each
of the station types. The SOC before and after charging was not provided for any of the
Level 2 charging sessions. In return, DCFC charging sessions lacked data about the total
charging time. Future research comparing total plug-in time and parking time would allow
a comparison of etiquette between different types of chargers. Accordingly, a differentiation
of users was not possible with the given data. Analyzing differences between charging
station types and functional locations would enable an analysis of behavioral patterns on a
user level. Furthermore, a more detailed classification of charging stations by venue type
(e.g., curbside, commercial) was not possible. Considering functional areas as an extension
of this research would add valuable insights and further increase the predictability of
charging demands. Finally, the data set did not include pricing information. However,
session pricing can significantly impact the utilization of charging stations.

In summary, this study analyzed a large set of EVSE charging data in Canada and
provided evidence that differences in charging behavior exist between functional locations
(i.e., residential and public) and EVSE type (DCFC and Level 2 charging). The findings
of this study showed implications for policymakers, electric utilities, and EVSE network
providers as clear patterns and behavioral seasonality emerged. Various stakeholders
should use these patterns to optimize charging station deployment and allocation in a
user-centered manner that considers grid stability, electricity mix, and equitability between
communities. While the results of this study align with the other studies concerning general
EV user behavior, this study comprehensively looks at all these previous aspects in one
holistic comparison of multiple robust EV charging networks. Even though aspects of this
study diverge from the literature, the growth of the network, battery capacities of new
EV models, and overall EV adoption could explain these differences. Novel contributions
continue to be made through the application of CHAODA and insights into the seasonality
of charging behavior.

6. Conclusions

Understanding charging behavior is vital for accurate energy demand modeling, EV
life cycle assessment, high-utilization, and user-tailored EVSE infrastructure planning.
This research study provides an understanding of charging behavior while identifying
discrepancies between residential and public charging, and public Level 2 charging and
DCFC. Increasing adoption of EVs and deployment of DCFC stations require updated and
detailed insights into current user behavior. Therefore, the results of this study should be
considered carefully for optimizing future EVSE infrastructure planning efforts, profitability,
and grid stability. Moreover, this study illustrates that a multivariate and holistic approach
is necessary to understand charging behavior and its impacting differences. The results
provide evidence that applying a novel algorithm, CHAODA, can help identify general
differences in station utilization between different types of EVSE based on key variables.
Furthermore, the analyses confirmed differences in behavioral charging patterns between
functional locations (i.e., public vs. residential) on a significantly substantial dataset
spanning an EVSE network in Canada. These differences were apparent in the overall
utilization of the stations, the probability of charging sessions over hours and weekdays,
and seasonality. The identified switch in peak charging demand from residential Level
2 to public Level 2 in the morning and back to residential Level 2 in the evening leads
to implications for future load management efforts. Leading to a new “EV Duck Curve”
problem that amplifies the baseline of the power production “Duck Curve” issue discussed
in the literature; adverse effects of excessive home charging have been revealed while
providing implementations for reducing grid loads. Additionally, seasonality throughout
the year was evident at public Level 2 EVSE units, showing that the impact on grid loads
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depends on the time of day and year. To conclude, a detail-oriented and considerate
approach that includes current user behavior should be implemented for charging station
deployment to increase station utilization, service, and grid stability. Previous studies have
been able to assess certain aspects of this work in subsystems, but this is the first to directly
compare charging behavior at a residential level and multiple levels of public EVSE that
are systematic and network-wide in a robust and comprehensive way.
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