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Zero-Temperature Dynamics of the s = 1
2 Linear

Heisenberg Antiferromagnet in a Magnetic Field

Gerhard Müller, 1 Hans Beck 2, and Jill C. Bonner 3

1 Institut für Physik, Universität Basel, CH-4056 Basel, Switzerland
2 Institut de Physique de I’Université, CH-2000 Neuchâtel, Switzerland
3 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

Analytic calculations in the Bethe formalism and finite-chain calculations show that the dynamic spin-correlation
function in (q, ω)-space of the s = 1

2
linear Heisenberg antiferromagnet at T = 0 in a uniform magnetic field

is governed by a double continuum of excitations. Appropriate neutron scattering experiments are expected
to show double-peak spectra.

We study the one-dimensional s = 1
2 antiferromagnet in a magnetic field h with Hamiltonian

H =
N∑
l=1

S(l) · S(l + 1)− h
N∑
l=1

Sz(l). (1)

Various quasi one-dimensional magnets, such as CPC [1], can be described by this Hamiltonian
for temperatures above their 3-d ordering temperature. We are interested in the dynamic spin
correlation functions in (q, ω)-space, which are measured by inelastic neutron scattering:

Gαα(q, ω) =
∫

dt eiωt
∑
l

eiql〈Sα(l, t)Sα(0, 0)〉. (2)

At T = 0
Gαα(q, ω) = 2π

∑
λ

|〈0|Sα(q)|λ〉|2δ(ω + E0 − Eλ). (3)

Since, even at T = 0, an exact solution for Gαα is not easily available we aim at an approximate
analytical expression, which represents Gαα(q, ω) as accurately as possible. In two recent papers
[2, 3] we used the following arguments for h = 0. (i) Finite-chain calculations show that among
the eigenstates |λ〉 which contribute to (3), those with total spin ST = 1 belonging to the so-called
spin wave continuum (SWC) are by far the most important. The corresponding matrix elements
become very large for energies close to the lower edge of the SWC. (ii) Bethe’s formalism for the
eigenstates of (1) yields exact expressions for the lower and the upper boundaries of the SWC:

EL(q) =
π

2
| sin q|, EU (q) = π

∣∣∣sin q
2

∣∣∣ .
(iii) Calculations in the framework of a continuum model for interacting fermions [4] yield rigorous
results for low frequencies at q ' 0 and q ' π.

All this suggests that Gzz (= Gxx = Gyy) be approximated by

Gzz(q, ω) = 2
[
ω2 − E2

L(q)
]−1/2Θ

(
ω − EL(q)

)
Θ
(
EU (q)− ω

)
. (4)

Implications of this form have been checked by calculating various static quantities in this SWC
approximation such as the susceptibility

χ(SWC)
zz (q) =

1
π2

∣∣∣∣ q

sin q

∣∣∣∣ (5)
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and the static correlation function

C(SWC)
zz (q) =

1
π

ln
(

1 + | sin(q/2)|
cos(q/2)

)
. (6)

The latter yields the asymptotic behaviour C(SWC)
zz (R) ∝ (−1)R/R in real space. These results

are quite distinct from the predictions of classical spin-wave theory. Moreover, the spectral weight
function (4) showing increasing asymmetry as q → π is in good agreement with recent neutron
scattering data on CPC [1].

The case h 6= 0 has already been sketched qualitatively in [2] and [3]. Finite-chain calculations
show that two different classes of states give predominant contributions to Gzz. Fig. 1 shows the
result for a 10-spin ring. For a given field h the ground state has total spin ST, corresponding to
a magnetisation σ = ST/N . One of these classes contains excitations with the same total spin ST

and the other states with total spin ST + 1. We have identified each one of these states with an
eigenstate in the Bethe formalism and showed that, in the thermodynamic limit, each class forms
a continuum of excitations. The boundaries of these continua, which depend on the solution of
an integral equation, can be determined exactly for h = 0 [3, 5] and h = 2, the critical field. For
intermediate fields Ishimura and Shiba [6] obtained a numerical result for the lowest branch. In
order to obtain analytical - albeit approximate - expressions we make an ansatz for the solution of
the above-mentioned integral equation which consists of a superposition of the known solutions for
h = 0 and h = 2 with weights A and 1 − A, respectively. This yields lower and upper boundaries
for the higher continuum (qs ≤ q ≤ π):

EHL(q) = 2D sin
q

2
cos
(q

2
− qs

2

)
, EHU(q) = 2D sin

q

2
, (7)

Figure 1. This figure represents the contributions to Gzz(q, ω) according to eq. (3) for a cyclic
chain of N = 10 spins in a magnetic field h = 1.12. The circles (squares) denote energy and
wave number of the excitations with total spin ST = 2, (ST = 3). The numbers represent the
corresponding spectral weight 2π|〈0|Sz(q)|λ〉|2. The ground-state at q = 0 and ω = 0 also has
ST = 2. The two classes of excitations described in the text, which have dominating spectral
weight, are characterized by full symbols. In the thermodynamic limit they form two continua
of excitations, the boundaries of which (full lines) are given approximately by eqs. (7) and (8).
Higher lying excitations not contained in the figure have negligible spectral weight.
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and the lower continuum (0 ≤ q ≤ π):

ELL(q) = 2D
∣∣∣sin q

2
cos
(q

2
+
qs
2

)∣∣∣ , ELU(q) = EHL(q). (8)

Here qs = 2πσ and D = A(π/2 − 1) + 1. There is an exact relation between the field h and
the excitation energy EHL at the zone boundary: EHL(π) = 2D sin(πσ) = h. This determines
the parameter D as a function of σ and h. Conversely, we obtain for the magnetisation σ =
π−1arcsin(h/2D). For zero field, D = π/2, reproducing the exact zero-field susceptibility χzz =
π−2. At the critical field, D = 1 and χzz ∝ (hc−h)−1/2. The simplest interpolation for intermediate
fields is certainly A = 1− h/2. This leads to the explicit form (0 ≤ h ≤ 2):

σ =
1
π

arcsin
(

h

(1− h/2)(π − 2) + 2

)
(9)

for the magnetisation, which is in excellent agreement with the exact result obtained numerically
by Griffiths [7].

The numerical values of the matrix elements for the finite chains suggest that, in the thermo-
dynamic limit, Gzz(q, ω) diverges at the lower boundaries of both continua. Analogous calculations
show that Gxx is also dominated by several continua of excitations. However, the lowest branch is
inverted with respect to the axis q = π/2. Inelastic neutron spectra are therefore expected to be
more complex than for h = 0, having at least two peaks for wave-vectors 2πσ < q < π. This seems
to be borne out by the recent experiments on CPC [1] in a magnetic field.
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