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ARTICLE

Control of a programmed cell death pathway in
Pseudomonas aeruginosa by an antiterminator
Jennifer M. Peña1, Samantha M. Prezioso1,4, Kirsty A. McFarland1,4, Tracy K. Kambara1, Kathryn M. Ramsey 1,2,

Padraig Deighan3 & Simon L. Dove 1✉

In Pseudomonas aeruginosa the alp system encodes a programmed cell death pathway that is

switched on in a subset of cells in response to DNA damage and is linked to the virulence of

the organism. Here we show that the central regulator of this pathway, AlpA, exerts its

effects by acting as an antiterminator rather than a transcription activator. In particular, we

present evidence that AlpA positively regulates the alpBCDE cell lysis genes, as well as genes

in a second newly identified target locus, by recognizing specific DNA sites within the

promoter, then binding RNA polymerase directly and allowing it to bypass intrinsic termi-

nators positioned downstream. AlpA thus functions in a mechanistically unusual manner to

control the expression of virulence genes in this opportunistic pathogen.
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P seudomonas aeruginosa is an opportunistic pathogen of
humans and is a leading cause of nosocomial infections
and chronic lung infections of cystic fibrosis patients1–3.

The ability of P. aeruginosa to adapt to and thrive within a variety
of environmental niches, including those of the host, is thought in
part to be due to the large number of transcription regulators the
organism encodes3,4. Although the majority of transcription
regulators that have been studied in P. aeruginosa, as well as other
bacteria, exert their regulatory effects at the level of transcription
initiation, essentially any step in the transcription cycle is a
potential target for regulation, including transcription termina-
tion. Indeed, antiterminators comprise one important class of
positive regulator that acts at a post-initiation step. Members of
this class broadly function by inhibiting transcription termina-
tion, thus allowing for transcription to continue into genes that
are positioned downstream of termination sites5. Some anti-
terminators act at a single specific termination site, whereas so-
called processive antiterminators modify RNA polymerase
(RNAP), making it resistant to termination signals and allowing it
to bypass many termination sites6,7. Thus far, relatively few
processive antiterminators have been identified7,8, and only the
NusG-related RfaH protein and its orthologs have been impli-
cated in the control of virulence gene expression in any
bacterium9,10. P. aeruginosa does not appear to encode an
ortholog of RfaH11 and no processive antiterminator has pre-
viously been reported in this organism.

Contributing to the virulence of P. aeruginosa is a programmed
cell death (PCD) pathway that is triggered in a stochastic fashion
in response to DNA damage12. This PCD pathway is encoded by
the genes alpRABCDE. AlpR is a repressor that undergoes auto-
cleavage in response to DNA damage resulting in derepression of
alpA12. AlpA then goes on to positively regulate the expression of
the alpBCDE genes resulting in cell lysis. How AlpA regulates the
alpBCDE cell lysis genes was not known, nor was it known
whether AlpA controlled other genes in addition to alpBCDE.

Here we present evidence that AlpA positively regulates target
gene expression by recognizing specific sites on the DNA, then
loading onto RNAP and allowing it to bypass intrinsic termina-
tion sites positioned downstream of target promoters, thus
functioning as a processive antiterminator. Additionally, we
present evidence that AlpA functions in the same manner to

positively regulate the expression of genes in a second putative
operon comprising genes PA0807–PA0829. This second AlpA-
regulated locus does not appear to contribute to cell lysis; how-
ever, genes within this locus are known to be important for the
virulence of P. aeruginosa13,14. Lastly, we provide evidence that
the activity of AlpA is stimulated by the small molecule guanosine
tetraphosphate (ppGpp), which is better known for its control of
the stringent response in bacteria. Our findings suggest that when
produced in response to DNA damage AlpA functions as a
processive antiterminator to regulate virulence gene expression in
a manner that may be modulated by the intracellular con-
centration of ppGpp.

Results
AlpA positively regulates the expression of genes in two dis-
tinct operons. AlpA is a positive regulator of the alpBCDE genes
which encode a self-lysis cassette12,15. To determine whether
AlpA controls the expression of other genes in addition to
alpBCDE, we treated cells of P. aeruginosa strain PAO1, cells of
an alpA deletion mutant (PAO1 ΔalpA), and cells of an alpA
(stop) mutant (that contains a stop codon early on in the alpA
gene; PAO1 alpA(stop)) with ciprofloxacin, an antibiotic known
to cause DNA damage and induce the expression of alpA12.
Comparison of the transcriptomes of cells of the three different
strains by RNA-Seq indicated that in addition to positively reg-
ulating the expression of the alpBCDE genes, AlpA positively
regulates the expression of genes present in a separate region of
the chromosome PA0807–PA0829 (Fig. 1a, b) (Supplementary
Data 1 and 2). Specifically, we found that AlpA positively reg-
ulates the expression of all of the genes on the positive strand
between PA0807 and PA0829 (i.e. PA0807 (ampDh3), PA0808,
PA0815, PA0817, PA0819, PA0820, PA0828, and PA0829)
(Fig. 1a, b), a finding we confirmed using quantitative reverse
transcriptase PCR (qRT-PCR) (Supplementary Fig. 1). We note
that many of the genes that appear to be negatively regulated by
AlpA when comparing the transcriptomes of ΔalpA mutant cells
to those of wild-type (WT) PAO1 (Fig. 1a and Supplementary
Data 1) are controlled by a regulator we identified previously
called BexR, which together with its regulon is expressed in a
bistable fashion16. We suspect that the BexR-regulated genes only
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Fig. 1 AlpA positively regulates the expression of genes in two operons in P. aeruginosa. a Plot of RNA-Seq data comparing gene expression in PAO1
ΔalpA to PAO1 WT. Cells were treated with 1 µg/mL ciprofloxacin for 2 h to induce DNA damage. Brown dots are statistically significantly differentially
regulated genes, beige dots are genes that are not significantly differentially regulated. Genes shown to be most highly positively regulated by AlpA are
labeled. b RNA-Seq data from PAO1 WT and PAO1 ΔalpAmutant cells (upper panels) treated with ciprofloxacin, and ChIP-Seq data from cells synthesizing
AlpA-TAP (lower panels) depicting reads over the PA0807–PA0830 region. For RNA-Seq, only reads mapping to the plus strand (indicated +strand) are
shown (in blue). ChIP-Seq of AlpA-TAP shows AlpA associates with the PA0807 promoter region and operon. Significantly enriched peaks are indicated by
a dark gray box below the read density plot (in beige), red line within this dark gray box indicates site of maximum enrichment. Control (indicated mock) is
the mock IP control performed with PAO1 cells that synthesize AlpA without a TAP-tag. Genes are depicted in yellow at the bottom of the panel. Genomic
location in kb is provided at the top of the panel.
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appear to be upregulated in the ΔalpA mutant (Supplementary
Data 1) because by chance the colonies used to inoculate these
cultures originated from a cell in which bexR is expressed (leading
to elevated expression of the entire BexR regulon) whereas the
colonies used to inoculate the cultures of the WT control origi-
nated from a cell in which bexR is not expressed. Consistent with
this notion, no BexR-regulated genes are identified as being
subject to control by AlpA when the gene expression profiles of
the alpA(stop) mutant cells are compared to those of WT (Sup-
plementary Data 2). Taken together, our RNA-Seq studies indi-
cate that in response to DNA damage, AlpA acts to positively
regulate the alpBCDE genes as well as those genes encoded on the
positive strand from PA0807–PA0829.

To determine which genes were controlled directly by AlpA,
we performed chromatin immunoprecipitation together with
high-throughput DNA sequencing (ChIP-Seq) with cells that
ectopically synthesize AlpA with a C-terminal tandem affinity
purification (TAP)-tag (AlpA-TAP). These ChIP-Seq analyses
revealed that AlpA associates with six regions of the PAO1
chromosome, with the region most enriched for AlpA beginning
728 bp upstream of PA0807, in the promoter region, and
extending 12.2 kb downstream (Fig. 1b) (Supplementary Table 1).
These findings suggest that AlpA exerts its regulatory effects on
PA0807–PA0829 directly. AlpA did not detectably associate with
the alpB promoter region as assessed by ChIP-Seq (Supplemen-
tary Table 1). AlpR binding to the alpB promoter region during
our ChIP-Seq studies may have prevented the binding of AlpA to
this region12, explaining our inability to detect it at this location.
Consistent with this possibility, ChIP followed by quantitative
PCR (qPCR) indicated that AlpA-TAP associates with the alpB
promoter in cells treated with ciprofloxacin—conditions under
which AlpR is inactivated through autocleavage12 (Supplemen-
tary Fig. 2). In further support of the notion that AlpA controls
the expression of alpBCDE directly, we have shown previously
that AlpA can positively regulate the expression of an alpB
promoter-lacZ fusion in Escherichia coli12.

AlpA allows RNAP to bypass termination sequences positioned
downstream of target promoters. The ChIP-Seq peak for AlpA
at the PA0807–PA0829 locus is unusual as one shoulder of the
peak extends 3′ of the promoter for more than 12 kb (Fig. 1b).
The association of AlpA with the genomic region downstream of
the putative PA0807 promoter led us to hypothesize AlpA was
associated with RNAP as it transcribes this region. Indeed, the

pattern of enrichment we observe for AlpA by ChIP-Seq at the
PA0807 locus is reminiscent of that observed by ChIP for the Q
protein of bacteriophage λ (λQ), a transcription antiterminator
that gains access to the transcription elongation complex on the
phage late gene operon after binding a specific DNA sequence
embedded in the late gene promoter17,18. Although AlpA bears
no sequence homology to λQ or any other transcription anti-
terminator, the possibility that AlpA exerts its regulatory effects
by acting as an antiterminator is supported by the observation
that both the alpBCDE operon and the putative PA0807–PA0829
operon contain predicted intrinsic terminators, including ones
located immediately upstream of the alpB and PA0807 genes (as
depicted in Fig. 2a).

To determine where the alpB promoter was positioned in
relation to the predicted intrinsic transcription terminator located
upstream of alpB, we sought to define the alpB promoter
sequence. To do this, we first identified the putative alpB
transcription start site (TSS) using RNA-Seq data obtained from
PAO1 cells grown in LB to mid-log. Using a reporter construct
containing DNA from −153 to +117 relative to the alpB TSS, we
introduced mutations into the putative −10 and −35 elements of
the promoter we had predicted, that would be expected to either
abolish, or severely reduce activity. The results depicted in
Supplementary Fig. 3 establish the importance of the predicted
−10 and −35 elements for alpB promoter activity and indicate
that the predicted intrinsic transcription terminator present
upstream of alpB (referred to henceforth as tB) is positioned
beginning 54 nucleotides downstream from the TSS. To test if
AlpA positively regulated target genes by functioning as a
processive antiterminator, we created an E. coli reporter strain in
which two heterologous intrinsic transcription terminators (two
copies of tR′ from bacteriophage λ) were positioned between the
alpB promoter and a lacZ reporter gene on an F′ episome. As
controls we employed an analogous E. coli reporter strain in
which tandem tR′ terminators were positioned between the
lacUV5 promoter and lacZ, as well as a reporter strain in which
just the lacUV5 promoter was positioned upstream of lacZ.
Expression of alpA resulted in a greater than 300-fold increase in
lacZ expression only in those cells that contained the tandem tR′
terminators positioned between the alpB promoter and lacZ
(Fig. 2b). Thus, AlpA allows RNAP to bypass heterologous
transcription terminators positioned downstream of the alpB
promoter but not the lacUV5 promoter. Furthermore, consistent
with the idea that there is a transcription terminator (tB)
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positioned between the alpB promoter and the alpB gene, removal
of tB resulted in a greater than 28-fold increase in expression of a
lacZ reporter gene positioned downstream of the alpB promoter
and 5′ untranslated region containing tB (Supplementary Fig. 4a).
Moreover, expression of alpA resulted in a greater than sevenfold
increase in expression of a reporter construct that contained both
the alpB promoter and tB positioned upstream of lacZ (Fig. 2b).
Taken together, these findings suggest that AlpA positively
regulates the expression of the alpBCDE operon and the
PA0807–0829 locus by functioning as a transcription antitermi-
nator. Moreover, because AlpA enables RNAP to bypass
heterologous transcription terminators such as tR′, AlpA’s ability
to function as an antiterminator does not appear to be dependent
upon the specific sequence of the terminator itself.

A putative AlpA binding element is located between the −10
and −35 elements of target promoters. The Phyre2 structural
prediction algorithm indicates that AlpA may contain a winged
helix DNA-binding motif (Supplementary Fig. 5), suggesting that
the ability of AlpA to bind the DNA may be important for its
activity. In support of the idea that AlpA may be a DNA-binding
protein, our ChIP analyses suggest that AlpA associates with the
alpB and PA0807 promoter regions (Fig. 1b and Supplementary
Fig. 2). To begin to define the potential sequence requirements for
AlpA binding, we first sought to identify a minimal region of the
alpB promoter that was responsive to AlpA. To do this, we made
a series of alpB promoter-lacZ fusions that contained different
amounts of DNA flanking the alpB TSS followed by tandem tR′
terminators and then lacZ in E. coli. The results depicted in
Supplementary Fig. 6a establish that the region of the alpB pro-
moter that extends from −37 to +5 is sufficient to confer control
by AlpA. (Note that the different reporters analyzed in Supple-
mentary Fig. 6a contain different 5′-untranslated regions
upstream of lacZ that could account for the differences in the
absolute β-galactosidase activities obtained using these different
reporters.)

Next, we identified the putative TSS for the PA0807 promoter
as well as the −10 and −35 elements of the PA0807 promoter in
much the same manner as we identified those for the alpB
promoter (Supplementary Fig. 3). This placed one predicted
transcription terminator beginning 26 bp downstream of the
PA0807 TSS and another beginning 247 bp downstream19, both
of which are located upstream of the PA0807 ORF (see depiction
in Fig. 2a). Consistent with the idea that this element contains at
least one terminator, removal of DNA containing both of the
putative terminators resulted in an approximately sixfold increase
in expression of a reporter construct harboring the PA0807
promoter in cells of PAO1 (Supplementary Fig. 4b). Furthermore,
consistent with there being at least one transcription terminator
positioned 26 bp downstream of the PA0807 promoter, analysis of
a series of PA0807 promoter-lacZ reporter constructs in P.
aeruginosa, to which no additional terminator sequence had been
added, identified DNA from −56 to +91 as responsive to AlpA in
P. aeruginosa (Supplementary Fig. 6b). Finally, we found that
when placed upstream of tandem tR′ terminators followed by
lacZ, the region of the PA0807 promoter from −100 to +5 was
responsive to AlpA (Supplementary Fig. 6c). Taken together, our
findings suggest that the minimal region of the PA0807 promoter
that is sufficient to confer control by AlpA, when positioned
upstream of a transcription terminator, is −56 to +5.

We next compared the minimal portion of the alpB promoter
that was responsive to AlpA to the corresponding region of the
PA0807 promoter. This revealed sequences positioned between
the −35 and −10 elements of the alpB and PA0807 promoters
that were common to both and thus might be important for AlpA

binding (Fig. 3a). To determine whether these sequences were
critical for AlpA-dependent control of the alpB promoter, point
mutations were introduced at positions −25 through −20 of an
alpB promoter-lacZ fusion (Fig. 3a). The results depicted in
Fig. 3b indicate that the reporter construct containing these six
mutations in the alpB promoter (denoted PalpBABE6) was
considerably less responsive to AlpA than the corresponding
WT construct (denoted PalpB). Indeed, we found that as few as
four point mutations at positions −25 through −22 were
sufficient to severely abrogate AlpA-mediated control (Supple-
mentary Fig. 6d). These findings establish that residues positioned
between the −10 and −35 elements of the alpB promoter are
important for AlpA to mediate its regulatory effect.

The sequence we identified in the alpB promoter as being
critical for AlpA-dependent control is also present at an identical
position within the PA0807 promoter (Fig. 3a). Introduction of
mutations at positions −25 through −22 of a PA0807 promoter-
lacZ fusion (Fig. 3a) rendered expression of lacZ considerably less
responsive to AlpA (Supplementary Fig. 6d). Moreover, combin-
ing mutations at positions −25 through −20 and position −14
(denoted PPA0807ABE7), a position that may be involved in
contacting AlpA (at least at the PA0807 promoter), resulted in a
mutant promoter that was even less responsive to AlpA (Fig. 3c
and Supplementary Fig. 6e). Taken together, these findings
demonstrate that conserved sequences positioned between the
−10 and −35 elements of the alpB and PA0807 promoters are
critical for AlpA-dependent control.

To determine whether the conserved sequences within the alpB
and PA0807 promoters were important for AlpA’s association
with the DNA, we performed ChIP with ectopically produced
AlpA-TAP in WT cells of P. aeruginosa as well as in cells
containing either the PalpBABE6 or PPA0807 ABE7 mutations at
their respective native chromosomal loci. The results of qPCR
analyses following ChIP with AlpA-TAP show that the PalpBABE6
or PPA0807ABE7 mutations reduce the association of AlpA with
the alpB and PA0807 promoter regions, respectively (Fig. 3d, e).
Taken altogether, our findings support the idea that AlpA may be
a DNA-binding protein that recognizes a specific sequence
element we refer to as the AlpA binding element (ABE),
positioned between the −10 and −35 elements of the alpB and
PA0807 promoters, and that this putative ABE is important for
the positive regulation of target genes by AlpA.

The putative ABE in the alpB promoter is important for AlpA-
dependent cell lysis. To test the physiological importance of the
putative ABE in the alpB promoter, and to test whether AlpA-
dependent control of the PA0807–PA0829 operon contributes to
cell lysis, we compared the effects of inducing the expression of
alpA in WT cells of P. aeruginosa, and in cells that contained
either the PalpBABE6 or PPA0807ABE7 mutations at the native
chromosomal loci. To do this, we employed a dominant negative
mutant strategy we had used previously. In particular, we ecto-
pically synthesized the C-terminal domain of AlpR (AlpR-CTD)
in cells of each of these strains; production of the AlpR-CTD
sequesters AlpR into inactive heterodimers resulting in the
derepression of alpA12. In WT cells, as well as in cells harboring
the PPA0807ABE7 mutation, the isopropyl-β-D-thiogalactopyr-
anoside (IPTG)-inducible synthesis of the AlpR-CTD resulted in
a dramatic reduction in cell growth or viability (Fig. 3f). However,
in cells harboring the PalpBABE6 mutation, or in cells in which the
alpBCDE genes were deleted, ectopic synthesis of the AlpR-CTD
had little to no effect on growth or cell viability (Fig. 3f). Con-
sistent with these findings, time-lapse microscopy indicated that
ectopic synthesis of the AlpR-CTD resulted in the lysis of
otherwise WT cells of P. aeruginosa that synthesized mcherry, but
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not of cells that harbored the PalpBABE6 mutation and did not
synthesize mcherry (Fig. 3g and Supplementary Movie 1). These
findings demonstrate that the putative ABE within the alpB
promoter is critical for AlpA-mediated cell lysis and suggest that
unlike the alpBCDE operon, the AlpA-regulated PA0807–PA0829
locus does not appreciably contribute to cell lysis.

AlpA binds the β-flap of RNAP and region 1.1 of σ70. The
association of AlpA with the genomic region downstream of the
PA0807 promoter revealed by our ChIP-Seq analyses is consistent
with AlpA associating with RNAP as it transcribes the putative

PA0807–PA0829 operon (Fig. 1b). Indeed, several of the few
antiterminators that have been characterized to date act by con-
tacting both the DNA and RNAP20–24. To identify potential
contact sites on RNAP for AlpA, we used a bacterial two-hybrid
system25. In this version of the system, predicted surface-exposed
portions of E. coli RNAP were fused to the CI protein of bac-
teriophage λ (λCI), whereas AlpA was fused to the portion of the
α subunit of E. coli RNAP that spans the N-terminal domain and
flexible linker region (Fig. 4a). In the E. coli reporter strain used
here, any sufficiently strong protein–protein interaction between
a DNA-bound λCI fusion protein and an RNAP-incorporated
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bar is 10 μm. Experiment was performed independently twice with similar results. Source data are provided as a Source Data file.
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α-AlpA fusion would be expected to activate transcription from a
test promoter harboring a λ operator positioned at a suitable
distance upstream, resulting in a concomitant increase in
expression of the linked lacZ reporter gene (Fig. 4a). From an
initial screen of 59 fragments of E. coli RNAP core subunits and σ
factors (Supplementary Fig. 7), we detected an interaction
between AlpA and the so-called β-flap of E. coli RNAP as well as
region 1.1 of E. coli σ70 (refs. 22,26,27). (Note that we expected
AlpA to be able to interact with E. coli RNAP because we had
already established that AlpA can act as an antiterminator in E.
coli.) Additional two-hybrid assays indicated that AlpA could
detectably interact with the β-flap of P. aeruginosa RNAP as well
as region 1.1 of P. aeruginosa σ70 (Fig. 4b). The results of our two-
hybrid assays raise the possibility that AlpA may exert its reg-
ulatory effects through interaction with the β-flap and/or region
1.1 of σ70.

Ectopic expression of alpA is lethal to cells of P. aeruginosa
even in the absence of the alpBCDE cell lysis genes. We
observed that sufficiently high ectopic expression of alpA was
lethal to cells of P. aeruginosa (Fig. 5a). Although we had initially
thought the lethal effects of AlpA would be attributable to its
effects on expression of the alpBCDE cell lysis genes, we unex-
pectedly found that ectopic expression of alpA could be lethal to
cells regardless of whether the alpBCDE genes were present
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Fig. 4 AlpA interacts with the β-flap and σ70 region 1.1 of RNAP.
a Diagram of bacterial two-hybrid assay used to test whether AlpA
interacts with portions of RNAP. Diagram depicts how the interaction
between AlpA (green), fused to the α-N-terminal domain and linker
(α-NTD), and the RNAP domain (gray), fused to the bacteriophage λCI
protein, activates transcription from the test promoter placOL2-62, which
bears the λ operator OL2 centered 62 bp upstream of the start site of the lac
core promoter driving lacZ. b Results of β-galactosidase assays performed
with cells that contained plasmids directing the synthesis of the indicated
proteins under the control of (IPTG)-inducible promoters; cells were grown
in the presence of 5 µM IPTG. Values and error bars reflect mean ± SD of
n= 3 biological replicates in technical duplicate. Two-tailed, unpaired,
unequal variance t-tests were used to calculate p-values between indicated
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Fig. 5 Ectopic expression of alpA is lethal independent of alpBCDE.
a Image shows tenfold spot dilutions of cells of the indicated strains of
P. aeruginosa ectopically expressing alpA from a plasmid (pAlpA) and
under the control of an IPTG inducible promoter. PAO1 indicates WT,
PAO1 ΔrelA is indicated ΔrelA, PAO1 ΔrelA ΔspoT is indicated ΔrelA
ΔspoT, PAO1 ΔalpBCDE is indicated ΔalpBCDE, PAO1 ΔalpBCDE
ΔPA0807–PA0831 is indicated ΔalpBCDE ΔPA0807–PA0831. b, c
Examples in which ectopic expression of alpA results in an increase in
expression of antisense transcripts. RNA-Seq was performed with PAO1
(WT) and PAO1 ΔrelA (ΔrelA) containing pAlpA or pEV (empty vector
control plasmid). Transcript abundance shown as peaks. Purple indicates
transcripts aligned to the plus strand (+strand). Beige indicates
transcripts aligned to the minus strand (−strand). Genes depicted as
yellow arrows, arrows pointing to the right are genes encoded on the plus
strand, arrows pointing to the left are genes encoded on the minus
strand. Images show an increase in transcripts that align to the opposite
strand the genes are encoded on (antisense) in cells containing pAlpA.
This increase in antisense transcripts corresponds to transcription
continuing downstream of predicted intrinsic terminator sequences as
indicated with a red arrow.
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(Fig. 5a). This indicated that high-level ectopic expression of alpA
is lethal for reasons other than activating the cell-lysis genes
encoded by alpBCDE. In addition, we found that ectopic
expression of alpA was lethal to cells lacking the alpBCDE and
PA0807–PA0831 genes (Fig. 5a). In order to determine whether
there might be additional genes that AlpA controls when ecto-
pically produced that might result in lethality, we used RNA-Seq.
We found that ectopic expression of alpA in PAO1 cells resulted
in a more than twofold change in expression of 1253 genes or
antisense transcripts, 806 of which were upregulated and 447
downregulated (Supplementary Data 3). Strikingly, we noticed
that for many genes and antisense transcripts that were positively
regulated by AlpA, the regulator appeared to promote the read-
through of predicted transcription terminators present at the end,
or within, a variety of operons (Fig. 5b, c). The increases in gene
expression that are observed specifically when AlpA was ectopi-
cally produced might reflect AlpA’s association with RNAP off
the DNA, promoting the readthrough of transcription termina-
tors which in turn might account for AlpA’s toxicity under these
conditions in cells lacking alpBCDE (Fig. 5a). Furthermore, the
negative effects of AlpA on gene expression that are specifically
observed upon ectopic synthesis of AlpA might result from
AlpA’s direct interaction with the DNA or with RNAP, or
indirectly through AlpA’s positive effects on gene expression (e.g.
via overproduction of a negative regulator).

The alarmone ppGpp may modulate the activity of AlpA. In an
attempt to identify genes that might contribute to the toxic effects
of ectopically produced AlpA, we used transposon mutagenesis.
In particular, we mutagenized PAO1 with a mariner transposon
and then isolated mutants that could tolerate ectopic expression
of alpA. Mutants were identified with insertions in four different
genes: relA, spoT, rpoZ, and PA4114. Two of these genes are
involved in the synthesis of the alarmone ppGpp; RelA is a
ppGpp synthetase whereas SpoT can both synthesize and degrade
ppGpp28,29. Note that because the rpoZ gene is located immedi-
ately upstream of spoT, we entertained the idea that mutants with
insertions in rpoZ may have been isolated because the insertions
resulted in polar effects on the expression of spoT. To test further
the involvement of relA and spoT in mediating sensitivity to AlpA
toxicity, mutants with in-frame deletions of either relA (PAO1
ΔrelA) or both relA and spoT (PAO1 ΔrelA ΔspoT) were con-
structed. Consistent with what we found with the corresponding
transposon insertion mutants, cells of both the ΔrelA and ΔrelA
ΔspoT mutants could better tolerate the ectopic synthesis of AlpA
than WT cells by at least three orders of magnitude (Fig. 5a).
Moreover, the abundance of ectopically produced epitope-tagged
AlpA was only 20% lower in cells of the ΔrelA mutant and 30%
lower in cells of the ΔrelA ΔspoT double mutant when compared
to WT (Supplementary Fig. 8). Thus, the modest effect of the
single ΔrelA deletion and the double ΔrelA ΔspoT deletions on
AlpA abundance is unlikely to explain the greater than 1000-
times increase in the ability of these cells to tolerate ectopically
produced AlpA when compared to WT. (Note that the potential
role of PA4114 in contributing to the toxicity of ectopically
produced AlpA was not investigated further.)

To determine whether cells of the PAO1 ΔrelA mutant strain
survive ectopic expression of alpA due to a decrease in AlpA
activity in these cells, we used RNA-Seq to compare the effects of
ectopically produced AlpA in WT and ΔrelA mutant cells. The
results depicted in Supplementary Data 3 and 4 indicate that in
general, AlpA appeared to be between 2–3 times more active in
WT cells than in cells of the ΔrelA mutant. Note that for those
transcripts that are positively regulated by AlpA and appear to
result from bypassing intrinsic transcription terminators, such as

anti-sense PA1416 and cyaA (Fig. 5b, c), the fact that the ΔrelA
mutation does not appear to influence the expression of the gene
(s) upstream of the terminator (Supplementary Table 2) argues
that RelA influences AlpA activity rather than the activity of the
promoter(s) that drive expression of the corresponding operon.

To test further whether RelA enhances the activity of AlpA, we
measured the abundance of two AlpA-regulated transcripts by
qRT-PCR in cells of a ΔalpB ΔrelA double mutant and in cells of a
ΔalpB mutant following ectopic synthesis of the AlpR-CTD. (The
use of ΔalpB mutant cells for this experiment ensured that cells
expressing the alp genes at high levels would not lyse as readily
and would thus still be present in the cell population from which
the RNA was isolated.) Figure 6a shows that induction of
endogenous AlpA through ectopic synthesis of the AlpR-CTD
resulted in an 81-fold increase in expression of PA0807 in the
presence of RelA and a 13-fold increase in expression in the
absence of RelA. Similarly, ectopic synthesis of the AlpR-CTD
resulted in a 133-fold increase in expression of alpD in the
presence of RelA and a 69-fold increase in expression in the
absence of RelA. Of note, the basal expression of the PA0807 and
alpD genes was not positively regulated by RelA (Fig. 6a). These
findings support the observations from our RNA-Seq studies that
RelA enhances the activity of AlpA.

We reasoned that if RelA and SpoT enhance the activity of
AlpA then ΔrelA ΔspoT mutant cells should be less susceptible to
AlpA-mediated PCD than their WT counterparts. To test this
prediction, we compared the effects of ectopically produced
AlpR-CTD on the viability of WT and ΔrelA ΔspoT mutant cells.
The results depicted in Fig. 6b indicate that cells of the ΔrelA
ΔspoT mutant are less susceptible to AlpA-mediated PCD, when
compared to WT cells, by at least two orders of magnitude. These
findings suggest that cells of the ΔrelA ΔspoT mutant strain can
survive ectopic synthesis of the AlpR-CTD due to a decrease in
lysis gene expression, likely as a result of decreased AlpA activity.

To further test the hypothesis that the presence of the small
molecule ppGpp causes an increase in the activity of AlpA, we
compared expression of an AlpA-regulated reporter gene in cells
of E. coli that either could or could not produce ppGpp. The
AlpA-regulated reporter gene used for these experiments
consisted of the alpB promoter, followed by two copies of the
tRʹ terminator, followed by lacZ. A reporter containing the
lacUV5 promoter, followed by two copies of the tRʹ terminator,
followed by lacZ, served as a control. The results depicted in
Fig. 6c indicate that in the presence of AlpA, the expression of the
reporter under the control of the alpB promoter (i.e. AlpA-
mediated antitermination) was specifically reduced sevenfold in
cells of the E. coli relA spoT mutant reporter strain when
compared to WT cells (that could produce ppGpp). In addition,
the results depicted in Supplementary Fig. 9 indicate that
expression of an AlpA-regulated reporter gene that was under
the control of the alpB promoter was reduced twofold in PAO1
ΔrelA ΔspoT mutant cells when compared to WT cells, although
the apparent small effect of the ΔrelA ΔspoT mutations on AlpA
abundance (Supplementary Fig. 8) presumably accounts for some
of the observed effect. Taken together, these findings suggest that
in both cells of P. aeruginosa and in cells of E. coli, AlpA is less
active if ppGpp cannot be produced.

One of the key regulatory targets of ppGpp is RNAP. Indeed, in
E. coli, ppGpp is known to interact with two distinct surfaces on
the β′ subunit of RNAP, with the binding of ppGpp to site 1
requiring the ω subunit, and the binding of ppGpp to site 2
requiring DksA30–32. In order to test whether the binding of
ppGpp to these sites on RNAP might modulate the ability of
AlpA to function as an antiterminator, we measured AlpA
activity in cells lacking either ω or DksA. For these studies, we
constructed reporter strains of PAO1 that either contained a stop
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codon early on in the rpoZ gene (encoding ω), or that contained
deletions of the two genes encoding DksA orthologs in P.
aeruginosa. The results depicted in Supplementary Fig. 10
indicate that the loss of the ω subunit of RNAP did not
appreciably influence the ability of AlpA to promote expression of
an alpB promoter-lacZ fusion, nor did the loss of the two DksA

orthologs appreciably influence the ability of AlpA to promote
expression of either an alpB promoter-lacZ fusion or a PA0807
promoter-lacZ fusion. These findings suggest that ppGpp is
unlikely to potentiate the activity of AlpA through its interaction
with site 1 or site 2 of RNAP.

Discussion
Here we demonstrate that in P. aeruginosa, AlpA positively
regulates a PCD pathway, as well as genes in a second newly
identified locus (PA0807–PA0829), by functioning as a processive
antiterminator. We show further that specific sequences at target
promoters are important for AlpA activity, that AlpA can interact
with two distinct subunits in RNAP, and present evidence that
the activity of AlpA may be potentiated by the alarmone ppGpp.
Our findings support a working model in which AlpA recognizes
specific sequences within target promoters, enabling the regulator
to load onto RNAP at these locations; when bound by AlpA,
RNAP acquires the ability to bypass transcription terminators
located upstream of the first gene in each of two target operons
(Fig. 7). Through its apparent responsiveness to ppGpp, AlpA
may enable the integration of environmental cues into the deci-
sion to execute a PCD pathway.

AlpA is thought to contribute to the virulence of P. aeruginosa
in an acute lung infection model by switching on expression of
the alpBCDE self-lysis genes in a subset of cells12; the lysis of a
subset of cells in the population appears to result in the release of
a factor(s) that enhances the survival of the remainder of the
population12. The AlpA-regulated genes in the PA0807–PA0829
locus do not appear to contribute to cell lysis but several of them
could contribute to survival in the host. Indeed, PA0807
(ampDh3) encodes a peptidoglycan remodeling factor that has
been shown to be important for virulence13. Moreover, the
uncharacterized PA0829 gene has previously been implicated as
important for virulence in a rat chronic lung infection model14.
Release of proteins encoded in this second AlpA-regulated locus
by lysis of a subset of P. aeruginosa cells could enhance survival of
the rest of the population in the host. We speculate that by
controlling both the alpBCDE cell lysis genes and the
PA0807–PA0829 locus, AlpA might provide an efficient means
for coordinating both the production and release of factors into
the host that facilitate the survival of other P. aeruginosa cells.

We have identified a DNA sequence that is important for
regulation of target genes by AlpA. This putative ABE is located
between the −10 and −35 elements of the alpB and PA0807
promoters. Notably, the location of the putative ABE is similar to
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deleted. ΔalpB was used as the background strain to prevent lysis of cells
ectopically synthesizing the AlpR-CTD. In ΔrelA mutant cells that contain
the alpR-CTD expression vector pAlpR-CTD, there is a threefold decrease in
transcript abundance of PA0807 (gray) and twofold decrease in transcript
abundance of alpD (gold) compared to WT (i.e. relA+) cells. Values and
error bars reflect mean ± SD of n= 3 biological replicates. Two-tailed,
unpaired, unequal variance t-tests were used to calculate p-values between
indicated samples. ΔalpB ΔrelA (pAlpR-CTD) vs. ΔalpB (pAlpR-CTD) for
the PA0807 transcript: p= 0.0078. ΔalpB ΔrelA (pAlpR-CTD) vs. ΔalpB
(pAlpR-CTD) for the alpD transcript: p= 0.019. p-Values indicated by the
following symbols: >0.05= ns, ≤0.05= *, ≤0.01= **. b Image shows
tenfold serial spot dilutions of cells of indicated strains of P. aeruginosa
(PAO1 is WT) ectopically expressing the alpR-CTD under the control of an
IPTG-inducible promoter from plasmid pAlpR-CTD. Ectopic expression of
alpR-CTD is lethal due to activation of alp encoded PCD pathway. Deletion
of alpBCDE suppresses lethality of ectopic alpR-CTD expression. PAO1 cells
with relA and spoT deleted survive ectopic expression of alpR-CTD better
that WT cells but not as well as cells of the ΔalpBCDE mutant strain. c β-
galactosidase activity (in Miller Units) of the indicated reporter constructs
in E. coli. Promoters were either lacUV5 or alpB and strain backgrounds were
either WT and could produce ppGpp (indicated WT) or were relA spoT
mutants that cannot make ppGpp (indicated relA spoT). Cells contained
plasmid pAlpA (gold) or plasmid pEV (the empty vector; gray). Values and
error bars reflect mean ± SD of n= 3 biological replicates in technical
duplicate. Two-tailed, unpaired, unequal variance t-tests were used to
calculate p-values between indicated samples. WT PalpB (pAlpA) vs. relA
spoT PalpB (pAlpA): p= 7.6 × 10−8. p-Values indicated by the following
symbols: >0.05= ns, ≤0.0001= ****. Source data are provided as a Source
Data file.
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the location of the binding element for the well-characterized
processsive antiterminator λQ at the bacteriophage λ PR′
promoter23,33. Like the Q binding element at PR′, which helps
direct the loading of Q onto RNAP at this location34,35, the
putative ABEs at the alpB and PA0807 promoters could help to
direct the loading of AlpA onto RNAP bound at these specific
genomic locations.

We have found that AlpA can interact with a portion of RNAP
referred to as the β-flap. Although the importance of the inter-
action between AlpA and this region of RNAP for antitermina-
tion has not been determined, the antiterminators λQ,
bacteriophage λ N, P7 (from a Xanthomonas oryzae phage) and
Gp39 (from a Thermus thermophilus phage) are also known to
interact with the β-flap22,36,37. While AlpA and λQ do not appear
to exhibit any sequence homology, it is possible they function
through a similar mechanism. The β-flap is located near the RNA
exit channel and recent structural studies of Q from bacter-
iophage 21 (Q21) interacting with E. coli RNAP showed that Q21
principally acts by inserting into the RNA exit channel of RNAP,
restricting the size of the exit channel and extending its
length34,35. Q21 thus acts as a molecular nozzle to prevent for-
mation of terminator hairpin structures that would otherwise
form in the nascent RNA34,35. We note that sufficiently high
ectopic synthesis of AlpA results in RNAP bypassing predicted
intrinsic terminator sequences at many locations in the genome,
suggesting that AlpA may be able to load onto RNAP in solution
and bypass the requirement for an ABE. If AlpA can load onto
RNAP that has already synthesized a relatively long nascent
transcript, then AlpA could not act in precisely the same fashion
as Q21, which could not plausibly thread onto a nascent RNA
that has already emerged from the exit channel. Nevertheless, it is
possible that AlpA might load early even if it bypasses the
requirement for an ABE. We also note that the apparent wide-
spread readthrough of transcription terminators we observe
upon high-level ectopic synthesis of AlpA may explain why AlpA
is toxic to the cell under these conditions even when the
alpBCDE cell-lysis genes are absent (Fig. 5a). Indeed, widespread
readthrough of transcription terminators is thought to account
for the toxic effects of depleting Rho in Mycobacterium
tuberculosis38.

We present evidence that AlpA can interact with a second
region of RNAP; region 1.1 of σ70. This region of σ70 is thought to
prevent free σ70 from interacting with promoter DNA, but it is
also involved in open complex formation and in the RNAP
holoenzyme structure is positioned within the active site
channel26,27,39. Q is known to interact with σ70 but it interacts
with region 4, not region 1.1; the interaction between λQ and
region 4 of σ70 stabilizes the formation of a paused complex on
the DNA that facilitates the loading of λQ onto RNAP40. It is
unclear how an interaction between AlpA and region 1.1 of σ70

could influence termination and we cannot rule out the possibility
that the interaction we detect between AlpA and region 1.1 of σ70

in our two-hybrid assay is due simply to the fact that this region
of σ70 is negatively charged. We note that the only other regulator
known to interact with region 1.1 of σ70 is Gp2 of bacteriophage
T7, which acts to inhibit transcription initiation in E. coli by
preventing this portion of σ70 from exiting the active site channel,
thus preventing entry of the promoter DNA41. We find that
sufficiently high ectopic synthesis of AlpA in P. aeruginosa not
only promotes the synthesis of certain sense and anti-sense
transcripts by causing widespread terminator readthrough, but
also represses the expression of hundreds of genes. Further work
will be required to determine whether an interaction with region
1.1 of σ70 plays any role in AlpA-mediated antitermination and
whether any of the observed repressive effects of AlpA might be
explained through this potential interaction.

Lastly, we have obtained evidence suggesting that the activity of
AlpA is stimulated, either directly or indirectly, by the small
molecule ppGpp. ppGpp is present in almost all bacterial species
and is produced in response to various starvation conditions in E.
coli and P. aeruginosa by RelA and SpoT. Recently it has been
shown that in E. coli, ppGpp is produced in response to DNA
damage42. If AlpA is expressed but ppGpp is not present, we see a
decrease in expression of AlpA-regulated genes (i.e. a decrease in
antitermination) and consequently less PCD (Fig. 6a, b). Mod-
ulation of AlpA activity by ppGpp could provide a failsafe
mechanism to ensure the PCD pathway is activated only in
response to DNA damage, or could provide a mechanism for
modulating the proportion of cells in which PCD is activated
through environmental cues that alter ppGpp abundance.
Although AlpA appears to be the only antiterminator whose
activity might be potentiated by ppGpp43, several phage-encoded
antiterminators are actively produced in response to DNA damage
as a result of prophage induction, and so it will be interesting to
determine whether or not ppGpp enhances the activity of AlpA by
binding AlpA directly (and possibly modulating AlpA’s interac-
tions with the DNA or with RNAP), and also whether other
antiterminators are responsive to this alarmone.

AlpA is the only virulence gene regulator we are aware of in P.
aeruginosa that acts as a processive antiterminator. Although in
enteric bacteria orthologs of the antiterminator RfaH (a NusG-
related protein) control the expression of virulence genes, P.
aeruginosa does not appear to encode a RfaH ortholog44. The Alp
system is encoded by the bacterial chromosome but bears features
characteristic of prophage genes. For example, alpB and alpC
encode a putative holin and anti-holin, respectively, whose
orthologs contribute to host cell lysis and are typically found in
certain prophages12. The AlpA regulator itself, as we show here,
also bears functional similarities to phage-encoded regulators
such as the Q protein from bacteriophage λ17,22,45. The Alp
system, therefore, likely originated from a prophage and was
repurposed to provide a bacterial self-lysis system that may be
responsive to both DNA damage and ppGpp.

Methods
Bacterial strains and growth conditions. All strains used in this study are listed in
Supplementary Table 3. E. coli strains CSH100 and FW102 were used to create
E. coli reporter strains containing promoters driving the expression of lacZ46. E. coli
strain SM10 (λpir) was used for conjugal transfer of plasmids into P. aeruginosa,
E. coli strain FW102 OL2-62 was used for the bacterial two-hybrid assays22. For
introducing in-frame deletions by conjugal transfer, P. aeruginosa strain PAO1 was
selected on Pseudomonas isolation agar (PIA) and grown on low-salt LB agar
supplemented with 5% (wt/vol) sucrose at 37 °C for sacB counter-selection. E. coli
strains were supplemented with 15 μg/mL gentamicin, 10 μg/mL tetracycline, 100
μg/mL carbenicillin, 30 μg/mL kanamycin, and 25 μg/mL chloramphenicol, as
needed. E. coli strains that contained plasmids with IPTG-inducible promoters were
supplemented with the indicated IPTG concentration. For P. aeruginosa, gentamicin
(LB: 30 μg/mL; PIA: 60 μg/mL) and tetracycline (LB: 35 μg/mL; PIA: 200 μg/mL)
were added as needed. Liquid cultures of P. aeruginosa were inoculated at a starting
OD600 of 0.01 and grown with aeration at 37 °C in LB broth. For induction of IPTG-
inducible promoters in liquid-grown P. aeruginosa cultures, IPTG was added at a
final concentration of 1 mM. For induction of IPTG-inducible promoters in liquid-
grown E. coli cultures, IPTG was added at a final concentration of 5 µM.

Induction of DNA damage. Cultures were grown to an OD600 of 0.5 and cipro-
floxacin (Sigma-Aldrich) was added at a final concentration of 1 μg/mL for the
specified times before harvesting. For microscopy, cells were grown to an OD600 of
~0.3–0.5 in LB with 30 µg/mL gentamicin, then IPTG was added at a final con-
centration of 5 mM and cells were grown for an additional 30 min. Cells were then
mixed and spotted on agarose pads containing 5 mM IPTG and imaged in the
phase channel as described in the “Time-lapse microscopy” section.

DNA manipulations. Standard molecular cloning procedures were followed. Oli-
gonucleotide primers were obtained from Sigma Life Sciences. DNA amplification
was performed using KOD polymerase (Novagen). DNA sequencing was per-
formed by Genewiz Inc. Restriction enzymes were obtained from New England
Biolabs.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21941-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1702 | https://doi.org/10.1038/s41467-021-21941-7 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Plasmid construction. All plasmids and primers used in this study are listed in
Supplementary Tables 3 and 4. The suicide vector pEXG2 (ref. 47) was used to
make pEXG2-AlpA-TAP, pEXG2-PalpBABE6, PPA0807ABE7, and pEXG2-rpoZ
(Stop). pEXG2 (ref. 47) was also used to make the in-frame deletion constructs
pEXG2-ΔPA0807-PA0831, pEXG2-ΔdksA, pEXG2-ΔdksA2, pEXG2-ΔrelA, and
pEXG2-ΔspoT. The pEXG2 vector was also used to introduce point mutations into
the putative ABEs of the endogenous alpB and PA0807 promoter regions as well as
introducing an early stop codon into rpoZ. For generation of the PalpB ABE6 and
PPA0807 ABE7 mutant promoters and rpoZ(Stop), overlap extension PCRs were
performed with oligonucleotides that introduced the six point mutations into the
alpB promoter region, seven point mutations in PA0807 promoter region and an
early stop codon in the rpoZ ORF, respectively. The resulting PCR products were
combined via overlap extension PCR, digested with the appropriate restriction
enzymes and cloned into pEXG2. The pEXG2-AlpA-TAP insertion vector was
created by PCR amplifying AlpA and TAP sequences using primers with restric-
tions sites. A three-way ligation was then performed using AlpA PCR product,
TAP PCR product, and pEXG2 backbone. In-frame deletion plasmids were con-
structed by amplification of ~400 bp regions of genomic DNA flanking the gene to
be deleted, with primers containing restriction sites, followed by digestion and
three-way ligation into pEXG2 that had been digested with the appropriate
restriction enzymes. In addition to harboring flanking DNA, the pEXG2-ΔrelA and
pEXG2-ΔspoT deletion plasmids contained the original start and stop codon of
relA and spoT, respectively, separated by DNA specifying three alanine codons.

All PalpB-lacZ F′ episome lacZ reporter plasmids were produced by
amplification of PAO1 genomic DNA and ligation of the alpB, and PA0807
promoter regions into pFW11 (ref. 46). Point mutations in the PalpB promoter
regions of the lacZ reporters were introduced using overlap extension PCR.

The plasmid pMini-CTX-lacZ48 was used to make lacZ reporter fusions to the
promoter regions of alpB and PA0807, by amplification of promoter regions by
PCR, restriction digested with EcoR1 and BamH1 and ligation into digested pMini-
CTX-lacZ.

For the bacterial two-hybrid assays, PAO1 DNA specifying RNAP β-flap
(836–1074), σ70 (1–58), σ70 (1–95), and AlpA were amplified from genomic DNA
and the PCR products were then ligated in-frame into the vectors pACλCI32 and
pBRαLN49, resulting in pACλCI-Paβflap, pACλCI-Paσ70 (1–58), pACλCI-Paσ70

(1–95), and pBRα-AlpA, respectively. Plasmids were introduced into E. coli strain
FW102 F'::placOL2-62-LacZ22.

The plasmid pPSV38 (ref. 50) harboring AlpA (pAlpA) has been described
previously12 and was used to create plasmid pAlpA-V that synthesizes AlpA with
VSV-G (vesicular stomatitis virus glycoprotein-G) epitope tag fused to its C-
terminus (AlpA-V).

Strain construction. For pEXG2-based vectors, standard allelic replacement was
performed to introduce the desired mutations47,51. Briefly, E. coli SM10 cells car-
rying the plasmid were mated with recipient P. aeruginosa cells. Primary integrants
were selected on PIA containing 60 μg/mL gentamicin. The integrated plasmids
were resolved by growth on low-salt LB agar plates containing 5% sucrose for sacB
counterselection. Sucrose-resistant colonies were then screened for loss of genta-
micin resistance. Sucrose-resistant and gentamicin-sensitive clones were then
screened for the desired mutation by PCR. For introduction of point mutations,
colonies were screened by sequencing of PCR products of the corresponding
mutated genomic regions.

The E. coli strain FW102 ΔrelA spoT::cat was constructed using the lambda red
cloning system52. Briefly, the FRT-flanked chloramphenicol resistance gene was
PCR amplified using the primers pKD3relA-del and pKD3-spoTdel_F2 and R2
primers, which contain spoT homology sequences. This PCR product was digested
with Dpn1 then electroporated into FW102 ΔrelA strains containing plasmid
pKD46. Transformants were selected on LB containing 15 µg/mL chloramphenicol
and re-streaked on LB-agar plates containing carbenicillin (15 µg/mL), to ensure
loss of pKD46. Mutations were confirmed with colony PCR using col_catF2 and
col_spoT_R2 primers.

The miniCTX PalpB and PA0807 lacZ fusion reporter constructs were
mobilized from E. coli SM10 into the appropriate recipient P. aeruginosa strains
(PAO1, ΔrelA ΔspoT, rpoZ(stop), and ΔdksA ΔdksA2). Transconjugants were
selected on PIA agar containing 200 μg/mL tetracycline.

The Fʹ PalpB and PlacUV5 lacZ fusion constructs were mobilized from E. coli
CSH100 into E. coli FW102 and FW102 ΔrelA spoT::cat. Transconjugants were
selected on LB containing streptomycin 100 µg/mL and kanamycin 50 µg/mL.

RNA-Seq and data analysis. For RNA-Seq comparing PAO1 WT, PAO1 alpA
(stop), and PAO1 ΔalpA mutant cells, overnight cultures of biological triplicate
samples were back-diluted to OD600 of 0.01 in 3 mL of LB and grown to mid-log-
phase (OD600 of ~0.5). Ciprofloxacin was then added to cultures at a final con-
centration of 1 µg/mL and 1mL of each culture was harvested 120 min later.
TriReagent was used for RNA isolation (Molecular Research Center). RNA isola-
tion was performed using Zymo Direct-zol RNA Miniprep Plus kit according to kit
instructions. RNA was then sent to the Broad Institute for library prep and
sequencing or was made into cDNA for qRT-PCR analysis. RNA-Seq libraries were
constructed and sequenced at the Broad Institute of MIT and Harvard by the
Microbial ‘Omics Core and Genomics Platform, respectively. Sequencing reads

from each sample were demultiplexed based on their associated barcode sequence
using custom scripts. Reads were aligned to the PAO1 genome (NC_002516) using
BWA (version 0.7.15)53 and read counts were assigned to genes and other genomic
features using custom scripts. Differential expression analysis was conducted with
DESeq2 (ref. 54).

For RNA-Seq experiments comparing PAO1 containing plasmid pAlpA to
PAO1 containing plasmid pPSV38 (the empty vector control; referred to as pEV)
and PAO1 ΔrelA containing plasmid pAlpA to PAO1 ΔrelA containing plasmid
pPSV38, biological triplicate samples of cells were back-diluted from overnight
cultures to an OD600 of 0.01 in 200 mL of LB supplemented with 30 µg/mL
gentamicin and grown at 37 °C with shaking for 2 h (to an OD600 of ~0.04). IPTG
was then added at a final concentration of 1 mM and cells were grown for another
90 min to mid-log-phase (i.e. an OD600 of ∼0.3–0.4). Specifically, the OD600 of the
cultures used for RNA isolation were as follows: WT with pAlpA (0.36–0.38), WT
with pEV (0.36–0.42), ΔrelA with pAlpA (0.3–0.34), and ΔrelA with pEV (0.3–0.4);
2 mL of cells were harvested by centrifugation at 3200×g for 10 min. RNA was
isolated by resuspending cells in 1 mL of TriReagent (Molecular Research Center)
and cells were lysed by incubation at 60 °C for 10 min50. Supernatants were
extracted with 200 µL of chloroform, RNA was then precipitated with ethanol,
pelleted by centrifugation at 21,000×g and washed with 75% ethanol50. Following
resuspension in water, RNA was treated with RNase-free DNase I (Promega) for 1
h at 37 °C, then purified through a second round of treatment with TriReagent and
chloroform50. Following a final ethanol precipitation step, RNA was resuspended
in water. RNA-Seq libraries were made by first depleting ribosomal RNA from 5 µg
of total RNA using the Ribo-Zero Magnetic Kit (Bacteria) (Epicentre) according to
the manufacturer’s specifications. The remaining RNA was ethanol-precipitated,
then used to generate RNA-Seq libraries using the NEB-Next Multiplex Small RNA
Library Prep Kit for Illumina (New England Biolabs) according to the
manufacturer’s protocol. Libraries were size-selected by PAGE using a 5% gel with
TBE (Biorad), stained with SYBR gold nucleic acid stain (Life Technologies), and
visualized using a blue-light transillumination system. Fragments corresponding to
150–300 bp were gel purified, ethanol-precipitated, and resuspended in TE buffer
according to the NEBNext Multi-plex Small RNA Library Prep Kit for Illumina
(New England Biolabs) protocol50. RNA quality was determined by Agilent
Bioanalyzer. Libraries were sequenced by Elim Bio-pharmaceuticals, Inc.
(Hayward, CA), using an Illumina HiSeq 2500 which generated 50 bp single-end
reads. Reads were aligned to PAO1 genome (NC_002516) using Bowtie2 (ref. 55).
Differential expression analysis was conducted with DESeq2 (ref. 54).

RNA isolation and qRT-PCR. PAO1 and PAO1 alpA(Stop) cells were back-diluted
from overnight cultures to OD600 of 0.01 in 3 mL of LB and grown to mid-log-
phase (OD600 of ~0.5). Then ciprofloxacin was added to cultures at a final con-
centration of 1 µg/mL and samples were harvested 120 min later. E. coli Fʹ PalpB-
lacZ cells were back-diluted from overnight cultures to an OD600 of 0.01 in 3 mL of
LB supplemented with 15 µg/mL gentamicin, 50 µg/mL kanamycin, and 5 µM
IPTG and grown to mid-log-phase (OD600 of ~0.5); 1 mL of each culture was
harvested. TriReagent was used for RNA isolation (Molecular Research Center).
RNA isolation was performed using Zymo Direct-zol RNA Miniprep Plus kit
according to kit instructions. cDNA synthesis using SuperScript III reverse tran-
scriptase (Invitrogen) and qRT-PCR were performed using FastStart Essential
DNA Green Master (Roche) and a LightCycler 96 system (Roche). The abundances
of transcripts were measured relative to the abundance of the clpX transcript. qRT-
PCR was performed at least twice on sets of biological triplicate samples. Relative
expression values were calculated by using the comparative threshold cycle (CT)
method (2−ΔΔCT)56. The fold enrichment values shown are the means from three
biological replicates, and error bars represent the standard deviation of the mean.
The data shown are from one representative experiment.

ChIP-Seq library preparation and ChIP-qPCR. The ChIP-Seq experiment was
done as described12. Briefly, we performed ChIP-Seq in PAO1 pPSV37-AlpA-TAP
and PAO1 pPSV37-AlpA (used for the mock immunoprecipitation control) using
biological triplicate samples. We grew diluted cells from overnight cultures to mid-
log in 200mL of LB supplemented with gentamicin (30 µg/mL final concentration)
with shaking at 37 °C. Upon collection, we immediately cross-linked cells with
formaldehyde (1% final concentration) for 30min, followed by quenching of the
cross-linking reaction with 250mM glycine. Next, we lysed the cells and sheared the
DNA with a Bioruptor water bath sonicator (Diagnode). We combined the lysates
with anti-IgG beads (GE Healthcare) for IP. After washing the samples, we reversed
the cross-linking by incubating the samples at 65 °C overnight. We isolated DNA
with a PCR purification kit (Qiagen) and determined DNA yields using a Nanodrop
or Agilent Bioanalyzer. Samples were sequenced by Elim Biopharmaceuticals, Inc
(Hayward, CA). We performed ChIP-qPCR on triplicate cultures grown from
independent colonies and cells were lysed using a tip sonicator.

ChIP-Seq data analysis. Read mapping and peak calling was essentially as
described previously57. In brief, reads were mapped to the PAO1 genome
(NC_002516.2) and the expression plasmids pPSV37-AlpA-TAP and pPSV37-
AlpA using bowtie2-2.0.6 (ref. 55) allowing up to one mismatch per seed. All the
mock IP (PAO1 with the vector pPSV37-AlpA) replicate data were merged and
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used as “background” for each biological replicate (PAO1 with the vector pPSV37-
AlpA-TAP). The program QuEST (version 2.42)58 was used to call peaks. Regions
in each biological replicate were considered peaks if they are 2.5-fold enriched for
reads over background, have a positive peak shift and strand correlation, and have
a q-value of <0.01. AlpA enrichment peaks are defined as the minimal region
identified in at least two biological replicates. Tracks were visualized using the
Integrative Genomics Viewer (IGV) version 2.3 (ref. 59).

Quantitative PCR. qPCR was performed on DNA isolated from ChIP experiments
using FastStart Essential DNA Green Master (Roche) and a LightCycler 96
(Roche). Primer efficiencies were calculated by melting curve analyses. Data ana-
lyses were supported by LightCycler software version 1.1 (Roche). For ChIP,
relative fold enrichment indicates the relative abundance of a DNA region of
interest relative to a negative control region (in the gene clpX) and the amount of
DNA in the input. Specifically, we calculate fold enrichment= 1.9ΔΔCt, ΔΔCt=
(Ct_ChIPclpX –Ct_ChIPtarget) –Ct_InputclpX –Ct_Inputtarget). Reported fold
enrichments are the mean of three biological replicates, and error bars denote SD.
All data shown are representative of at least two independent experiments.

β-Galactosidase assays. LacZ transcriptional reporter assays and bacterial two-
hybrid assays were performed by first permeabilizing cells with CHCl3 and SDS25.
o-nitrophenyl-β-D-galactoside (ONPG) was then added to each sample to assay for
β-galactosidase activity25. For the two-hybrid assays reported in Fig. 4b, assays were
performed with cells grown in LB supplemented with IPTG (5 µM). Values and
error bars represent the mean ± SD of n= 3 biological replicates in technical
duplicate. β-Galactosidase experiments were performed at least twice. For bacterial
two-hybrid screens with the E. coli RNAP sigmaome and coreome (Supplementary
Fig. 7), 96-well plate β-galactosidase assays were performed in media supplemented
with IPTG (20 µM)60,61.

AlpR sequestration assays on LB agar plates. For AlpR sequestration assays12,
the pAlpR-CTD plasmid, synthesizing the AlpR-CTD, was introduced into the
indicated strain of PAO1 by electroporation. Colonies of plasmid-containing cells
were selected on LB agar containing gentamicin (30 µg/mL) and resuspended in
PBS to an OD600 of 0.01. Tenfold serial dilutions of cells (10 μL) were spotted onto
LB agar plates containing gentamicin with or without 10 mM IPTG. Plates were
incubated overnight at 37 °C before being photographed.

Time-lapse microscopy. Time-lapse microscopy sequences were acquired on a
Nikon Ti inverted microscope with a 100× oil objective, automated focusing
(Perfect Focus System, Nikon), a Lumencore SpectraX LED illumination, a sCMOS
camera (Andor Zyla 4.2 Plus), and Nikon Elements 4.30 acquisition software
(Nikon). PAO1 mCherry (pAlpR-CTD) and PAO1 GFP PalpBABE6 (pAlpR-CTD)
were back-diluted from overnight cultures to OD600 of 0.01 and grown to mid-log
phase. IPTG was added at a final concentration of 5 mM. Cells were concentrated
5×, mixed and spotted on LB agarose supplemented with gentamicin 30 µg/mL and
5mM IPTG. Images were acquired every 5 min for 6 h at 37 °C.

Western blot analyses. Whole-cell lysates from biological triplicates were sepa-
rated by SDS-PAGE on 4–12% Bis-Tris NuPAGE gels in MES running buffer
(Thermo Fisher). Proteins were transferred to polyvinylidene fluoride (PVDF)
membranes with the XCell-II Blot Module (Thermo Fisher). Membranes were
blocked overnight with Intercept (PBS) Blocking Buffer (LI-COR). Membranes
were probed with antibodies that recognize the VSV-G epitope tag on AlpA-V
(Anti VSV-Glycoprotein antibody, mouse monoclonal, SigmaAldrich) used at a
dilution of 1:3333, or with antibodies that recognize the α-subunit of RNAP (anti-
E. coli RNAP α antibody, BioLegend) used at a dilution of 1:5000. Membranes were
re-blocked and incubated with near-Infrared secondary antibody IRDye 680LT
donkey anti-mouse IgG (LI-COR) used at a dilution of 1:30,000. Imaging was
performed on an Azure c600 Imager, and fluorescence intensity was quantified
using Image Studio software (LI-COR).

Transposon mutagenesis and identification of genomic regions containing
transposon insertions. For transposon mutagenesis, WT cells of P. aeruginosa
strain PAO1 were first mutagenized with a version of the mariner transposon that
confers resistance to tetracycline62, then transformed with plasmid pAlpA.
Transformants were then selected following growth on LB agar plates containing
IPTG (5 mM). The identification of the location of transposon insertion sites in
mutants that tolerated growth on LB agar plates containing IPTG was determined
by arbitrary PCR followed by DNA sequencing62.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The RNA-Seq and ChIP-Seq data supporting this study are deposited in the National
Center for Biotechnology Information Gene Expression Omnibus under accession

number GSE152485 and are available at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE152485. All other data supporting the findings of this study are available
within the paper, within the Supplementary Data or Supplementary Information, or are
available upon request. Source data are provided with this paper.

Code availability
The custom scripts used for demultiplexing RNA-Seq reads based on their associated
barcode sequence are available at https://github.com/broadinstitute/split_merge_pl.
Custom scripts used for assigning RNA-Seq read counts to genes and other genomic
features are available at https://github.com/broadinstitute/BactRNASeqCount.
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