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ABSTRACT 

 

The objective of this research topic is to show QbD and PAT tools such as 

multivariate analysis can perform “Continued Process Verification by using a Real-

Time Multivariate Process Monitoring (RT-MSPM) system.   There are not one but 

many challenges The pharmaceutical and bio-pharmaceutical manufacturers are 

facing multiple challenges such as changing regulatory requirements, healthcare 

reforms, economic pressure and availability of advance manufacturing technology to 

make better quality products at reduced costs. 

 

Due to the recent technological developments, significant opportunities exist for 

improving pharmaceutical development, manufacturing and quality assurance through 

innovation in product and process development, process analysis, and process 

controls.    The latest FDA guidelines such as QbD, PAT and the 2011 process 

validation have opened the doors for “Real-Time Process Monitoring” concepts for 

“Continued Process Verification”.   

 

The regulatory agencies have taken the initiative by providing guidelines in last ten 

years such as,  Pharmaceutical cGMPs for the 21st Century - A Risk Based Approach, 

Final Report in September 2004 [1], Guidance for Industry: PAT - A Framework for 

Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance [2], 

Guidance for Industry Quality Systems Approach to Pharmaceutical Current Good 

Manufacturing Practice Regulations [3],  Internal Commerce for Harmonization 

(ICH) - guidelines [4, 5, 6, and 7], QbD, a perspective from the “Office of 

Biotechnology Products” (OBP) [8] and lastly, Guidance for Industry Process 

Validation General Principles and practices utilizing three stages during Process 

Validation [9]. 

 

The objective of agency is to ensure that the most up-to-date concepts of risk 

management and quality systems approaches are incorporated into the manufacturing. 

 



 

 

The application of multivariate statistical models for process monitoring can provide 

information on the challenges that are routinely encountered by drug manufacturers 

and process can be monitored in real-time to achieve continued process verification 

(CPV). The outcome of the study is intended to become a benchmark for biological 

manufacturers who are interested in applying the “PAT tools” for existing legacy 

products or any new manufacturing process to address challenges [10, 11] such as 

raw material variation and control of process variability, identifying and monitoring 

of relevant process parameters in the operating space, RT-MSPM with early fault 

detection and diagnosis of process upsets and trends.  

 

PCA (Principal Component Analysis (PCA) and PLS (Projection to Latent Structure 

(PLS) are the two popular techniques are used to create the multivariate (MV) 

models.   MV statistical models for process monitoring are used in this study to 

address the challenges in biologics manufacturing process such as raw material 

variation and control of process variability, identification and monitoring of relevant 

process parameters in the operating space and RT-MSPM for Early Detection and 

Diagnosis of Process Upsets and Trends. 

The implementation of RT-MSPM assists in meeting the latest process validation 

guidance requirement to achieve continued process verification (CPV) by monitoring 

each and every batch in real time.  With the use of RT-MSPM tool, every run can be 

considered as a process validation run.  If the process is monitored in real time then 

the sampling frequency can be reduced significantly, which can result in tremendous 

cost saving. 
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PREFACE 

 

 

This thesis is prepared according to the manuscript format. The manuscripts are included. 

 

MANUSCRIPT 1:  APPLYING QBD AND PAT IN COMMERCIAL BIOLOGICS 

MANUFACTURING, VALIDATION OF PROCESS MONITORING TOOL AND BENEFIT 

EVALUATION 

 

MANUSCRIPT 2:  USE OF MULTIVARIATE STATISTICAL PROCESS MONITORING TO 

ACHIEVE CONTINUED PROCESS VERIFICATION  

 

The first manuscript will be submitted for publication in Journal of Pharmaceutical 

Innovation.  The second manuscript will be submitted for publication in PDA’s Journal of 

Pharmaceutical Sciences and Technology. 
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BACKGROUND 

 

Regulatory Guidance Related to PAT (Process Analytical Technology) and QbD (Quality 

by Design):  

 

PAT is a system for designing, analyzing, and controlling manufacturing through timely 

measurements of critical quality and performance attributes of raw and in-process 

materials and processes with the goal of ensuring final product quality.  

The term analytical in PAT is viewed broadly and includes chemical, physical, microbial, 

mathematical, and risk analysis conducted in an integrated manner. The goal of PAT is to 

enhance understanding and control the manufacturing process. Quality cannot be tested 

into products; it should be built-in or should be by design. Consequently, the tools and 

principles described in this guidance should be used for gaining process understanding 

and can also be used to meet the regulatory requirements for validating and controlling 

the manufacturing process [2]. 

Using the approach of building quality into products, PAT guidance highlights the 

necessity for process understanding and opportunities for improving manufacturing 

efficiencies through innovation and enhanced scientific communication between 

manufacturers and the agency. Increased emphasis on building quality into products 

allows more focus to be placed on relevant multi-factorial relationships amongst material, 

manufacturing process, environmental variables, and their effects on quality. This 

enhanced focus provides a basis for identifying and understanding relationships among 

various critical formulation and process factors and for developing effective risk 

mitigation strategies (e.g., product specifications, process controls, training, etc.). The 

data and information to help understand these relationships can be leveraged through pre-

formulation programs, development and scale-up studies, as well as from improved 

analysis of manufacturing data collected over the life of a product.  

A desired goal of the PAT framework is to design and develop well understood processes 

that will consistently ensure a predefined quality at the end of the manufacturing process. 

Such procedures would be consistent with the basic tenet of QbD and could reduce risks 

to quality and regulatory concerns while improving efficiency. Gains in quality, safety, 
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and/or efficiency will vary depending on the process and the product, and are likely to 

come from reducing production cycle times by using on-line, in-line, and/or at-line 

measurements and controls ; preventing rejects, scrap, and re-processing ; real time 

release; increasing automation to improve operator safety and reduce human errors ; 

improving energy and material use and increasing capacity; facilitating continuous 

processing to improve efficiency and manage variability.  

 

This guidance facilitates innovation in development, manufacturing and quality assurance 

by focusing on process understanding. These concepts are applicable to all manufacturing 

situations.  

 

Process Understanding [2, 8] 

 

A process is generally considered well understood, when variability from batch to batch 

is explained, a good run from bad run is predicted, and all the factors that can alter 

quality, are accounted for and are understood.  

 

A focus on process understanding can reduce the burden for validating systems by 

providing more options for justifying and qualifying systems intended to monitor and 

control biological, physical, and/or chemical attributes of materials and processes. 

Structured product and process development on a small scale, using experimental design 

and on-line or in-line process analyzers to collect data in real time, can provide increased 

insight and understanding for process development, optimization, scale-up, technology 

transfer, and control. Process understanding then continues in the production phase when 

other variables (e.g., environmental and supplier changes) may possibly be encountered. 

Therefore, continuous learning over the life cycle of a product is important.  

 

Real-time multivariate statistical process monitoring provides a means to proactively 

monitor this overall process variability. It build the necessary foundation towards 

predictive monitoring which is aligned with the regulatory agency expectation on risk 

management and continual process improvement post-commercialization [11,12]. 
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Principles of PAT [12] 

Pharmaceutical manufacturing processes often consist of a series of unit operations, each 

intended to modulate certain properties of the materials being processed. To ensure 

acceptable and reproducible modulation, consideration should be given to the quality 

attributes of incoming materials and their process-ability for each unit operation.  

 

During the last three decades, significant progress has been made in developing analytical 

methods for chemical attributes (e.g., identity and purity). However, certain physical and 

mechanical attributes of pharmaceutical ingredients are not necessarily well understood. 

Consequently, the inherent, undetected variability of raw materials may be manifested in 

the final product.  

 

Establishing effective processes for managing physical attributes of raw and in-process 

materials requires a fundamental understanding of attributes that are critical to product 

quality. Such attributes may pose a significant challenge because of their complexities 

and difficulties related to collecting representative samples. Since the Formulation design 

strategies are not generalized, the quality of these formulations can be evaluated only by 

testing samples of in-process materials and end products.  

 

Currently, these tests are performed off line after preparing collected samples for the 

analysis. Different tests are needed because they only address one attribute of the active 

ingredient following sample preparation (e.g., chemical separation to isolate it from other 

components). During sample preparation, other valuable information pertaining to the 

formulation matrix is often lost.  

 

Several new technologies are now available that can acquire information on multiple 

attributes with minimal or no sample preparation. These technologies provide an 

opportunity to assess multiple attributes, often nondestructively. 
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Appropriate use of PAT tools and principles (described below) can provide relevant 

information relating to physical, chemical, and biological attributes. The process 

understanding gained from this information will enable process control and optimization, 

address the limitation of the time-defined end points discussed above, and improve 

efficiency. 

  

Process Analytical Technology Tools [2] 

 

There are many new tools available that enable scientific, risk-managed pharmaceutical 

development, manufacture, and quality assurance. These tools, when used within a 

system can provide effective and efficient means for acquiring information to facilitate 

process understanding, develop risk-mitigation strategies, achieve continuous 

improvement, and share information and knowledge.  

 

Producing a product consistently rests on four key areas of technology:  multivariate data 

analysis, process analyzers, process automation/control and knowledge management.  

 

When all of these ingredients are added to the mix, powerful solutions can be realized. 

Typically, collecting information from sensor and instruments is not complicated. Servers 

are bursting with data about processes. However, getting the process engineer the 

information he or she needs requires intensive IT involvement. 

 

Even more importantly is getting access to this data in real time to make decisions about 

quality. 

 

In the PAT framework, these tools can be categorized as: 

 

I. Multivariate (more than one variable) data acquisition and analysis 

II. Modern process analyzers or process analytical chemistry tools 

III. Process and endpoint monitoring and control tools 

IV. Continuous improvement and knowledge management tools 
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An appropriate combination of some, or all, of these tools may be applicable to a single-

unit operation, or to an entire manufacturing process and its quality assurance.  

 

Multivariate (more than one variable) data acquisition and analysis: 

From a physical, chemical, or biological perspective, pharmaceutical products and 

processes are complex, multi-factorial systems. There are many development strategies 

that can be used to identify optimal formulations and processes. The knowledge acquired 

in these development programs is the foundation for product and process design.  

This knowledge base can help to support and justify flexible regulatory paths for 

innovation in manufacturing and post approval changes. A knowledge base can be a 

benefit when it consists of scientific understanding of the relevant multi-factorial 

relationships (e.g., between formulation, process, and quality attributes), as well as a 

means to evaluate the applicability of this knowledge in different scenarios (i.e., 

generalization). This benefit can be achieved through the use of multivariate 

mathematical approaches, such as statistical design of experiments, response surface 

methodologies, process simulation, and pattern recognition tools, in conjunction with 

knowledge management systems. The applicability and reliability of knowledge in the 

form of mathematical relationships and models can be assessed by statistical evaluation 

of model predictions.  

Methodological experiments based on statistical principles of orthogonality, reference 

distribution, and randomization; provide effective means for identifying and studying the 

effect and interaction of product and process variables. Traditional one-factor-at-a-time 

experiments do not address interactions among product and process variables.  

When used appropriately, these tools enable the identification and evaluation of product 

and process variables that may be critical to product quality and performance. The tools 

may also identify potential failure modes and mechanisms and quantify their effects on 

product quality.  

Modern process analyzers or process analytical chemistry tools:   



 

6 
 

Process analysis has advanced significantly during the past several decades, due to an 

increasing appreciation for the value of collecting process data. Industrial drivers of 

productivity, quality, and environmental impact have supported major advancements in 

this area. Available tools have evolved from those that predominantly take univariate 

process measurements, such as pH, temperature, and pressure, to those that measure 

biological, chemical, and physical attributes. Indeed some process analyzers provide 

nondestructive measurements that contain information related to biological, physical, and 

chemical attributes of the materials being processed. These measurements can be At-line: 

Measurement, On-line Measurement and In-line Measurement.   

Process analyzers typically generate large volumes of data. Certain data is likely to be 

relevant for routine quality assurance and regulatory decisions. In a PAT environment, 

batch records should include scientific and procedural information indicative of high 

process quality and product conformance. For example, batch records could include a 

series of charts depicting acceptance ranges, confidence intervals, and distribution plots 

(inter- and intra-batch) showing measurement results. Ease of secure access to these data 

is important for real time manufacturing control and quality assurance. Installed 

information technology systems should accommodate such functions.  

Measurements collected from these process analyzers need not be absolute values of the 

attribute of interest. The ability to measure relative differences in materials before (e.g., 

within a lot, lot-to-lot, different suppliers) and during processing will provide useful 

information for process control. A flexible process may be designed to manage variability 

of the materials being processed. Such an approach can be established and justified when 

differences in quality attributes and other process information are used to control (e.g., 

feed-forward and/or feed-back) the process.  

The advances in process analyzers made the real time control and quality assurance 

during manufacturing feasible. However, multivariate methodologies are often necessary 

to extract critical process knowledge for real time control and quality assurance.  
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Comprehensive statistical and risk analyses of the process are generally necessary to 

assess the reliability of predictive mathematical relationships. Based on the estimated 

risk, a simple correlation function may need further support or justification, such as a 

mechanistic explanation of causal links among the process, material measurements, and 

target quality specifications. For certain applications, sensor-based measurements can 

provide a useful process signature that may be related to the underlying process steps or 

transformations. Based on the level of process understanding, these signatures may also 

be useful for process monitoring, control, and end point determination when these 

patterns or signatures relate to product and process quality.  

Design and construction of the process equipment, the analyzer, and their interfaces are 

critical to ensure that collected data are relevant and representative of process and 

product attributes. Robust design, reliability, and ease of operation are important 

considerations.  

Installation of process analyzers on existing process equipment in production should be 

done after risk analysis to ensure this installation does not adversely affect process or 

product quality.  

A review of current standard practices (e.g., ASTM International) for process analyzers 

can provide useful information and facilitate discussions with the Agency. A few 

examples of such standards are listed in the bibliography section. Additionally, standards 

forthcoming from the ASTM Technical Committee E55 may provide complimentary 

information for implementing the PAT Framework. We recommend that manufacturers 

developing a PAT process consider a scientific, risk-based approach relevant to the 

intended use of an analyzer for a specific process and its utility for understanding and 

controlling the process.  

Process and endpoint monitoring and control tools: 

It is important to emphasize that a strong link between product design and process 

development is essential to ensure effective control of all critical quality attributes. 

Process monitoring and control strategies are intended to monitor the state of a process 

and actively manipulate it to maintain a desired state. Strategies should accommodate the 
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attributes of input materials, the ability and reliability of process analyzers to measure 

critical attributes, and the achievement of process end points to ensure consistent quality 

materials and the final product.  

The design and optimization of drug formulations and manufacturing processes within 

the PAT framework can include steps such as identifying critical attributes, measurement 

of the critical attributes, design process control to monitor and maintain these attributes 

within the operating space.   

Within the PAT framework, a process end point is not a fixed time; rather it is the 

achievement of the desired material attribute. This, however, does not mean that process 

time is not considered. A range of acceptable process times (process window) is likely to 

be achieved during the manufacturing phase and should be evaluated, and considerations 

for addressing significant deviations from acceptable process times should be developed.  

Where PAT spans the entire manufacturing process, the fraction of in-process materials 

and final product evaluated during production could be substantially greater than what is 

currently achieved using laboratory testing. Thus, an opportunity to use more rigorous 

statistical principles for a quality decision is provided. Rigorous statistical principles 

should be used for defining acceptance criteria for end point attributes that consider 

measurement and sampling strategies. Multivariate Statistical Process Control can be 

feasible and valuable to realizing the full benefit of real time measurements. Quality 

decisions should be based on process understanding and the prediction and control of 

relevant process/product attributes. This is one way to be consistent with relevant CGMP 

requirements, as such control procedures that validate the performance of the 

manufacturing process (21 CFR 211.110(a)).  

Systems that promote greater product and process understanding can provide a high 

assurance of quality on every batch and provide alternative, effective mechanisms to 

demonstrate validation (per 21 CFR 211.100(a), i.e., production and process controls are 

designed to ensure quality). In a PAT framework, validation can be demonstrated through 
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continuous quality assurance where a process is continually monitored, evaluated, and 

adjusted using validated in-process measurements, tests, controls, and process end points.  

Risk-based approaches are suggested for validating PAT software systems. The 

recommendations provided by other FDA guidance, such as General Principles of 

Software Validation [17] should be considered. Other useful information can be obtained 

from consensus standards, such as ASTM.  

Continuous improvement and knowledge management tools:  

Continuous learning through data collection and analysis over the life cycle of a product 

is important. These data can contribute to justifying proposals for post approval changes. 

Approaches and information technology systems that support knowledge acquisition 

from such databases are valuable for the manufacturers and can also facilitate scientific 

communication with the Agency.  

Opportunities need to be identified to improve the usefulness of available relevant 

product and process knowledge during regulatory decision making. A knowledge base 

can be of most benefit when it consists of scientific understanding of the relevant multi-

factorial relationships (e.g., between formulation, process, and quality attributes) as well 

as a means to evaluate the applicability of this knowledge in different scenarios (i.e., 

generalization). Today's information technology infrastructure makes the development 

and maintenance of this knowledge base practical.  

Process Validation Guidance   

A typical biologics manufacturing process starts with inoculation phase and end up into 

final product which is distributed to patients as shown in Figure 1 [25]. This process 

involves several upstream unit operations such as series of cell culture bioreactors, 

centrifuges, filtration steps and downstream unit operations such as chromatography, 

ultra-filtration and diafiltration (UF/DF), viral inactivation, etc.  

 

Traditional Process Validation Approach: Per 21 CFR Parts 210 and 211, and of the 

Good Manufacturing Practice Regulations for Medical Devices, 21 CFR Part 820[15], 
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every pharmaceutical or biologics manufacturing organization has to go through rigorous 

testing and qualification phase before they seek  approval for  large scale manufacturing 

of drug substance or drug product.  The term “qualification” and “validation” are separate 

terms but are interchangeably used in the industry [16].  The FDA’s definition of 

validation is “Establishing documented evidence that a process or system, when operated 

within established parameters can perform effectively and reproducibly to produce a 

medicinal product, that meets its pre-determined specifications and quality attributes 

[17]”.  

 

In other words, each and every piece of equipment used in the manufacturing facility 

needs to undergo Installation, Operational and Performance Qualification processes to 

meet the guidance. The automated and computerized systems needs to go through 

“Software Validation [16] and Part 11 Compliance for electronics records and electronic 

signature validation [18] to ensure that the data inputs and outputs of these systems are 

secured and trust worthy just like paper records. It ensures that all the critical equipment 

is installed correctly; operate with the operating ranges and performs within the 

acceptable criteria. 

 

Upon completion of above mentioned validation process, the process validation is 

performed. Process validation is a federal requirement therefore; it is applicable to all the 

manufacture of pharmaceuticals and medical devices. Per “Guideline on general 

principles of process validation, May 1987”, manufacturing processes needed to be 

validated. Assurance of product quality was derived from careful attention to a number of 

factors including selection of quality parts and materials, adequate product and process 

design, control of the process, and in-process and end-product testing [17]. 

 

As stated in old process validation guidance, the manufacturers needed to perform 

confirmation runs a.k.a process validation runs to prove that the process is capable of 

effectively meeting the key and critical process parameter acceptance criteria. The key 

and critical operating parameters were within operating ranges and the process was able 

to generate the product in a controlled manner. The analytical assays tested the incoming 
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raw materials; in process material and finished product material to ensure that that they 

meet the specifications.  The guidelines suggested establishing robust test protocols to 

specify “A sufficient number of replicate process runs to demonstrate reproducibility and 

provide an accurate measure of variability among successive runs [17]”. It did not exactly 

specify how many runs. The manufacturing industry started performing three process 

validation runs and soon it became a norm. The standard industry practice became three 

consecutive process validation runs. Upon completion of this torturous, expensive and 

time consuming process FDA inspected the facilities gave approvals to manufacture the 

drug substances or drug products. The process was never validated after that throughout 

its lifecycle. 

 

FDA’s lifecycle Approach for Process validation: In 2011 FDA came up with new 

process validation guidance. This guidance is aligned with existing FDA guidance, 

including the FDA/International Conference on Harmonization (ICH) guidance for 

industry, Q8 - Pharmaceutical Development [4], Q9- Quality Risk Management [5], Q10 

- Pharmaceutical Quality System [6] and Q11- Development and manufacture of drug 

substances [7].  Although; this guidance does not repeat the concepts and principles 

explained in other guidance’s, FDA encourages the use of modern pharmaceutical 

development concepts, quality risk management, and quality systems at all stages of the 

manufacturing process lifecycle [9].  

Per this new guidance, manufacturers are required to adopt the lifecycle approach by 

performing the process validation activities in three stages [9] after completing the 

equipment and facility qualification.  

The three stages in the lifecycle approach outlines the development phase where the 

product knowledge and process understanding is gained to establish the operating space. 

The stage 1 is linked to process qualification stage for process validation. Utilizing the 

stage 1 and 2, the new expectation is to perform the continued process verification (CPV) 

to ensure that process remains in the control and consistently make the quality product.  

Three stages of process validation are outlined below:  
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I. In Stage 1, process design, the commercial process is defined based on knowledge 

gained through development and scale-up activities.  

II. In Stage 2, process qualification, the process design is evaluated and assessed to 

determine if the process is capable of reproducible commercial manufacturing.  

III. In Stage 3, continued process verification, ongoing assurance is gained during 

routine production that the process remains in a state of control.  

Pre-Requisites of PAT Implementation [2]: 

In order to get PAT on a more practical and operational level, we can list a number of 

prerequisites: 

  

Infrastructure: Automated data acquisition systems, databases, networks, and 

synchronization procedures must be in place. The greatest hurdle involved in almost any 

analysis is generation, integration and organization of data. This is particularly true for 

the pharmaceutical industry where data are often stored in vast warehouses but rarely, if 

ever, retrieved and used. Past regulatory environments did not provide incentives for 

analysis of manufacturing processes because implementing improvements required re-

validation and the current condition of pharmaceutical data infrastructures reflects this. 

As a result large efforts are required to assemble meaningful datasets. This challenge is 

further complicated given that laboratory and production data are scattered in various 

disconnected databases. Examples of these databases include Laboratory Information 

Management Systems (LIMS), Manufacturing Execution Systems (MES), Enterprise 

Resource Planning systems (ERP) as well as Supervisory Control and Data Acquisition 

systems (SCADA) and process historian databases. Product quality is influenced by all 

stages of production including variability of the raw materials. Developing process 

understanding of a finished product can only be realized through uncovering the 

cumulative influence of all processing steps and their interactions. Integrating, 

synchronizing and aligning data from all relevant sources is therefore a pre-requisite 

before analysis can begin. 

 

Multivariate characterization:  Adequate and informative data must be measured on all 

steps and ingredients of the process. 
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Multivariate evaluation of all data:  All data should be analyzed together. The data 

analysis should not focus on variable selection, should not be univariate in nature, and 

should not involve methods with many adjustable parameters which are prone to over fit. 

The data analysis phase should entail simple, transparent, informative, and reversible 

projection models. 

 

Data and information integration and communication:  All data flows and data bases 

should be integrated onto one common platform. This facilitates use of data, visualization 

of data, and communication of results. 

 

Design of Experiment (DOE):  A suitable use of DOE combined with some of the steps 

above can augment the analysis and help to ensure that critical system parameters are 

varied together in a simultaneous to get the optimum information from the experiments. 

 

Strategy for Implementation of PAT [2]  

The Agency understands that to enable successful implementation of PAT, flexibility, 

coordination, and communication with manufacturers is critical. The Agency believes 

that current regulations are sufficiently broad to accommodate these strategies. 

Regulations can effectively support innovation when clear, effective, and meaningful 

communication exists between the Agency and industry, for example, in the form of 

meetings or informal communications.  

 

The first component of the PAT framework described above addresses many of the 

uncertainties with respect to innovation and outlines broad principles for addressing 

anticipated scientific and technical issues. This framework should assist a manufacturer 

in proposing and adopting innovative manufacturing and quality assurance. The Agency 

encourages such proposals and has developed a regulatory strategy to consider such 

proposals.  
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Ideally, PAT principles and tools should be introduced during the development phase. 

The advantage of using these principles and tools during development is to create 

opportunities to improve the mechanistic basis for establishing regulatory specifications. 

Manufacturers are encouraged to use the PAT framework to develop and discuss 

approaches for establishing mechanistic-based regulatory specifications for their 

products. The recommendations provided in this guidance are intended to alleviate 

concerns with approval or inspection when adopting the PAT framework.  

 

In the course of implementing the PAT framework, manufacturers may want to evaluate 

the suitability of a PAT tool on experimental and/or production equipment and processes. 

For example, when evaluating experimental on- or in-line process analyzers during 

production, it is recommended that risk analysis of the impact on product quality be 

conducted before installation. This can be accomplished within the facility's quality 

system without prior notification to the Agency. Data collected using an experimental 

tool should be considered research data. If research is conducted in a production facility, 

it should be under the facility's own quality system.  

 

When using new measurement tools, such as on- or in-line process analyzers, certain data 

trends, intrinsic to a currently acceptable process, may be observed. Manufacturers 

should scientifically evaluate these data to determine how or if such trends affect quality 

and implementation of PAT tools. FDA does not intend to inspect research data collected 

on an existing product for the purpose of evaluating the suitability of an experimental 

process analyzer or other PAT tool. FDA's routine inspection of a firm's manufacturing 

process that incorporates a PAT tool for research purposes will be based on current 

regulatory standards (e.g., test results from currently approved or acceptable regulatory 

methods). Any FDA decision to inspect research data would be based on exceptional 

situations similar to those outlined in Compliance Policy Guide Sec. 130.300.4 Those 

data used to support validation or regulatory submissions will be subject to inspection in 

the usual manner.  
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Challenges of PAT Implementation [2, 8] 

For successful implementation of PAT combination of following areas must be 

considered:  

Organization support:  

One of the most important factors in ensuring the success of process analytical methods is 

strategic organizational support, which can afford to design, implement and maintain the 

PAT systems.  The most PAT systems have significant upfront costs and efforts, they 

require management support. 

 

Implementation of process analytical methods requires the highest level of interaction 

with plant personnel and management. The aspect of ownership and roles and 

responsibilities are handled effectively as long there is continuity in management support.  

 

The development of PAT applications by central groups and subsequent transfer of 

ownership to the plant require the highest level of interaction with plant personnel and 

technology transfer teams. It is critical to success that the interests of central 

organizations and sites are aligned to effectively develop and support the process 

analytical systems, particularly those with relatively high complexity.   

 

Necessary roles in PAT implementation can be filled by personnel from different 

departments:  

 

Management: Provides overall project management, business support and expertise as 

well as strategic oversight 

 

Procurement: Works with vendors to facilitate and coordinate purchase of equipment 

 

Site/Plant Operations: Contributes technical know-how as well as process/manufacturing 

logistics 

 

Process Analytics: Contributes analytical knowledge, analyzer technology development, 

analyzer engineering, implementation support and training 
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Automation and control: Handles efforts in the area of process control and automation of 

process equipment 

 

Maintenance: Responsible for care and feeding of process analytical equipment 

 

Vendor: Provide products and services for PA implementation 

 

Quality: Potential oversight of data and product quality 

 

Regulatory expertise: Necessary for regulatory compliance and strategic partnerships 

with regulatory agencies.  

 

Profile of a process analytical scientist/engineer: For successful implementation of PAT 

project, process analytical personnel should have combination of competencies such as 

technical, interpersonal effectiveness, initiative, business focus, innovative, learning, and 

leadership skills.   

 

Industrial Application of PAT tools: Multivariate Data Analysis (MVDA): 

Due to the recent advancement in the computer technology, we have the capability to 

collect larger amounts of data. This trend will continue to accelerate in the next decades 

as the technological developments continues. Multivariate data analysis (MVDA) is 

becoming increasingly popular because the on-going data collection tends to overload our 

computers and data-bases with tons of data. It is therefore necessary to work on bigger 

samples if full advantage is to be taken of all accessible information. It is also necessary 

to derive as much information as possible from the diversity of the data, rather than 

restricting attention to subsets of it. The use of multivariate data analysis techniques 

provides this opportunity and it can be used to reveal the information otherwise 

impossible to know. By using MVDA we can extract much more information than 

univariate data analysis techniques for the selected variables and observations. This data 

then needs to be analyzed so that meaningful information can be extracted from it. 

MVDA methods are being used in pharmaceutical and biotechnology industries in 
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several areas [12] such as 1) Process monitoring, and early fault detection and 

classification; 2) Process Analytical technology tool; 3) Quality control analysis; 4) Data 

mining and integration; 5) Structure activity relationship; 6) Multivariate 

characterization; 7) Multivariate calibration; and 8) Multivariate characterization and 

discrimination analysis. 

In the biological manufacturing process, tremendous amount of data is generated from 

various sensors during each phase for the respective unit operation. If the manufacturing 

operation is comprised of the high tech data collection sensors, then the amount of data 

can be generated for each phase from few seconds interval to several days interval. The 

in- process test results helps to measure and ensure that the process is running under 

control. This data is stored on the computer and server databases.  

The use of various multivariate analysis techniques such as Principal Component analysis 

(PCA) and Projection to Latent Structures (PLS) modeling can give a meaning to this 

data. ‘The masses of process data can provide easy to grasp graphical information about 

the state of the process, and relations between important sets of process variables. These 

multivariate methods make efficient use of all pertinent data, with little loss of 

information’. [19]  

In order to perform MVDA, it is important to understand the variability, complexity of 

the data and the type of data being analyzed. The MVDA is well suited to deal with 

variability in the complex data, thereby reducing the risk of incorrect inferences. 

However; all the data points are needed. One should not disregard the data because the 

variables are often collinear, either partially or completely. If part of the data is ignored 

then there is a substantial risk of overlooking the important information. 

 

In MVDA, most common and widely-used methods are PCA and PLS. These methods 

present the modeling results graphically and the observations and variables are easily 

available for diagnostics and interpretation. PCA and PLS methods are mainly popular 

because they can deal with the problems related to dimensionality, co-linearity, noise and 

missing data. These methods offer a number of diagnostic tools, which facilitate the 

identification of assignable causes.    
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PCA and PLS can be used to address three main types of data issues such as overview of 

data, classification & discrimination and regression modeling. 

 

Principal Components Analysis (PCA) [14, 20, 39]: 

The PCA method was first introduced by Pearson in 1901. In 1933, Harold Hotelling 

formulated the PCA theory. But, 1980 onwards, due to development of personal 

computers, application of PCA exploded [20].    

 

PCA is a way of identifying patterns in data, and expressing the data in such a way as to 

highlight their similarities and differences. The main advantage of PCA is that once you 

have found these patterns in the data, and you compress the data, i.e. by reducing the 

number of dimensions, without much loss of information [21]. Statistically, PCA finds a 

new lines or planes in the multi-dimensional space that approximate the data as well as 

possible in the least square sense. The goal of PCA is to reduce the number of variables 

of interest into a smaller set of components. First principal component (1
st
 PC) explains 

maximum variation and subsequent PC’s explain remaining variation in a descending 

order [12].   

 

PCA method is useful for over viewing a data matrix X, because it is able to explore 

relationships both among variables and observations. PCA provides the understanding of 

the relationships between variables which contribute similar information to the PCA 

model and which variables provide unique information about the observations.   

 

Principal Components Analysis have several objectives [22] such as dimensionality 

reduction; determining of linear combinations of variables;   choosing of the most useful 

variables;  visualization of multidimensional data; identification of underlying variables; 

identification of groups of objects or outliers.  

The tasks required of the analyst to carry these out are as follows:  
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Dimensionality Reduction: 

In case of a table of dimensions N x M, each of the N rows or observations can be 

regarded as an M-dimensional vector or variables. Finding a set of M’ < M principal axes 

allows the objects to be adequately characterized on a smaller number of (artificial) 

variables. This is advantageous as a prelude to further analysis as the M – M’ dimensions 

may often be ignored as constituting noise; and, secondly, for storage economy 

(sufficient information from the initial table is now represented in a table with M’ < M 

columns). Reduction of dimensionality is practicable if the first M’ new axes account for 

approximately 75 % or more of the variance. There is no set threshold, the analyst must 

judge. The cumulative percentage of variance explained by the principal axes is consulted 

in order to make this choice.  

 

The determining of linear combinations of variables: 

The data matrix X is projected into multidimensional space. PCA method provides the 

understanding of the relationships between variables. This relationship is transformed 

into a covariance matrix.  The eigenvalues and eigenvectors are the properties of matrix. 

The relationship between the variables, their length and the direction of PC vectors is 

explained by eigenvalues and eigenvectors. The eigenvector are found in square matrix, 

its direction is not affected by scaling and they are orthogonal to each other. The 

eigenvalues are closely related to eigenvectors because they always come in pairs. It is 

important in PCA that each eigenvector to be of unit length [21] that means the variance 

of the eigenvector is one.  If the eigenvalue is zero, the variance of projections on the 

associated eigenvector is zero. Hence the eigenvector is reduced to a point. If this point is 

additionally the origin (i.e. the data is centered), then this allows linear combinations 

between the variables to be found. In fact, we can go a good deal further: by analyzing 

second-order variables, defined from the given variables, quadratic dependencies can be 

straightforwardly sought. This means, for example, that in analyzing three variables, y1, 

y2, and y3, we would also input the variables y12, y22, y32, y1y2, y1y3, and y2y3. If the 

linear combination y1 = c1 y22 + c2 y1y2 exists, then we would find it. Similarly we 

could feed in the logarithms or other functions of variables.  
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Feature selection: the choosing of the most useful variables: 

In feature selection we want to simplify the task of characterizing each object by a set of 

attributes. Linear combinations among attributes must be found; highly correlated 

attributes (i.e., closely located attributes in the new space) allow some attributes to be 

removed from consideration; and the proximity of attributes to the new axes indicate the 

more relevant and important attributes. As stated earlier, PCA method calculates the 

eigenvectors and eigenvalues from the relationship matrix. The eigenvector with the 

highest eigenvalue is the principal component of the data set. In general, once 

eigenvectors are found from the covariance matrix, the next step is to order them by 

eigenvalue, highest to lowest. This gives you the components in order of significance 

[21]. This step assists in in choosing the most useful variables. 

 

Visualization of multidimensional data: 

In order to provide a convenient representation of multidimensional data, planar plots are 

necessary. An important consideration is the adequacy of the planar representation: the 

percentage variance explained by the pair of axes defining the plane must be looked at 

here.  

 

Identification of underlying variables: 

PCA is often motivated by the search for latent variables. Often it is relatively easy to 

label the highest or second highest components, but it becomes increasingly difficult as 

less relevant axes are examined. The objects with the highest loadings or projections on 

the axes (i.e. those which are placed towards the extremities of the axes) are usually 

worth examining: the axis may be characterisable as a spectrum running from a small 

number of objects with high positive loadings to those with high negative loadings.  

 

Identification of groups of objects or of outliers: 

A visual inspection of a planar plot indicates which objects are grouped together, thus 

indicating that they belong to the same family or result from the same process. 

Anomalous objects can also be detected, and in some cases it might be of interest to redo 

the analysis with these excluded because of the perturbation they introduce.  



 

21 
 

In this process, the principal components are derived as [23]:  

PC1= b11X1+ b21X2+ … + bk1Xk             (Eqn. 1) 

PC2= b12X1+ b22X2+ … + bk2Xk             (Eqn. 2) 

PCf= b1fX1+ b2fX2 + … + bkfXk              (Eqn. 3) 

 

PCA modeling shows the correlation structure of data matrix X, approximating it by a 

matrix product of lower dimension (TP’), called principal components plus a matrix of 

residuals (E). The PCA model is shown by following equation [12]:  

                                               (Eqn. 4) 

where,  

T = Matrix of scores that summarizes the X-variables 

P’ = Matrix of loadings showing the influence of the variables 

E = Matrix of residuals showing the variation in the data which is left out of modeling 

The PCA model as shown in equation (4) can monitor new batch in real time without 

having to estimate the future portion of the new data point. The score for the new batch 

variable is calculated using equation (5). 

Tpred, k = X new, k * W (P’W)
-1                         

(Eqn. 5) 

where,  

W = Weights of the Matrix of scores that summarizes the X-variables 

 

Projections to Latent Structures (PLS) [12, 14, 24, 35, 39]:  

 

The PLS approach was originated in 1975 by Herman Wold. He developed a simple way 

to estimate parameters in the model called NIPALS (Nonlinear Iterative partial least 

squares). These are later called PLS models. In PLS model, P indicates ‘partial’ because 

it is a partial regression since parameter vector (X variable) is considered fixed in the 

estimation. In 1980, the PLS started to interpret as “Projection to Latent Structures”. 
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PLS is a similar technique which also reduces the dimensionality of the input space X, 

however, it does this while finding the best regression fit against a response variable Y.  

PLS method utilizes regression modelling between two data metrices, usually denoted by 

X and Y, with the aim of predicting Y from X for new observations. This is achieved by 

“Linear Multivariate” modelling. In PLS modelling, the aim is to predict complex 

response or output variables (Y) based on the input variables (X). The precision of PLS 

model increases with increasing number of X variables.  

 

In process modelling the PLS method finds the relationship between input (X variables) 

measured on the process at N time points and corresponding values of Y (output 

variables). The PLS model can project and data table as long as there is a similarity 

between observations. 

 

PLS model consists of a structural part, which reflects the relationships between the latent 

variables, and a measurement component, which shows how the latent variables and their 

indicators are related. 

 

PLS starts by calculating case values. For this purpose, the “unobservable variables are 

estimated as exact linear combinations of their empirical indicators”, and PLS treats 

these estimated proxies as perfect substitutes for the latent variables. The weights used to 

determine these case values are estimated so that the resulting case values capture most 

of the variance of the X variables that is useful for predicting the Y variable. This is 

based on the implicit assumption that all measured variance of the variables in the model 

is useful variance that should be explained. Using these weights, it is then possible to 

determine a value for each unobservable variable, simply by calculating a weighted 

average of its indicators. This results in a model in which all unobservable variables are 

approximated by a set of case values and that can, therefore, be estimated by a set of 

simple, first-generation, ordinary least squares regressions.  

The basic idea of PLS is quite straightforward:  

First, the weight relations, to their respective unobservable variables, are estimated.  
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Second, case values for each unobservable variable are calculated, based on a weighted 

average of its indicators, using the weight relations as an input.  

 

Finally, these case values are used in a set of regression equations to determine the 

parameters for the structural relations. 

 

This explanation makes it obvious that the most crucial part of a PLS analysis is the 

estimation of the weight relations. Of course, it would be easier simply to assume equal 

weights for all indicators, but this approach has two disadvantages: 

 

First, there is no theoretical rationale for all indicators to have the same weighting. 

Because it can be assumed that the resulting parameter estimates of the structural model 

depend on the type of weighting used, at least as long as the number of indicators is not 

excessively large, the (exogenous) assumption of equal weights makes the results highly 

arbitrary. Second, such a procedure does not take into account the fact that some 

indicators may be more reliable than others and should, therefore, receive higher weights. 

 

Consequently, PLS uses a more complex, two-step estimation process to determine the 

weights (w): First, it starts with an outside approximation, in which case values for each 

latent variable are estimated, based on a weighted average of their respective indicators. 

The weights used to calculate this aggregation is determined in a manner similar to a 

principal-components analysis for reflective or regression analysis for formative 

indicators. In the next step, the inside approximation, improved case values are 

determined as a weighted average of neighboring latent variables. For this process, there 

are three different weighting schemes available, but one can demonstrate that the choice 

between them has only a minor impact on the final results. Using this second estimate of 

the case values, the weight relations are modified and the process of inside and outside 

approximation starts from the beginning again and is repeated until convergence of the 

case values is achieved. 
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Hence, being a limited information approach PLS has the advantage that it “involves no 

assumptions about the population or scale of measurement” and consequently works 

without distributional assumptions and with nominal, ordinal, and interval scaled 

variables. However, one has to bear in mind that PLS, like any statistical technique, also 

requires certain assumptions to be fulfilled. Beyond those known from the standard 

regression model, the most important assumption is predictor specification. This 

requirement states that the systematic part of the linear regression must be equal to the 

conditional expectation of the dependent variable and can be considered as fulfilled in 

most cases. PLS is quite robust with regard to several inadequacies (e.g., skewness or 

multicollinearity of the indicators, misspecification of the structural model) and that the 

latent variable scores always conform to the true values. 

 

However, there is also another side of the coin, namely, the problem of consistency at 

large. In general, a consistent estimator can be described as “one that converges in 

probability to the value of the parameter being estimated as the sample size increases”. 

However, because the case values for the latent variables in PLS are aggregates of 

manifest variables that involve measurement error, they must be considered as 

inconsistent.  

 

Therefore, “the path coefficients estimated through PLS converge on the parameters of 

the latent-variable model [only] as both the sample size and the number of indicators of 

each latent variable becomes infinite” a problem known under the term consistency at 

large. Hence in all real-life situations, in which both the number of cases in the sample 

and the number of indicators per latent variable will be finite, PLS tends to underestimate 

the correlations between the latent variables and overestimate the loadings. Only when 

the number of cases in the sample and the number of indicators per latent variable 

increase to infinity do the latent variable case values approach the true values and this 

problem disappears. 

 

PLS modeling consists of simultaneous projections of both the X and Y spaces. The 

coordinates of the points on the X and Y dimensions constitutes the elements of the T and 
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U score matrices, P’ and C’ loading matrices and E and F residual matrices as shown in 

equation-4 and 5. The objective here is [12] to well approximate the X and Y spaces and 

to maximize the correlation between X and Y. 

 

                                                         (Eqn. 4) 

 

                                                        (Eqn. 6) 

 

where,  

T and U= Matrix of scores that summarizes the X-variables and Y variables 

P’ and C’ = Matrix of loadings showing the influence of the variables in X and Y matrix 

E & F= Matrix of residuals showing the variation in the data which is left out of 

modeling for X matrix and Y matrix 

 

The batch level model is used to predict the final performance variable using the X 

matrix T scores as shown in equation-5 and equation-6 [12]. Tpred, k and Ypred, k  in the 

following equation calculate the estimated scores and quality / performance attributes at 

time slice ‘k’ in a given batch. 

Tpred, k = X new, k * W (P’W)
-1                         

(Eqn. 5) 

Ypred, k = Tpred, k * C’
                                           

(Eqn. 7) 

 

Pre-Treatment of Data and Scaling Techniques 

Like any other statistical application, PCA require the data to be pre-processed prior to 

using. The variables often have different numerical ranges. A variable with large range 

has a large variance and a variable with small range has small variance. Since PCA is a 

maximum variance projection method, it follows that a variable with large variance is 

more likely to be expressed in the modeling than a low-variance variable. In order to give 

equal weight to all the variables, the data from the variables needs to standardized. This 
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process is called scaling. A combination of scaling techniques can also be used as shown 

in Figure 2 [26]. There are following ways of scaling the data:    

Mean Centering: For PCA to work properly, you have to subtract the mean from each of 

the data dimensions. The mean subtracted is the average across each dimension. This 

produces a data set whose mean is zero. 

Scaling to Unit Variance:  The long variables are shrunk and short variables are stretched, 

so that, all variables are set to equal length. The UV eliminates the differences due to unit 

of measures so that the variable with high values does dominate the model. 

This is achieved by multiplying each variable by 1/Sk where Sk denotes standard 

deviation of each variable.  

Auto scaling: When unit variance scaling is combined with mean centering, it is denoted 

as ‘auto scaling’. 

Pre-Requisites and Challenges of Multivariate Model Creation [12, 27]: 

Handling of missing data:  It is common in process systems that some batches or phases 

within batches having missing data points or a particular phase is not run for various 

operational reasons.  PCA and PLS techniques inherently capable of predicting missing 

data for historical batches that are considered as representing normal operation and are 

highly repeatable therefore using the estimates for the missing data is acceptable [28]. 

  

Removal of the outliers: PCA discovers strong outliers and moderate outliers. Outliers 

are the observations which do not fit the model. Prior to modeling, outliers in the data set 

should also be detected and removed where applicable. The strong outliers pull the PCA 

model to themselves. The moderate outliers are captured by residual plots. Detection and 

elimination of outliers are critical for reliable and robust modeling and monitoring. There 

also are batch level outliers where a batch level score would be grossly different from the 

rest of the batches most likely due to a difference in the operational batch characteristics 

(e.g., different set points) or too many spikes. The outliers can be detected and removed 

via visual inspection; this can also be done via PCA-based modeling. A PCA model can 
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be developed and scores space is inspected for outlying data points or batches. PCA can 

discover strong and moderate outliers. Strong outliers are found in the PC scores plots 

and Hotelling’s T
2
 plots and moderate outliers are in the residuals (DModX at batch 

level). 

Alignment of Batch Trajectories: Variability in total duration of the batches (such as 

operational condition switches like set points as well as biological variability such as cell 

growth peak maximum) result in unequal and unaligned batch trajectories across batch 

history. Alignment of the trajectories prior to modeling is important to ensure that (as 

much as possible) the variables or scores at any point during one batch correspond to 

those at the same biological or operational state in other batches.  

There are many different techniques available for alignment of batch trajectories such as, 

use of an indicator or maturity variable [27, 29], dynamic time wrapping technique [12] 

and curve registration technique [27] 

The most commonly used technique, is to align the batches based on a “maturity” (also 

known as an indicator) variable. The maturity variable is selected such a way that it 

should be monotonically increasing/decreasing, smooth and it indicates the end of a batch 

or a phase (such as reaction conversion, column volume totalized or simply time 

elapsed). Measurements on other variables are sampled with respect to the equal intervals 

of this variable so that batch trajectories are also aligned and set to equal size for 

modeling purposes. When there is no maturity variable the local batch time is used. 

SIMCA software by default selects $Time maturity variable for PLS model. The value of 

local batch time or maturity predicted by PLS model is suitable for a “maturity index” 

that can be used to indicate how far the batch has evolved [12].    

Unfolding of three dimensional data into two dimensional data [12]: 

 

Using SIMCA software, we can do two levels of batch monitoring; the batch evolution 

level monitoring (BEM) and batch level monitoring (BLM).  

BEM Modelling: 
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The aim of batch evolution level monitoring is to develop a model of the good batches 

and monitor new batches against this model as they evolve to find out if they are evolving 

within the confidence limits. A data generated by a batch processes for a biological 

manufacturing process is arranged in the data blocks as shown in Figure 3a & 3b [30]. 

The batches are depicted as “I”, Variables are depicted as “J” and time points are 

depicted as “K”.  In order to do the observation level modeling, the three way batch data 

table must be unfolded in such a way that the direction of the variable is preserved as 

shown in Figure 3a [30]. The resulting two-way matrix then has “I*J” rows and “K” 

columns. Each row contains data points Xijk from a single batch observation (batch I, 

time K and variable J). If the regression is made against local batch time, the resulting 

PLS scores reflect linear t1, t2, and t3 relationships (assuming a model with three latent 

variables) to local time batch time. A PCA on the on the three way data matrix will show 

how the individual observations relate to each other. 

 

BL Modelling:  

In batch level modelling, all the data from input variable matrix (X) and output variable 

matrix (Y) is available. Therefore, the data from the whole batch is used to create a 

model. The aim of the whole batch model is to verify the new whole batch is a good 

batch or bad batch. A data generated by a batch processes for a biological manufacturing 

process is unfolded in such a way that the direction of the batch is preserved. The 

resulting two-way matrix then has “I” rows and “J*K” columns as shown in Figure (3b). 

The resulting PLS model can be used to classify new batches as good or bad. Another 

important objective of batch level model is to understand how Y (output) variable is 

influenced by the X (input) variables.  

 

Model Diagnostics - Selection of correct number of PC  

Once the model is created, the required number of components is determined by cross 

validation technique. In order to ensure that the model is effective, it is important to have 

optimal balance between the goodness of fit and its predictive ability. The good ness of 

fit is given by the parameter R
2 

(explained variation) and the goodness of prediction is 

given by Q
2 

(predicted variation). Usually, R
2
 and Q

2 
vary differently as the complexity 
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of the model increases. Therefore, selection of number of parameters is based on the 

trade-off between goodness of fit and goodness of prediction as shown in Figure 4 [12].   

 

There is another way of selecting number of components. You can plot eigenvalues of 

each component against the number of components as shown in Figure 5 [31]. The 

eigenvalue of the components represent the variation for those respective components. 

Any component whose eigenvalue is less than 1.0 is in most cases are eliminated because 

it reflects the lowest and negligible variance [23]. 

 

Setting the Control Limits [12]: 

Once the batch evolution level and the models are created, the SIMCA software performs 

the rearrangement of reference model scores to create a new matrix. From this new 

matrix the averages and ± 3 standard deviation confidence limits are calculated. A 

number of multivariate statistical monitoring observation level and batch level plots and 

diagnostics are readily available in SIMCA for monitoring new batches in real-time such 

as; score plot, loading plot, DModX plot, Hotelling’s T
2
 plot, contribution Plot, 

Coefficient plot, VIP (variable importance in projection plot), and Observed vs. Predicted 

relationship plots. 

 

Score Plots and Loading Plots: These plots are typically used at batch level to generate 

displaying the observations as situated in the multi-dimensional plane. These charts 

reveal the information about the how the variables are grouped, the covariance trend, if 

there are any outliers and similarities between them.  

DModX (Distance to the model X) Plot: It is an estimate of how far from the model 

plane, in the X or Y space, the observation is positioned. DModX is used for process 

deviation detection where events are not necessarily explained by the model. The 

distance to model plot is displayed in normalized units after the last component with the 

default significance level of 0.05.  

The DModX is calculated by using following formula [32]:  
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DModX = (i eik
2
 / D.F.)

1/2    

            

(Eqn. 8) 

where, 

i eik
2   

= Residual variable variation 

D.F. = Degrees of freedom (K-A). Where, K= number of variables and A = number of 

components 

If the DModX is larger than the critical limit then it indicates that the observation is an 

outlier in the X space. 

Hotelling’s T
2
 Plot: These charts are also used for process deviation detection. They 

detect deviations that are explained by the process model (if DModX is in control) and 

within the overall variability but represent unusually high variation comparing to the 

average process behavior.  

 

The Hotelling's T
2
 for observation i, based on A components is calculated by using 

following formula [12]: 

Ti 
2
= Σ ((tia - tavg)

2
 / sta

2
)                    (Eqn. 9)

        

 

where; 

s
2
ta = Variance of ta according to the class model. 

Ti
2
 * (N - A) / A (N - 1) 

Follows a F distribution with A and N-A degrees of freedom. 

N = Number of observations in the workset. 

A = Number of components in the model or the selected number of components. 

Hence if 

Ti
2
 > A (N - 1) / (N - A) * Fcritical (p=0.05) 

then observation i is outside the 95% confidence region of the mode. 
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Contribution plots: 

When the Hotelling's T
2 

and/or DModX plots show a deviation (outlier from the 

confidence limit), indicating that some variable(s) are deviating from the historical 

average behavior without diagnosing which variables are contributing the most. 

Contribution plots are then used to explore into the original variable level and inspect 

which variable(s) are contributing to the inflated statistic [19]. 

 

VIP (Variable Importance in projection Plot): 

The VIP (Variable Importance in Projection) plot summarizes the importance of the 

variables both to explain X matrix and to correlate to Y matrix. The VIP values are 

calculated for each X by summing the squares of the PLS loading weights, weighted by 

the amount of sum of squares explained in each model component. The sum of squares of 

all VIP's is equal to the number of terms in the model. Hence, the average VIP is equal to 

1. VIP-values larger than 1 indicates “important” X-variables, and values lower than 0.5 

indicate “unimportant” X-variables. The interval between 1 and 0.5 is a gray area, where 

the importance level depends on the size of the data set. The VIP plot is sorted from high 

to low, and shows confidence intervals for the VIP values, normally at the 95% level 

[19]. 
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FIGURES LISTED IN BACKGROUND 

 

 

 

 

Figure 1: Typical (Biologics) Manufacturing Process [Source: 25]: The process 

involves several upstream unit operations such as inoculation, series of cell culture 

bioreactors, harvest tanks, filtration tanks, centrifuges and downstream unit operations 

such as multiple chromatography operations, multiple ultra-filtration and diafiltration 

(UF/DF) operations, viral inactivation, final filtration and filling and packaging. 
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Figure 2: Data Scaling Techniques [Source: 26]: After mean –centering and unit variance 

scaling all variables will have equal “length” and mean value zero. 
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Figure 3a: Unfolding three way data matrix [Source: 30] the three way table of 

historical batch process data comprises “I”, J variables and K time points. In batch 

evolution model (BEM), this three-way data table is unfolded by preserving the 

variable direction. This gives a two-way matrix with I*K rows and J columns. 

Each row contains data points Xijk from a single batch evolution. 

 

Figure: 3b, the three way table of historical batch process data comprises “I”, J 

variables and K time points. In batch level model (BLM), this three-way data 

table is unfolded by preserving the batch direction. This gives a two-way matrix 

with I rows and J*K columns. Each row contains data points from one single 

batch. 
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Figure 4: A trade-off between the goodness-of-fit (R
2
) and goodness-of-prediction (Q

2
). 

The vertical axis corresponds to the amount of variation and the horizontal axis 

corresponds to the total number of PCs (A) [Source: 12]. The number of components for 

the model is selected on the basis of optimal balance between fit and predictability. 
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Figure 5: Another way of selecting number of components [Source: 31].  The vertical 

axis corresponds to the eigenvalues and the horizontal axis corresponds to the total 

number of PCs. The eigenvalue of the components represent the variation for those 

respective components. Any component whose eigenvalue is less than 1.0 is in most 

cases are eliminated because it reflects the lowest and negligible variance. 
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DEFINITIONS  

 

Term Definition 

Batch level Model 

[19] 

The MV model used for monitoring the batch finger print 

and predicting the final performance variable 

Batch Evolution 

model [19] 

The MV model used for monitoring the batch evolution 

with respect to a maturity variable in real-time 

Chemometrics [24] A way of analyzing chemical data, in which elements of 

both statistical and chemical thinking are combined. 

Continuous 

Process 

Verification [9] 

An alternative approach to process validation in which 

manufacturing process performance is continuously 

monitored and evaluated. 

Design Space [4] The multidimensional combination and interaction of 

input variables (e.g. Material attributes) and process 

parameters that have been demonstrated to provide 

assurance of quality. Working within the design space is 

not considered as a change. Movement out of the design 

space is considered to be a change and would normally 

initiate a regulatory post approval change process. 

Design space is proposed by the applicant and is subject 

to regulatory assessment and approval. 

DModX Plot [12] The statistic showing the distance of the observation to 

the MV model plane. 

Hotelling’s T
2
 Plot 

[12] 

The statistic summarizes the selected scores. It is a 

measure of how far away an observation is from the 

center of the MV model 

QbD [8, 10] A strategic approach to drug development, Quality by Design 

requires getting the product, process, Packaging and 

manufacturing “right the first time.” 

Quality [33] Per ISO: "Degree to which a set of inherent characteristic 

fulfills requirements" 

Loading Plot [12] It is a summary of variables for observations (batches). It 

is a means to interpret the patterns in score plot. 

Maturity Variable 

[12] 

The variable indicating the evolution of a batch. It is used 

to understand how far the batch is evolved compared to 

the historical batches 
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Term Definition 

PAT
  
[2] A system for designing, analyzing, and controlling 

manufacturing through timely measurements (i.e., during 

processing) of critical quality and performance attributes 

of raw and in-process materials and processes with the 

goal of ensuring final product quality 

Process Analytics 

[2] 

Chemical or Physical analysis of material in the process 

through the use of an in-line or on-line analyzer 

Process Validation 

[17]  

Establishing by objective evidence that a process 

consistently produces a result or product meeting its 

predetermined specifications. 

Score Plot [12] It is a summary of observations (batches) 

SIMCA [19] Software application supporting creation of multivariate 

models 
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ACRONYMNS 

 

Abbreviation Meaning 

ACPS Advisory Committee for Pharmaceutical 

Science  

API Active Pharmaceutical Ingredient 

ASTM American Society of Testing Materials 

BLA Biological License Application 

BSPC Batch statistical process control 

CAPA Corrective Action and Preventative Action 

CBER Center for Biological Evaluation and Research 

CDER Center for Drug Evaluation and Research 

CFR Code of Federal Regulations 

cGMP Current Good Manufacturing Practices 

CMC Chemistry, Manufacturing and Controls 

CQA Critical to Quality Attributes 

CVM Center for Veterinary Medicine 

DOE Design of experiments 

DModX Distance to the model in the X-data 

DS Drug Substance 

ERP Enterprise Resource Planning systems 

FDA Food and Drug Administration 

ICH International Conference on Harmonization  

LIMS Laboratory Information Management system 

MES Manufacturing Execution system 

MSPC Multivariate statistical process control 

MVDA Multivariate Data Analysis  

NDA New Drug Application 

ONDC Office of New Drug Chemistry 

OOC Out of control 

ORA Office of Regulatory Affairs 
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Abbreviation Meaning 

QbD Quality by Design 

PAT Process Analytical Technology 

PAI Pre-Approval Inspection 

PCA Principal Component Analysis 

PLS Partial Least Squares or Projection to Latent Structures 
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ABSTRACT 

 

Conventional pharmaceutical and biopharmaceutical manufacturing processes are 

accomplished using batch processing coupled with laboratory testing of off-line samples 

to determine the quality of the product prior to release. This approach is successful and 

can continue to be employed. However; due to recent technological developments, 

significant opportunities are available for improving the biological manufacturing 

processes. These opportunities include innovation in process development, process 

analysis, and process control by applying and using Quality by Design (QbD), Process 

Analytical Technology (PAT) and statistical tools. The regulatory agencies have given 

overwhelming support to these concepts throughout the last decade. They took initiative 

to support these innovation and technological developments by revising and approving 

guidance documents such as cGMPs for the 21
st
 Century: A Risk Based Approach [1], 

PAT framework [2], International Conference on Harmonization (ICH) Q8, Q9, Q10 [3, 

4, 5], Food and Drug Administration’s (FDA’s) 2011 guidance for Process Validation [6] 

and lastly ICH Q11 in 2012 [7]. These guidelines are continuously setting new industry 

trends as well as continuing to raise expectations. This study was focused on the use of a 

multivariate statistical data analysis tool for real-time process monitoring and its 

validation test cases to support good manufacturing practice (GMP) decisions. It also 

discusses case studies to demonstrate how a batch can be monitored using multivariate 

(MV) models to quickly identify out of trend results or batch failures real-time.  Data 

from one biologics commercial manufacturing process is used for the creation of MV 

models to highlight the industrial application of the tool. The business benefits of 

implementing real-time multivariate statistical analysis in a GMP environment are also 

discussed.      
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INTRODUCTION 

 

Most of the existing manufacturing processes for biological product at scale are not 

designed for real-time process monitoring. In order to enable real-time process 

monitoring capabilities, modifications to existing facilities need to be modified by 

installation of PAT with incorporation of QbD principles. In addition to technological 

modifications, various computerized systems must be implemented or modified for 

acquisition of large quantities of process data in real-time.  Software applications to 

analyze this data and the statistical methods to process and generate the results are 

additionally required. This entire data acquisition, analysis and processing system is 

termed as “Real-Time Statistical Process Monitoring System”.   

A typical biologics manufacturing process is comprised of a series of upstream and 

downstream unit operations. The upstream manufacturing process (a.k.a. fermentation 

process) consists of a master cell bank vial thaw, cell line expansion in a shake flask to 

shaker bottles or bags, seed bioreactors, production bioreactors and centrifugations for 

harvesting protein. The downstream manufacturing process (a.k.a purification process) 

consists of various chromatography columns, viral inactivation, ultra-

filtration/diafiltration (UF/DF), and viral filtration for purification and separation of 

therapeutic proteins prior to final fill-finish operations.  

Each unit operation is comprised of multiple phases. Each phase is operated by multiple 

process parameters or variables.  These parameters are categorized into input and output 

parameters. The input parameters are evaluated in the operating space and 

characterization studies and are maintained within the known operating ranges to achieve 

the desired output. However, the output parameters (a.k.a performance parameters) have 

a pre-set acceptance criteria to ensure that the process delivers consistent results every 

time.  

For every biological process batch, there are many process variables measured during the 

course of production. It is important to make sure that each variable is operating within it 

operating range to ensure process performance consistency and product quality..  
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The suggested PAT framework using combination of following PAT tools includes: 

I. Multivariate (more than one variable) data acquisition and analysis 

II. Process and endpoint monitoring and control tools 

III. Continuous improvement and knowledge management tools 

 

The multivariate statistical process monitoring system efficiently monitors many 

variables at the same time by utilizing multivariate charts. The system also explains how 

these variables are changing in correlation with performance variables.  

The goal of this study was to demonstrate how above stated  PAT tools can be utilized to 

ensure continued process verification as outlined in FDA’s 2011 process validation 

guidelines [6] for making critical manufacturing decisions in real-time. 

In order to collect data for the multivariate data analysis (MVDA), modern process 

analyzers such as pH, temperature, agitation, dissolved O2, CO2, and cell density probes 

must be installed so that the process information can be gathered at regular intervals. 

Various software applications store and maintain this process data into databases 

enabling extraction of meaningful and critical process information from this data.   

This study focused on the use of multivariate analysis tool as outlined in PAT framework 

by using SIMCA software to create multivariate models for real-time process monitoring. 

The data collection and data mining process is a critical step which required installation 

of multiple software interfaces for linking the software databases, database modifications, 

and creation of trigger tags, timers, batch tags and monitoring markers. The three 

dimensional data extracted from the databases must be unfolded and saved in a specific 

format so that it can be used by the SIMCA software for the creation of batch evolution 

and batch level models.    

Various MV models are generated using the successful performance batches from the 

historical databases. Two popular and commonly used MVDA methods such as  principal 

components analysis (PCA) and partial least squares (PLS) were employed to 

demonstrate the use of PAT tool [2, 9, 10]. Then new batches were tracked against these 
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models to ensure process consistency and detect deviations or process failures in real-

time.   

This study proved that PAT tools can be used to achieve continued process verification 

which meets  the lifecycle approach in FDA’s process validation guideline [6] and 

adaption of new mantra that the “Process validation should not be viewed as a one-off 

event. A lifecycle approach should be applied linking product and process development, 

validation of the commercial manufacturing process and maintenance of the process in a 

state of control during routine commercial production” [15]. 
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MATERIALS AND METHODS 

 

MATERIALS 

SIMCA Software v13.0.3 [8]: The SIMCA software version 13.0.3 was utilized for the 

creation of statistical MV models.  This software was developed by Umetrics.  

This software was used to create a design of experiments and multivariate data analysis. 

This tool transforms data into information, which can be seen in the form of color coded 

graphical control charts to enable the process analyst to make correct decisions in real- 

time.  

 

Historical data from consistent successful process batches (batches which have minimum 

deviations) were used from a biological manufacturing process. The data was extracted 

from the historical databases by making configurations, tags, scan rates, and compression 

settings to the source system. This data was pre-treated and organized in the appropriate 

format prior to importing into the SIMCA software for the creation of multivariate 

models.  

METHODS 

This study was conducted by using the data from a commercial biological manufacturing 

facility. The commercial biological manufacturing process was enabled with various 

modern process analyzers and was equipped with both a distributed control system 

(Delta-V) system and a plant data historian to collect the process data. The MVDA tool 

was linked to the process databases to acquire the process data.  Modifications were made 

to the existing databases for the appropriate collection of data from the unit operations. 

The case studies presented were focused on one upstream unit operation (i.e., bioreactor) 

and one downstream unit operation (i.e. UF/DF).   

The data set used for the bioreactor and UF/DF unit operations, to develop empirical 

models for multivariate monitoring purposes, were gathered from one of the existing 

products. The data were modified (normalized for propriety reasons) as necessary prior to 

using it for the creation of MV models in SIMCA.    
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The bioreactor and UF/DF unit operations were monitored using the parameters listed in 

Table 1 and Table 2. These unit operations were connected to the DeltaV system to 

collect the process data. The process database was connected to both DeltaV and a plant 

data historian and the historical and current batch data was saved continuously. The plant 

data historian was configured with the correct tags to enable advanced monitoring [11]. 

Along with online data collection, cell viability and viable cell density data were also 

collected from off-line measurements to check the process performance at every twenty-

four hour interval during the course of the unit operation. The configuration of trigger 

tags, timers and batch tags were made as required to get all the relevant batch and 

continuous process data from the historical databases. 

 

The on-line data was collected at 15 minutes intervals for the bioreactor unit operation 

and at 10 second intervals for the UF/DF unit operation. The data from fifteen batches 

were used for the creation of the MV model and control charts for the real-time statistical 

process monitoring. The historical batches which had lowest number of deviations and 

alarm conditions were selected as an input for the MV model creation to represent 

inherent process variability also known as common cause variation. The goal for this 

rational subgroup selection criterion was to create a reference MV model.  The MV 

model created the average and ± 3 standard deviation confidence limits for the control 

charts about the scores and raw variable trajectories. Two new batches were projected 

over this model for testing the effectiveness of the real-time monitoring application.  An 

artificial disturbance was introduced into one of the two new batch data generated by 

making changes to certain variables in order to test if the MV model could detect the 

changes.  This study was used to prove if the real-time multivariate system can monitor 

the state of control for the new batches, detect any process failures due to sensor 

malfunction and end point monitoring.  

 

A similar concept of creating MV models and process monitoring in real-time was 

utilized for all the unit operations. The deployment of this project into cGMP 

environment requires qualification and validation of the computerized systems per CFR 

Title 21 [12], Software Validation Guidance [13] and Part 11 Guidance [14]. The 
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validation of the real-time process monitoring system was performed enabling the system 

use in the cGMP environment to achieve continued process verification meeting FDA’s 

process validation lifecycle approach.  

 

ASSUMPTIONS 

I. SIMCA software version 13.0.3 from Umetrics was utilized for the creation of 

statistical multivariate models. Therefore, the calculations performed for the 

generation of multivariate models in SIMCA software were correct because 

SIMCA was a commercial-of-the-shelf (COTS) application.  

II. The SIMCA graphics and control charts calculated by the software were accurate.  

III. The data used for MV model creation was collected from the validated 

commercial manufacturing process by creating batch identifiers, monitoring 

markers from historical database. 

IV. The data collection and data mining method for each unit operation to feed into 

the SIMCA software for the creation of MV models is identical.  
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MV MODEL CREATION 

In this section, the MVDA methods such as PCA and PLS were used to create batch 

evolution model (BEM) and batch level model (BLM) for the bioreactor and UF/DF unit 

operations for a legacy biological manufacturing process. The data set used for the 

bioreactor and Ultra –Filtration and Di-Filtration (UF/DF) unit operations to develop the 

empirical models for multivariate monitoring purposes was gathered from an existing 

biologics commercial manufacturing facility.   

Data selection criteria:  

The bioreactor and UF/DF unit operation are equipped with multiple online sensors as 

shown in Tables 1 and 2.  This state of the art data collection capability enables real-time 

monitoring of the unit operations. The data collected from these sensors were 

preprocessed and arranged in a specific data format to import into the SIMCA software 

for the creation multivariate statistical process models for data acquisition and analysis. 

MV for Bioreactor:  

The dataset used in model building contained data for N=17 batches. Out of these, fifteen 

batches were selected for the creation of MV model. The batch selection criteria were to 

include a little variability among the batches used for the UF/DF process. The main 

objective of the case study was to create a MV model so that it could be used as a 

reference to monitor new batches in process and identify whether those batches are in 

multivariate control. Fourteen variables (J=14) were monitored and the data was collected 

at fifteen minute interval, giving a total of ~K = 279 time points. The total duration of the 

unit operation was 68 hours, 30 minutes. The bioreactor unit operation was assumed as a 

single phase process.   

MV for UF/DF: The dataset contained data for N=17 batches. Out of these, fifteen 

batches were selected for the creation of a MV model. The batch selection criteria were to 

include a little variability among the batches used for the UF/DF process. The main 

objective of the study was to create a MV model so that it could be used as a reference to 

monitor new batches in process and identify whether those batches were in multivariate 

control.  Nineteen variables (J=19) were monitored and the data was collected at ten 
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second interval, giving a total of K = 817 time points. The total duration of the unit 

operation was 2 hours: 31 minutes: 10 seconds. The UF/DF unit operation was comprised 

of three phases which include concentration, diafiltration and recovery. Purpose of this 

unit operation is to concentrate and buffer exchange via tangential flow filtration. 

Following concentration and diafiltration, the product pool is recovered by filtering it 

through 0.2µ membrane filter. 
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Table 1: Bioreactor Variables Monitored 

Variable 

Name 

Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Dissolved O2 % Operating Input 

Dissolved oxygen is monitored 

as a measure of cell culture 

performance 

Culture pH pH units Operating Input 
pH affects final viable cell 

density 

Air flow sLPM Operating Input 

Air flow is monitored as a 

measure of cell culture 

performance 

O2 flow sLPM Operating Input 

O2 flow is monitored as a 

measure of cell culture 

performance 

CO2 flow sLPM Operating Input 

CO2 flow is monitored as a 

measure of cell culture 

performance 

Bioreactor 

level 
L Operating Input 

Bioreactor level is monitored to 

maintain consistent volume 

Agitation RPM Operating Input 

Agitation maintains a 

homogenous solution and 

oxygen transfer to the cells 

Vessel 

pressure 
psig Operating Input 

Pressure influences mass 

transfer and mitigates 

contamination 

Temperature °C Operating Input 

Temperature (controlling 

probe) excursions  can impact 

final viable cell density and 

viability 

Culture 

duration 
days Operating Input 

Culture duration affects final 

viable cell density and is the 

maturity variable 

Temperature 

probe 

difference (A-

B) 

°C Operating Input 

Temperature probe difference 

(A-B) is monitored to detect 

equipment drift or malfunction 

VCD (Viable 

Cell Density) 

10
6
 

cells/mL 
Performance Output 

VCD is monitored as a measure 

of cell culture performance. 

Viability % Performance Output 

Viability is monitored as a 

measure of cell culture 

performance. 
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Table 2: UF/DF Variables Monitored 

Variable Name 
Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Feed pressure psig Operating Input 
Feed pressure is monitored to 

detect excursions in pressure 

Retentate pressure psig Operating Input 

Retentate pressure is 

monitored to detect 

excursions in pressure 

Permeate pressure psig Operating Input 

Permeate pressure is 

monitored to detect 

excursions in pressure 

Transmembrane 

pressure (TMP) 
psig Operating Input 

TMP is monitored to detect 

any excursions in pressure 

Feed flow LPM Operating Input 

Feed flow is monitored to 

detect any excursions in flow 

rate 

Retentate flow LPM Operating Input 

Retentate flow is monitored 

to detect any excursions in 

flow rate 

Permeate flow LPM Operating Input 

Permeate flow  is monitored 

to detect any excursions in 

flow rate 

Feed Retentate DP  psig Operating Input 

Feed retentate pressure is 

monitored to detect 

differential pressure 

Permeate flux L/hr/m2 Operating Input 

Permeate flux (permeate flow 

rate normalized by membrane 

area) is monitored to detect 

excursions in flow rate 

Permeate UV 

(ultra violet) 
AU Operating Input 

Permeate UV is monitored to 

detect product loss during 

UF/DF II 

Permeate 

conductivity 
mS/cm Operating Input 

Permeate conductivity is 

monitored to ensure product 

conductivity targets 

Concentration 

factor 
N/A Operating Input 

Concentration factor is 

monitored to ensure 

concentration targets are met 

Diafiltration 

Factor 
L Operating Input 

A minimum number of 

diavolumes are required to 

meet pH and conductivity 

specifications for the UF/DF 

II Pool 
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Variable Name 
Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Feed flow process 

totalizer 
L Operating Input 

Feed flow totalizer is 

monitored to ensure 

concentration and 

diafiltration targets are met 

Permeate flow 

process totalizer 
L Operating Input 

Permeate flow totalizer is 

monitored to detect any 

excursions in the total 

permeate volume 

Retentate flow 

process totalizer 
L Operating Input 

Retentate flow totalizer is 

monitored to ensure 

concentration and 

diafiltration targets are met 

and is the maturity variable 

Permeate control 

valve 
% Operating Input 

Permeate control valve is 

monitored as a controller 

output 

Retentate control 

valve 
% Operating Input 

Retentate control valve is 

monitored as a controller 

output 

Step yield % Performance Output 

Step yield is monitored as a 

measure of UF/DF 

performance. 
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The data obtained from the above variables was pre-processed prior to use in the creation 

of the MV model. Multivariate methods are maximum variance projection methods. A 

variable with a large variance is more likely to be expressed in the modeling than a low-

variance variable. In order to give equal weight to all the variables, the data from the 

variables required standardization. The unit variance scaling [16] was chosen for these 

case studies. For example, DO2 values vary from ~ 30 to 90 ranges whereas Air flow 

values vary from 0 to 1 for bioreactor. If we do not perform scaling then the DO2 variable 

will have very high variance and it will have an impact on the model as compared to Air 

flow. Therefore, the MV model without data scaling may not be accurate.  

Two levels of batch monitoring were employed; the BEM and BLM were implemented 

by unfolding the three-way matrix into two-way matrix as shown in Figure 1a and 2b 

[17]. 

BEM: The goal of BEM was to develop a model of the desired batches and monitor new 

batches against this model to determine if they were evolving within the confidence 

limits. The data generated by a batch process was arranged in data blocks as shown in 

Figure 1a and 2b [17]. The batches were depicted as “I”, variables depicted as “J” and 

time points depicted as “K”.  In order to execute BEM, the three way batch data table was 

unfolded in such a way that the direction of the variable was preserved as shown in 

Figure 1a [17]. The resulting two-way matrix then had “I *J” rows and K columns. Each 

row contains data points Xijk from a single batch observation (batch I, time K and 

variable J). The regression was made against local batch time, the resulting PLS scores 

reflected linear t1, t2, and t3 relationships to local time batch time. A PCA on the three 

way data matrix showed how the individual observations related to each other [10]. 

Each batch had a different completion time resulting in an unequal number of 

measurements [18]. SIMCA software resolved this issue by auto generating a dummy y 

variable reflecting relative local batch time which was a dummy variable called “$Time”, 

to align the unequal batches to have the same length. The value of $Time predicted by the 

PLS model was used to indicate how far a batch has evolved [8].  The fifteen batches 

were used for the creation of the reference PLS model of X data matrix versus local time 

($Time).  
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Figure 1a: Unfolding Three Way Data Matrix [Source: 17]. The three-way table of 

historical batch process data comprises “I”, J variables and K time points. In the 

BEM, this three-way data table was unfolded by preserving the variable direction. 

This gave a two-way matrix with I*K rows and J columns. Each row contained 

data points Xijk from a single batch evolution. Figure 1b: The three-way table of 

historical batch process data comprises “I”, J variables and K time points. In the 

BLM, this three-way data table was unfolded by preserving the batch direction. 

This gave a two-way matrix with I rows and J*K columns. Each row contained 

data points from one single batch. 

BLM: In batch level modeling, all the data are from input variable matrix (X) and output 

variable matrix (Y) is available. Therefore, the data from the whole batch is used to 

create a model. The aim of the batch level model is to verify whether the new batch is 

within multivariable control. The data generated is unfolded in such a way that the 

direction of the batch is preserved. The resulting two-way matrix then has “I*K” rows 

and J columns as shown in Figure 1b [17]. Another important objective of batch level 

model is to understand how Y (output) variable is influenced by the X (input) variables 

[10]. 

 

Diagnostics and Interpretation Controls Charts for the Bioreactor Unit Operation MV 

model:  

 

BEM Model: The new BEM model created for the bioreactor unit operation shows that 

the model is fits well. The original variables when projected on these new components, 
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results into scores which are new co-ordinates that gets plotted as t1, t2, t3 to a local batch 

time ($Time). This PLS model shows how the X-matrix input variables relate to each 

other in respective score plot and the loading plot Figure 2 and 3. The first principal 

component (PC) explains the maximum variation in X and then subsequent PC’s explain 

the remaining variation in a descending order. The general expectation is that at least 

75% to 85% of the variation must be accounted for by a good model [10]. This is because 

the scores of BEM model are used at the BLM to predict the output variable.  

Scatter Plot t1 vs. t2 (Bioreactor): 

The score plot is a map of the observations. Figure 2 displays the score plot for t1 vs.  t2 

scores. These are the new variables summarizing the X-variable matrix. The scores are 

orthogonal, (i.e., completely independent of each other). The score t1 (first component) 

explains the largest variation of the X space, followed by t2. The scatter plot of t1 vs. t2 is 

a window in the X space, displaying how the X observations are situated with respect to 

each other. This plot in Figure 3 shows the possible presence of outliers, similarities, and 

other patterns in the data. 

The score plot shows that there is a strong behavioral similarity among the variables from 

all the batches. Each batch starts in the top left hand quadrant and ends in the top right 

quadrant.  

 

Figure 2: The Score Plot (BEM) for the bioreactor unit operation. The plot is 

created using the scores of first two principal components. The vertical axis 
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depicts t2 scores and the horizontal axis depicts t1 scores. The score plot shows 

that all the batches are aligned properly and fitting on 95% confidence ecllipse. 

Loadings Plot W*C [1] vs. W*C [1]:  

The loading plot shows this model can be furthered analyzed by Figure 3. It reveals that 

the response variable ($Time) is positively correlated with O2 flow and Culture duration.  

The response variable is less correlated with Air Flow. There is a strong similarity 

between the behaviors of temperature, agitation, pressure and the bioreactor level.  Other 

variables like CO2 flow, and bioreactor level are negatively correlated. 

 

Figure 3: The Loading Plot (BEM) for the bioreactor unit operation. The plot is 

created using the loadings of first two principal components. The vertical axis 

depicts ‘w*c [2]’ loadings and the horizontal axis depicts ‘w*c [1]’ loadings. The 

plot shows how variables are correlated to each other.  

The scores batch control chart displays that the selected score values (t1) over time for all 

the 15 batches. The chart depicts the average batch (green) and the ±3 standard deviation 

(red). Figure 4 and 5 show the score contributions for scores t1 and t2. The t1 score plot 

demonstrates that all the batches start with low scores and then increase steadily until the 

termination. Whereas, for t2 scores, all of the batches move steady and end the same way. 

All of the fifteen reference batches behave well between the ±3 standard deviation and 

around the average for both t1 and t2 scores.  
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 Figure 4: The PC 1 Score Batch Plot for the bioreactor unit operation. The fifteen 

batch plot for PC 1 show that all batches are ending in a similar fashion within the 

±3 standard deviation confidence limit. 

 

Figure 5:  The PC 2 Score Batch Plot for the bioreactor unit operation. The fifteen 

batch plot for PC 2 shows that all batches are ending in a similar fashion within 

the ±3 standard deviation confidence limit. 

Hotelling T
2 

chart in figure 6 demonstrates that all the data from all the variables are 

within the score dimension. 
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Figure 6: Hotelling T2 Plot for the bioreactor unit operation. The plot shows that 

all data from all variables is within the score dimension. 

BLM Model: In batch level modelling, the entire batch data from all input and output 

variables are used to create the PLS model. In order to accomplish BLM modelling, the 

three-way batch data table is unfolded as shown in Figure 2b. The data is unfolded in 

such a way that each row in the data table represents one whole batch as shown in Figure 

2b [17].  The unfolded data from X matrix (input variables) is regressed with unfolded 

data from the Y matrix (output variables). The data are arranged in such a way that the 

direction of the batch is preserved. The three-way data is arranged in two way matrix 

which had N*KJ rows (batches) and column (variables). There are two output variables 

(i.e. viable cell density and cell viability). The fifteen batches used for the creation of the 

reference PLS model of X data matrix versus Y data matrix can now be used to classify 

new batches still under development as to whether they are in multivariable control and 

see how Y variables are influenced by X variables[10]. The bioreactor batch level PLS 

model as shown in Figure 7, demonstrates that all batches are evenly scattered and are 

within the 95% confidence interval ellipse. Batch# 1001 is on the ellipse and is within the 

95% confidence limit. The diagnostics charts, Hotelling’s T
2 

and DModX, charts as 

shown in (Figure 8 and 9) were well with within the confidence limits for all fifteen 

batches. 
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Figure 7: The Batch Level Score Plot for 15 Batches. The plot displays that all 

batches are well within the 95% ecllipse.  

 

Figure 8: The Hotelling’s T
2
 Batch Level Plot for 15 batches. The plot displays 

that all batches are well within the 95% confidence limit.  
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Figure 9: The DModX Batch Level Plot for 15 batches. The plot displays that all 

batches are well within the critical limit of 0.05.  

Diagnostics and Interpretation Controls Charts for MV model for UF/DF:  

 

BEM Model: The new BEM model created for UF/DF unit operation shows that the 

model is fitted well for concentration, diafiltration and recovery phases. The original 

variables when projected on these new components, results in scores which are new 

variables that gets plotted as t1, t2, t3 to a local batch time ($Time). This PLS model 

shows how the X-matrix input variables relate to each other in both a respective score 

plot and the loading plot (Figure 10) for concentration phase.  

 

Figure 10: The Score Plot for Concentration Phase for the UF/DF unit operation. 

The score plot is created using the scores of the first two principal components. 

Vertical axis depicts t2 scores and horizontal axis depicts t1 scores. The score plot 

shows that all the batches are aligned properly and fit the 95% confidence limit 

ecllipse. 
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Loadings Plot W*C [1] Vs. W*C [1]:  

The loading plot demonstrates that this model can be further analyzed by interpretation of 

Figure 11. It reveals that the response maturity variable ($Time) is positively correlated 

with the retentate flow process totalizer, permeate flow, process totalizer, feed flow and 

concentration factor. These variables steadily increase with time. All other variables 

maintain somewhat steady state and are reasonably co-related with each other except for 

retentate pressure which is negatively correlated as it shows a decreasing trend with time.    

 

Figure 11: The Loading Plot for UF/DF. The BEM plot is created using the 

loadings of first two principal components. The vertical axis depicts ‘w*c [2]’ 

loadings and the horizontal axis depicts ‘w*c [1]’ loadings. The plot shows how 

the variables correlate to each other. Variables like retentate flow process totalizer 

permeate flow process totalizer, feed flow, and concentration factor are strongly 

correlated with the maturity variable. Retentate flow control negatively correlates 

with the maturity variable. 

The scores batch control chart displays the selected score value (t1) over time for all 

fifteen batches. The chart also shows the average batch (green) and the ±3 standard 

deviation (red). Figure 12 shows the score contribution for t1 scores. The t1 score plots 

demonstrate that all batches start with low scores and then steadily increase until 

termination. All of the fifteen reference batches behave well between ±3 standard 

deviation and around the average for first PC.  
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Figure 12: The PC 1 Score Batch Plot for the UF/DF unit operation.  The plot 

shows that all fifteen batches are ending in a similar fashion within ±3 standard 

deviation confidence limit. 

BLM Model: In batch level modelling, the entire batch data from input variables and 

output variables are used to create the PLS model. In order to accomplish BLM 

modelling, the three-way batch data table is unfolded as shown in Figure 2b [17]. The 

data is unfolded and arranged as explained in the bioreactor BLM section.  In the case 

study for UF/DF, the output variable is step yield. The fifteen batches used for the 

creation of the reference PLS model of X data matrix versus Y data matrix can now be 

used to classify new batches that still under development and demonstrate how Y 

variables are influenced by X variables[10]. The UF/DF batch level PLS model as shown 

in Figure 13, using the first two components demonstrate that all the batches are evenly 

scattered and are within the 95% confidence interval ellipse. When the diagnostics charts 

like Hotelling’s T
2
 and DModX are evaluated, charts, (Figures 14 and 15), are well with 

within the confidence limits for all fifteen batches. 
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Figure 13: The UF/DF Batch Level Score Plot for 15 batches. The plot shows that 

all batches are well within the 95% ecllipse.  

 

 

Figure 14: The UF/DF Hotelling’s T
2
 Batch Level Plot for 15 batches. The plot 

demonstrates that all batches are well within the 95% confidence limit.  
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Figure 15: The UF/DF DModX Batch Level Plot for 15 batches. The plot 

demonstrates that all batches are well within the critical limit of 0.05.  

In the previous section, the multivariate BEM and BLM models were created by using 

fifteen good batches. The control limits and the averages were established using the data 

from the model batches. The following sections will demonstrate how these models can 

be used to monitor the new batches in process. If the new batch is a good batch then it is 

expected to evolve with in the confidence limits. This can be seen on the control charts. 

At the same time, if for any reason, there is a deviation then the cause and the source of 

the deviation can be tracked using the control charts. Introduction of this tool into the 

GMP manufacturing facility equipped with on-line data collection technologies can 

monitor every new batch in real-time to provide continuous improvement data as well as 

a scientific knowledge management opportunities and additionally meeting the FDA’s 

third stage, continued process verification life cycle approach.    

In order to test the real-time process monitoring system to ensure continued process 

verification, two new batches (Batch# 1016 and 1017 for the bioreactor unit operation 

and batch# 116 and 117 for the UF/DF unit operation) were selected for each of the 

bioreactor and UF/DF unit operations. One new batch selected for the study was a good 

batch and the second new batch was deliberately modified (after the fact for simulation 

purposes) by making changes to feed pressure and feed flow to determine if the changes 
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can be detected by the real-time process monitoring system.  Case studies were used as an 

example to demonstrate how the real-time process monitoring system can be used in the 

manufacturing process for continued process verification, detect process failures in the 

new batches due to sensor malfunction or process related failures and root cause analysis 

and process control. 
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CASE STUDY 1: MONITORING STATE OF CONTROL FOR A NEW 

BIOREACTOR PROCESS BATCH 

In this example, a new batch (batch# 1016) was projected on the MV model created using 

fifteen good batches to see if this batch was running in the state of control. The batch 

score plot in Figure 16 shows that the batch# 1016 shown in dark red color was well 

within the 95% confidence limit. The score plot shows that batch# 1016 was a good 

batch. 

 

Figure 16:  The Batch Score Plot for bioreactor batch# 1016. Batch# 1016 was 

projected on the model with other batches. Batch# 1016 was highlighted in red. 

The score plot shows that batch# 1016 was a good batch because it was well 

within the 95% confidence limit.  

The batch control score plot for batch# 1016 in Figure 17 shows that the batch was within 

± 3 standard deviation. Therefore, it was a good batch. 

 

Figure 17: The Batch Control Plot for bioreactor Batch 1016. It shows that it was 

within ± 3 standard deviation. Therefore, it was a good batch. 
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CASE STUDY 2: DETECT SENSOR MALFUNCTION FAILURE FOR NEW 

BIOREACTOR PROCESS BATCH 

The intent of this test was to determine if a sensor malfunction can be detected by the 

MV model. The faulty sensor can show the incorrect values while the batch was 

evolving. The pH and temperature raw data from the batch# 1016 was modified to show 

that the pH and temperature sensors were faulty. The pH and temperature raw data were 

deliberately changed at several time points in the excel datasheet prior to importing it into 

the SIMCA application to project on the MV model.  The new batch (batch# 1017) was 

then projected on the MV model.  The batch score plot in Figure 18 and batch control 

score plot in Figure 19 clearly show that batch# 1017 was outside the model space.  

 

Figure 18: The Batch Score Plot for bioreactor batch# 1017. Batch# 1017 was 

shown in red and was outside of the 95% confidence limit. 

 

Figure 19: The Batch Control Plot for bioreactor batch# 1017. The control plot 

shows that it was going out of ± 3 standard deviation confidence limits at several 

places.  
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The variable batch plots for culture pH in Figure 20 and for temperature in Figure 21 

demonstrate the time points when the batch was out of confidence limits.   

 

Figure 20: Culture pH Variable Batch Plot for batch# 1017. The plot shows the 

exact time when the batch was outside of the ± 3 standard deviation confidence 

limit.  

 

Figure 21: Temperature Variable batch Plot for batch# 1017. The plot shows the 

exact time when the batch was outside of the ± 3 standard deviation confidence 

limit. 

Hotelling’s T
2
 and DModX charts in Figure 22 and Figure 23 also show that batch# 1017 

depicted in yellow color was outside of the ± 3 standard deviation and Dcrit (0.05) shown 

in red. The variable batch plot demonstrates that the time points when the pH and the 

temperature variables were outside of the confidence limits.   
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Figure 22: Hotelling’s T
2
 Plot for 1017. The plot shows the time when the batch 

was outside of the 95% critical limit. 

 

Figure 23: DModX Plot for 1017. The plot shows the exact time when the batch 

was outside of ± 3 standard deviation confidence limit. 
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CASE STUDY 3: MONITOR THE STATE OF CONTROL FOR A NEW UF/DF 

BATCH 

In this example, a new batch (batch# 116) was projected on MV model created using 

fifteen successful batches to determine if this batch was running in a state of control. The 

batch score plot in Figure 24 shows that the batch# 116 shown in dark red color was 

moving within the ± 3 standard deviations shown in red and around the average shown in 

green. 

 

Figure 24: Batch Score Plot for UF/DF batch# 116. The plot was projected on the 

model with other batches in the model and highlighted in red. The score plot 

shows that batch# 116 was a good batch because it was well within the 95% 

confidence limit.  

Batch control plot for batch# 116 in Figure 17 shows that the batch was within the 

confidence limits. Therefore, it is considered a good batch. 

 
Figure 25: The Batch Control Plot for UF/DF batch# 116. The plot shows that 

batch 116 was within ± 3 standard deviation. Therefore, it was a good batch. 
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CASE STUDY 4: DETECTION OF SENSOR MALFUNCTION FAILURE FOR NEW 

IN A UF/DF BATCH  

The intent of this test was to demonstrate if a sensor malfunction can be detected by the 

MV model. The faulty sensor can show the incorrect values while the batch was 

evolving. The feed pressure and feed flow raw data from batch# 116 was modified to 

show that the feed pressure and feed flow were faulty. The feed pressure and feed flow 

raw data were deliberately changed at multiple time points (after the fact for simulation 

purposes). The new batch# 117 was then projected on the MV model.  The batch 

contribution score plot in Figure 26 clearly showed that batch# 117 was going outside of 

± 3 standard deviation confidence limits at several places. The batch variable contribution 

plot for feed pressure in Figure 27 showed the exact time point where the variable was 

outside of the of ± 3 standard deviation confidence limits.   

 

Figure 26: Batch Control Score plot for UF/DF batch# 117. The plot shows 

batch# 117 is going outside of ± 3 standard deviation at several places.  
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The variable batch plots for feed pressure in Figure 27 and for feed flow in Figure 28 

showed the exact time points when the these two variables were outside of  ± 3 standard 

deviation confidence limits.   

 

Figure 27: Feed Pressure Variable Batch Plot for 117. The plot shows the time 

points when the feed pressure exceeded the ± 3 standard deviation confidence 

limits.  

 

Figure 28: Feed Flow Variable Batch Plot for 117. The plot shows the time when 

the feed flow exceeded the ± 3 standard deviation confidence limit.  
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VALIDATION OF MULTIVARIATE STATISTICAL MONITORING SYSTEM 

 

An existing commercial manufacturing facility can be PAT enabled by installation of 

state of the art on-line sensors, data management system and data analyzing computer 

hardware and software systems. This vast amount of data collected from a ten second 

interval to fifteen minute intervals from different unit operations is saved in databases. 

The entire system consists of multiple data servers, network components, software 

interfaces, and software applications for multivariate analysis. In this study, the SIMCA 

software was used for the multivariate model creation which was connected to the 

network via several related software interfaces.  All together this entire system becomes 

an automated computerized system. As per FDA’s software validation guidance [13], 

prior to using any computerized system in a cGMP environment, it must be qualified and 

validated. The cGMP guideline outlines that “Any software used to automate any part of 

the device production process or any part of the quality system must be validated for its 

intended use, as required by 21 CFR §820.70(i)”. Validation is necessary to establish 

documented evidence to provide a high degree of assurance that the system will 

consistently operate according to pre-defined requirements and design specifications [12]. 

 

The SIMCA software is Part 11 compliant software. In order to utilize it in the cGMP 

environment, it must undergo validation per Computer Validation Guidelines [13] and 

Part 11 guidelines [14]. For the validation of a computerized system, several documents 

are generated, executed and approved by appropriate stake holders in the GMP facility.  

All validation related documents and the test cases for the validation of real-time process 

monitoring system are generated per software validation and Part 11 guidance.  

The following section outlines the documents and test cases generated for the validation 

of the real-time process monitoring system. 
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Validation Plan 

The purpose of the Validation Plan (VP) was to define the overall validation approach, 

roles and responsibilities, required deliverables, test strategy, and key decisions related to 

the validation.  The VP provides the basis for scheduling of the validation activities and 

documentation was required in order to meet the acceptance criteria specified in the 

Requirements Specification and Design Specification documents. It also outlines test 

documents such as Installation Qualification (IQ), Operational Qualification (IQ), and 

Performance Qualification (PQ) for documenting the installation verifications of the 

modifications/changes to historical databases, software interfaces, database configuration, 

server configurations, network connections and SIMCA software. The VP also outlines 

the requirements specifications (RSs) and design specifications (DSs), operation and 

performance testing documents, requirement traceability matrix (RTM), and validation 

summary reports (VSRs). 

When any validation project is rolled out on a large scale in the GMP environment, IS, 

automation, project management, process development, manufacturing, validation and 

quality assurance (QA) teams are involved. Therefore, it is very critical to outline the 

roles and responsibilities of every group for tracking and successful implementation of 

these tasks. 

 

Validation Strategy 

Validation of the MVDA system was implemented to establish documented evidence that 

the system will consistently provide reliable and robust data for monitoring of 

manufacturing purposes. The main deliverables that specify and document the testing of 

the system were RS, DS, IQ, OQ, and PQ documents. The RTM and VSR were written at 

the end of validation testing. The RTM demonstrated that the requirements were mapped 

to the RS/DS and to the corresponding test cases in the validation protocols. The VSR 

was generated to outline the completion of validation deliverables.  

A risk management process outlined in Figure 32, GAMP-5 [19] is utilized while 

determining the extent of testing performed to validate the MVDA system.  
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Figure 29: Five ‘Risk Management Process’ steps [Source: 19] shows how the 

risk assessment is performed to determine the extent of validation testing 

required. 

 

There are two basic classes of software testing: black box testing and white box testing 

[20]: 

 Black box testing (also called functional testing) is testing that ignores the 

internal mechanism of a system or component and focuses solely on the 

outputs generated in response to selected inputs and execution conditions. 

 White box testing (also called structural testing and glass box testing) is 

testing that takes into account the internal mechanism of a system or 

component. 

 

A combination of black box and white box testing methods were used to test the real-time 

process monitoring system which was focused on the functional requirement of the 

system and was based on external characteristics of the program being tested. Validation 

used the following types of testing: 
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Intrinsic:  Features are qualified intrinsically as other features are tested. For example, 

transition function is intrinsically tested when two consecutive steps of a sequence are 

allowed to run without stopping. 

Inspection:  Features are qualified by ensuring their presence. For example, file lists and 

other documentation can be confirmed by ensuring their existence and accuracy. 

Structural testing:  Features are qualified by testing individual components as specified in 

the RD (Requirements and/or Design document). Testing will ensure that each 

requirement stated in the RD is made to execute during testing and that each requirement 

stated in the RD performs its intended function.  

Functional testing:  All the hardware used for this system is a standard hardware, which is 

subject to IQ to verify the installation and connection to components. Software category 3 

will be subjected to the validation process to ensure it meets the requirement 

specifications and design specifications. Testing will ignore that the internal mechanism 

or structure of a system or component and focuses on the outputs generated in response to 

selected inputs and execution conditions. 

In March of 1997, FDA issued final part 11 regulations that provide criteria for 

acceptance by FDA, under certain circumstances, of electronic records, electronic 

signatures, and handwritten signatures executed to electronic records as equivalent to 

paper records and handwritten signatures executed on paper [1].  

 

SIMCA is compliant with 21 CFR Part 11 (Electronic Records). "Umetrics quality 

systems for software development and validation can be audited". The audit trail is 

administrator-controlled and check-sum protected. SIMCA-4000 is OPC certified by the 

OPC Foundation. [21]. Therefore, the test cases related electronic record was performed 

to ensure the Part 11 compliance. 
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Validation Limitations and Assumptions:  

All test cases assumed that the components, systems and services of servers were 

operating as expected. The test cases also assumed that the complex calculations 

performed during the generation of multivariate models in SIMCA software were correct 

and accurate because SIMCA is COTs software. Therefore, the multivariate statistical 

calculations were not verified. Testing conducted to verify one unit operation from the 

upstream (bioreactor) and one unit operation from downstream (UF/DF) for data flow 

from historical databases to SIMCA software for MV model creation was assumed to 

work exactly the same way for every unit operation. 

 

Requirement and Design Specifications [13] 

Every computerized system and software is developed or designed based on its intended 

use. While designing the system, the developers must know the specific requirements of 

the user (a.k.a ‘User Specific Requirements’). The designed system also must meet 

certain inherent capabilities for it to function and meet the user specifications (a.k.a 

‘Functional Specific Requirements’).  In order to validate the computerized system and 

software in the cGMP environment, these URSs and FRSs were required to be tested. 

    

There can be many different kinds of requirements (e.g., design, functional, 

implementation, interface, performance, or physical). Software requirements are typically 

derived from the system requirements for those aspects of system functionality that have 

been allocated to software. Success in accurately and completely documenting software 

requirements is a crucial factor in successful validation of the resulting software. There 

are also many different kinds of written specifications (e.g., system requirements 

specification, software requirements specification, software design specification, software 

test specification, software integration specification, etc.). All of these documents 

establish “specified requirements” and are design outputs for which various forms of 

verification are necessary [13]. 
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The list of URS and FRSs were taken from the software manuals provided by the 

Umetrics and other hardware providers. They were documented in a ‘Requirement 

Specification’ and ‘Design Specification’ documents. 

 

Validation Installation Qualification, Operational Qualification and Performance 

Qualification (IQ/OQ/PQ) [13]:  

Validation is establishing documented evidence that system or software is installed as per 

the designed specifications; it operates as per the functional requirement specifications 

and performs per the user specifications [22].  

 

The real-time process monitoring system was validated per the traditional validation life 

cycle approach outlined in the Good Automation Manufacturing Practices (GAMP) 

guidance [23]. As outlined in the Figure 33 [25], IQ, OQ and PQ documents were written 

with specific test cases as listed in Table 3. The each test script in the validation protocol 

was executed to ensure that it meets the expected results.    

 

 
Figure 30, V- Lifecycle model, [Source: 25] shows that the validation approach 

utilized for software related systems. The user and function specification 

requirements are tested in the validation protocol and are tracked in the 

requirement traceability matrix.   
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Table 3, Test Cases in the Validation Protocol [13, 14, 19] 

Test 

Case # 
Description Test Intention 

1 Change Control Status 

verification (IQ) 

Prior to implementing any GMP system, the 

change control needs to be initiated 

2 Server Qualification 

verification 

Ensure that servers are configured and 

qualified to meet the functional  

3 Hardware & Software 

Installation 

verification (IQ) 

Ensure that all the hardware, software 

interfaces, database interfaces, Operating 

system, and maintenance software’s are 

installed and configured correctly,  

3 Hardware 

configuration 

verification (IQ) 

Ensure that all the hardware meet the 

processor speed, memory, graphic and driver 

settings 

4 Creation and 

installation of MV 

model and Projects 

(IQ) 

Ensure that all the MV models are created and 

saved correctly at a secured location 

5 Documentation 

verification 

Ensure that all the hardware, software related 

manual, drawings are documented and 

attached or achieved. 

6 Pre-requisite 

documentation 

Ensure that all the OQ pre-requisite 

documentation such as VP, RS and DS are 

approved prior to initiating OQ and PQ testing 

7 Standard Operating 

Procedures (SOP) 

Ensure that all the SOP’s are created for the 

operation of the GMP system. 

8 Start up and shutdown 

verification (OQ) 

Each system component (server, network 

PC’s, network devices are connected properly 

and go through flawless reboot process in case 

of power outage or routine start and shut down 

process 

9 Logical Security for 

the Operating system 

and the Software’s 

(OQ) 

Ensure that the servers and the PC’s which are 

used to operate the system have the restricted 

access so that unauthorized users cannot 

modify or delete the secured data folders/files 

or modify the recording time. 

10 Logical Security for 

the Software’s (OQ) 

Ensure that the SIMCA software has the 

restricted access so that unauthorized users 

cannot modify or create new folders/files or 

modify existing folders/files 

11 Password Security 

(OQ) 

Ensure that the users can create unique 

passwords with specific length, alpha-numeric 

combinations and allow only certain number 

of attempts. Only the application or IS 

administrator is allowed to add the users or 

reset the passwords.  



 

84 
 

Test 

Case # 
Description Test Intention 

12 Authority & Privilege 

levels (OQ) 

Ensure that there are different authority levels 

and the user permissions for each group so that 

each unique group can maintain different 

functions while using the software 

13 Operational Sequence 

and data flow (OQ) 

Ensure that all the required connections are 

installed and operate correctly in the intended 

sequence. 

14 Control Charts 

analysis and 

visualization of 

graphical plots 

verification(OQ)  

Ensure that the PCA and PLS MVDA control 

charts for BEM and BLM can be seen 

correctly with set confidence limits and 

average. 

15 Data Export and Data 

Management 

verification(OQ)  

Ensure that when the data is exported or saved, 

it does not alter the information. 

16 Remote Access 

verification (OQ) 

Ensure that the MVDA software can be 

accessed remotely without any flaw. 

17 Time Synchronization 

verification (OQ) 

Ensure that all the clocks are synchronized on 

the servers and the PC, so that the there is no 

error during data transfer. 

18 Backup and Restore 

verification (OQ) 

Ensure that all the data can be back-up and 

restored in case of disaster. 

19 Alert limits and Action 

limits settings 

verification (OQ) 

Ensure that the alarm limits are configured 

correctly and they show the appropriate alarm 

conditions 

20 Audit Trail 

verification (OQ) 

Ensure that the MVDA system is enabled with 

audit trail. The audit trail is human readable 

and the entries do not overwritten.  

21 End to End 

performance 

verification (PQ) 

Ensure that system meets the performance 

specification over the period of time 
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Performance Qualification (PQ) [12, 13, 22]: 

The performance verification of the real-time process monitoring system was performed 

after the IQ and OQ testing was complete. The intent of the PQ was to ensure that the 

system performed according to the expectations and was able to monitor the process in 

real-time. The test scripts were written to test one unit operation from upstream and one 

unit operation from downstream from start to end as shown below.  

 

 
 

 

Requirement Traceability Matrix (RTM) [13, 19]: 

The RTM was generated to map the functional testing of the real-time process monitoring 

system in validation documents (IQ/OQ/PQ) to the corresponding RS and DS 

specifications. This mapping helped to ensure that the requirements were met and traced 

to the appropriate qualification document(s). All requirements were verified and were 

traced to the test activity to prove that each requirement had been met.  

 

Validation Summary Report (VSR) [13, 19]: 

The VSR summarized the deliverables, validation activities, test results and deviations 

encountered during validation of the system. This document was generated at the end of 

the validation campaign to summarize a qualification conclusion that the real-time 

process monitoring system was validated and is suitable for using in the GMP 

environment.  

Summary 

The PAT enabled facility can generate data at the desired intervals. When these 

technologies are combined with Multivariate statistical methods can analyze the data to 

give meaningful information. Upon validation of the entire system can be used for real-

time process monitoring to achieve the FDA’s CPV requirements.  
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BUSINESS BENEFITS  

 

In an ideal situation and complete implementation of lifecycle approach using QbD and 

PAT tools [2] can offer several tangible and intangible benefits to the biopharmaceutical 

manufacturers. The benefits of this system include detecting raw material and equipment 

related process variability to real-time lot release as outlined below. The real-time 

process monitoring at every manufacturing step, will result in tremendous benefits to the 

manufacturers and regulatory agencies throughout the lifecycle process [10, 24].  

 

Each of the benefits listed below are associated with significant financial savings 

ultimately, cost saving and financial gains to meet the product life cycle requirements is 

the objective along with meeting the regulatory expectation. 

 

Operating Space: Leveraging scientific understanding and process knowledge helps 

process scientists to establish an operating space. The use of QbD and PAT can expedite 

technology transfer and stage 1 activities ultimately resulting in a faster scale up.  

 

Scientific Knowledge: The cost benefit is through knowledge that helps in setting the 

accurate confidence limits and operating space to an optimum level so that the process 

does not have to be modified frequently. It can save a great deal of time, money and 

resources in the long range and avoid process modifications at regular intervals.   

 

Early fault detection: There are multiple cost benefits of early fault detection. It can help 

identify the exact cause of the failure and save time during investigation. This is linked to 

timely release and patient supply. If early fault detection and the cause of failure are 

identified quickly, then the decision of corrective measures or decision to stop the batch 

can be made. This can save further processing costs and the next batch can be started 

quicker. This can also reduce the equipment downtime.   

Additional PPQ Runs: If the process is modified within, the operating space there may 

not be a need for additional PPQ runs which may reduce additional regulatory review and 
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approval. The traditional approach required change impact assessment, re-validation and 

refilling to regulatory agencies. With a QbD and PAT approach, every change made 

within the operating space is backed by scientific justification and monitored by real-time 

process monitoring. Therefore, the cost of revalidation and refilling is significantly 

reduced or eliminated.  The scientific and data driven justification for every modification 

can save time during investigations.  

 

Elimination or reduction of manual sample handling [34]: With traditional approach, 

routine samples are taken during the entire manufacturing process to ensure that the 

process is in control.  This requires a great deal of time and resources. With the 

implementation of the real-time process monitoring tool, each and every critical and key 

process parameter is monitored in real time. This can significantly reduce or eliminate the 

need for off-line sampling. This is a major cost saving benefit. 

  

Quicker investigation Time: Every process deviation requires thorough investigation and 

supporting data to justify the cause and effect. This is an extremely time consuming 

process which can delays batch release. With the real-time process monitoring tool, the 

identification of the issue and readily accessible data driven justification can reduce the 

investigation time. This can result in ensuring quicker lot release.  

 

Consistent Product Quality: With a real-time process monitoring tool, it is ensured that 

every batch is consistently meeting the quality requirement. This can help establish the 

assurance and confidence with regulatory agency and patients.  

 

Real-time Release: The real-time process monitoring tool can assist in maintaining the 

patient supply and managing the inventory. Consistent product quality with minimal 

variability and higher yield results in a higher return on investments. 

  



 

88 
 

CONCLUSION 

 

In the traditional approach, set points and operating ranges for process parameters are 

defined. The control strategy is based on the demonstration of process reproducibility and 

testing to meet the established acceptance criteria. There are certainly flaws in the 

traditional approach which needed to be improved with an enhanced approach. The 

enhanced approach is backed by risk management studies, scientific knowledge, and 

process understanding.  

The latest guidelines such as PAT framework [2], FDA’s 2011 process validation 

guideline [6] and Q11 guideline for development and manufacture of drug substances by 

FDA [7], are eliciting the same message that the innovative technologies can used in drug 

manufacturing processes.  

In this study, the use of one of the PAT tools for process monitoring showed how a state 

of control is achieved and process failures could detect batch discrepancies or sensor 

malfunctions. The study was conducted using the data from existing biologics 

manufacturing process to demonstrate the industrial application of the tool. The study 

outlined the validation of a process monitoring system to show that this tool could be 

used in the GMP environment.  Even if adapting this tool requires an initial investment, it 

can be applied easily with appropriate management support. It definitely offers 

significant enhancement to process understanding, process monitoring, and scientific 

thoroughness in decision making. It significantly enhances qualitative and quantitative 

performances and cost savings. The use of multivariate process monitoring tool provides 

an opportunity to improve control of monitoring the process real-time so that issues can 

be addressed quickly.    

There are multiple benefits of implementing PAT tools in the drug development, 

validation and manufacturing phases. In the development phase, it can provide thorough 

scientific knowledge and process understanding to achieve stage 1 – process design. In 

stage 2 – process qualification stage, it can help determine and justify the number of PPQ 

batches required for process validation. In stage 3 – the continued manufacturing stage, it 
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can help gain confidence and assurance in real-time that the batch is moving in the right 

direction. It may also reduce or eliminate the off-line testing [24].  

If the QbD and PAT tools are applied to new products then it can help establish solid    

justification for the number of batches for PPQ prior to process validation campaign.  

If the PAT tools are applied to an existing product then every batch can be monitored in 

real-time just like a process validation batch. The early fault detection can help in 

assuring that the processes are running at the optimum level within the operating space to 

give maximum efficiency, consistent quality and higher yields. This may also result in 

lower production cost and energy consumption.  

This project is expected to reduce costs by helping to better control process variability, 

improve yields, reduce waste, and ensure high-quality product consistently. The cost 

savings upon implementation of this system for the conventional manufacturing process 

or new processes can be calculated using significant number of batches, right first time, 

quality costs and other metrics. This capability not only provides financial benefit but 

ensures quality product and meets the regulatory expectation for continued/continuous 

process verification. 

The outcome of this project supports that PAT can be used for the existing or new 

manufacturing processes to achieve the FDAs lifecycle approach meeting “Continued 

Process Verification”.  
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MANUSCRIPT 2: USE OF MULTIVARIATE STATISTICAL PROCESS 

MONITORING TOWARDS ‘CONTINUED PROCESS VERIFICATION’ 
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ABSTRACT 

 

This study intends to demonstrate the benefits of a process analytical technology (PAT) 

enabling a real-time multivariate process monitoring (RT-MSPM) system to be used 

during product manufacturing. The implementation of the RT-MSPM tool shows the 

application of FDA’s 2011 Process Validation Guidance for industry to perform process 

monitoring for continuous process verification. The study was focused on the need of 

completing stage 1 - ‘Process Design’ and ‘stage 2 – ‘Process Performance Qualification 

(PPQ)’ activities for the successful implementation of stage 3 – Continued Process 

Verification (CPV)’. With sufficient scientific knowledge of process design and process 

qualification, CPV could be implemented by using PAT tools. The article focuses on the 

use of multivariate data analysis methods such as PCA and PLS to create two models: 

batch evolution and batch level models.  The data sets from historical batches for one 

upstream unit operation (bioreactor) and one downstream unit operation (UF/DF) are 

used to develop the experimental models for multivariate monitoring purposes. The study 

summarizes was conducted at a commercial biologics manufacturing facilities.    
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NEW PROCESS VALIDATION APPROACH DUE TO 2011 GUIDANCE 

 

 All drug manufacturing facilities must follow regulatory guidelines from the Food and 

Drug Administration (FDA or USFDA) such as 21 CFR Parts 210 and 211 of the cGMP 

regulations [8], 1987 process validation guidance [1] and other guidelines which are 

introduced on a regular basis. The biopharmaceutical industry has been conscientiously 

following the cGMP regulations to make consistent and reproducible commercial 

products. 

 

Yet, due to recent technological developments and innovations, the pressing need and the 

pressure challenged the drug manufacturing process. From the beginning of the century, 

FDA and other worldwide agencies introduced new guidelines such as QbD and PAT – A 

Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality 

Assurance [6], International Conference on Harmonization's Q8 for Pharmaceutical 

Development [2], Q9 for Quality Risk Management [3], Q10 for Pharmaceutical Quality 

System [4] and Q11- Development and manufacture of drug substances [5].  Regulatory 

agencies objective is to encourage the innovation in the drug manufacturing process [6].  

 

In January 2011, FDA published new guidance for industry entitled Process Validation: 

General Principles and Practices [7].  Since it is guidance from the regulatory agency, it 

is legally enforceable per the Federal Food, Drug, and Cosmetics Act. The requirements 

are called out in 21 CFR Parts 210 and 211 of the CGMP regulations, more specifically 

in Part 211.100 (a) [8].  

 

There had been a gap of exactly 25 years between FDA 1987 Guideline and the 2011 

Guidance for process validation. The 2011 Guidance is entirely consistent with the basic 

principles of process validation articulated in the 1987 Guideline.  

“Nonetheless, more than 25 years’ worth of experience and regulatory oversight, along 

with the cGMPs for the 21
st
 Century Initiative [9], prompted FDA to revisit the principles 

and concepts in an effort to update and clarify FDA’s thinking on process validation”. 
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Per this new guidance, manufacturers are urged to adopt the lifecycle approach in three 

stages [7]: 

In Stage 1, process design, the commercial process is defined based on scientific 

knowledge gained through development and scale-up activities.  

In Stage 2, process qualification, the process design is evaluated and assessed to 

determine if the process is capable of reproducible commercial manufacturing.  

In Stage 3, continued process verification, ongoing assurance is gained during routine 

production that the process remains in a state of control.  

Per 2011 guidance, FDA states that process validation is to be a lifecycle approach 

instead of being a one-time activity. The FDA’s new approach is to make ‘every 

manufacturing batch as a ‘Validated’ batch via ‘Continued Process Validation’. The 

following Figure 1 outlines the FDA’s new process validation expectation [10]. 

 

 
Figure 1: Three stages of Process Validation. FDA’s 2011 guidance requires drug 

manufacturing process to be a three stage process. Stage 1, stage 2 and stage 3. The stage 

1 activities are required for thorough scientific knowledge and process understanding is 

required to establish a robust operating space. Stage 2 represents process validation and 

stage 3 is for continued process verification.  [Source: 10] 
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DECODING THE REGULATORY EXPECTATIONS  

 

Stage 1 - Process Design: Well Characterized Process for Thorough Understanding of 

Process Parameters via ‘Risk Assessment’ 

Scientific knowledge gained during the pharmaceutical development program is critical 

for enhanced understanding of product quality and provides a basis for risk management 

and increased regulatory flexibility [11]. This stage is considered the design phase (stage 

1) of the FDA’s latest guidance. The initial scientific knowledge about the drug and its 

manufacturing process is gained prior to the validation campaign. Use of several 

laboratory scale, pilot scale and development runs for thorough understanding of process 

parameters and their critically are required. Every parameter must be evaluated utilizing 

quality risk management practices.    

 

Stage 1 – Process Design states that, “The commercial manufacturing process is defined 

during this stage based on the knowledge gained through development and scale-up 

activities [7]”. The first step to achieve this mile stone is establishing an operating space. 

 

The challenge is successfully answering a set of key question which can lead to gaining 

scientific knowledge and thorough process understanding to establish the ‘Operating 

Space’. The questions are: What are the physical, chemical and biological properties of 

the raw materials used?, What are the physical, chemical and biological properties of the 

API or drug substance?, What parameters are associated with the drug?, What are the 

operational (input) parameters?, What are the process (output) parameters, Has risk and 

criticality assessment of each parameter performed?, which once are critical, key or non-

key parameters?, What is the target set-point for each parameter?, What is the normal 

operating range of each parameter?, What is the proven operating range of each 

parameter?, What are the limits of failure?, what is the concentration of the final drug 

product?, what are the attributes being test tested to analyze the API and final drug 

product? What are the acceptance criteria for the process parameters?, How is the 

acceptance criteria established? 

 



 

97 
 

The answers to these questions helps you understand the process limits for every 

parameter you need to establish the design space as shown in Figure 2 [12]. ICH 

guidance Q8, defines it as “the multidimensional combination and interaction of input 

variables and process parameters provides the assurance of quality [2]”. 

 

 
Figure 2: Design Space [Source: 12] 

 

The scientific knowledge of operating space provides the understanding of variability in 

raw materials, the relationship between a process and product’s critical quality attributes 

(CQAs), and the association between CQAs and product’s clinical properties. This 

through understanding can help “Control the variation in a manner commensurate with 

risk it represents to the process and product [7]”. The scientific knowledge of drug and 

process parameters can be achieved by conducting a design of experiments (DOE) a.k.a 

characterization studies. The high degree of scientific knowledge and assurance in the 

performance of the manufacturing process is obtained from objective information and 

data from laboratory, pilot, and/or commercial scale studies [7].  The results obtained 

from these studies define the operating space. DOE studies can help develop process 

knowledge by revealing relationships, including multivariate interactions between the 

variable inputs (e.g., component characteristics or process parameters) and resulting 

outputs (e.g., in-process material, intermediates, or final product) [13]. 

 

 

 

 

 

http://www.google.com/imgres?hl=en&biw=1680&bih=926&tbm=isch&tbnid=KEWzJZ32D3UI4M:&imgrefurl=http://www.molnar-institut.com/&docid=mSZ38jKAS3eWIM&imgurl=http://www.molnar-institut.com/HP/images/Design_space.jpg&w=380&h=287&ei=OtRjUpeeNseJiALAloCACA&zoom=1&ved=1t:3588,r:22,s:0,i:163&iact=rc&page=2&tbnh=188&tbnw=246&start=19&ndsp=35&tx=133&ty=65
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Performing the Risk Assessment [13]: 

 

The most import task is performing a risk assessment of the operational and process 

parameters identified during characterization studies of the DOE. Per the 2011 guideline, 

‘All the parameters should be evaluated in terms of their roles in the process and impact 

on the product or in-process material [7].  A team of representatives from manufacturing, 

process development, quality assurance and validation are required to perform the 

assessment. A typical quality risk management model outlined in Figure 3 [3] is 

commonly used as described in the ICH Q9, Quality Risk management [4]. Each and 

every parameter identified during a characterization study is evaluated to find out what 

might go wrong? The likelihood of it going wrong and the consequences of it are 

discussed during the risk assessment.  Based on the evaluation of the risk model, a score 

is assigned in three different categories such as low, medium and high. The risk 

parameters are weighted against the likelihood of occurrence, probability of detection, 

and severity of consequences. All three scores are multiplied to obtain a risk priority 

number (RPN) as shown in Figure 3 [3]. A decision is made to identify the parameter as 

critical, key or non-key to merit process characterization. 2011 guidance expects, ‘a 

higher degree of control for the parameters that pose higher risk [7]. The results are 

documented as characterization reports to establish the operating space.  

 
Figure 3: Risk Assessment Tool. During the risk assessment process, each and 

every process parameter is evaluated using a risk assessment tool [Source: 3] 
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Figure 4: Risk assessment grid. The risk assessment grid is used to assign the 

RPN number for each and every process parameter associated with process which 

is evaluated and scored based on the risk likelihood and, risk severity. [Source: 

14]  

 

The operational ranges for the operational parameters and acceptance criteria for the 

process parameters in the design space are the basis for process validation protocols to 

validate the process [15]. The scientific knowledge and information gathered must be 

documented, and approved in accordance with the established procedure so that it can be 

used in the stage of lifecycle [7].   

 

Stage 2: Process Performance Qualification (PPQ) 

 

The goal of validating any manufacturing process is to establish scientific evidence that 

the process is reproducible and will consistently deliver quality products. The sufficient 

scientific knowledge and assurance gained during stage 1 via characterization studies, 

sets the stage for stage - 2 process qualifications. How do the characterization studies 

help in process performance qualification (PPQ)? FDA’s 2011 guidance outlined that the 

manufacturers should [7] understand the sources of variation, detect the presence and 

degree of variation, understand the impact of variation on the process and ultimately on 

product attributes, and control the variation in a manner commensurate with the risk it 

represents to the process and product.  

http://www.google.com/imgres?start=166&hl=en&biw=1680&bih=926&tbm=isch&tbnid=6Fa2WK42dwmGMM:&imgrefurl=http://wiki.sustainable-sport.org/01_SSET_-_English/Tools/Risk_Assessment_Matrix&docid=8SPl1HjxP0BSRM&imgurl=http://wiki.sustainable-sport.org/@api/deki/files/158/=Risk_Assessment_Matrix.jpg?size=webview&w=467&h=550&ei=6OFjUuaVOcnjiAKSg4DgDA&zoom=1&ved=1t:3588,r:78,s:100,i:238&iact=rc&page=9&tbnh=191&tbnw=162&ndsp=24&tx=83&ty=107
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The scientific evidence gathered during characterization provides the appropriate level of 

assurance that the manufacturing system has been designed to consistently deliver a 

quality product to the market. The specific information obtained from the operating space 

such as the critical/key parameters and, control strategy to set the normal operating 

ranges (NOR) and proven acceptable ranges (PAR).  This information derives the 

scientific justification for the parameters selection and to calculate and establish the 

control limits which serves as an input for PPQ protocol. 

 

This phase involves evaluating the facility and equipment for its fitness for use. Utility 

systems and equipment are verified to be built and installed properly, and operators ensure 

that they operate within the intended and anticipated operating ranges. During the PPQ 

stage of process validation, the process design is evaluated to determine if it is capable of 

reproducible commercial manufacture of products [7]. The decision to distribute the 

product to the market is determined by the successful completion of the PPQ. The 

successful completion of the PPQ demonstrates that the commercial manufacturing 

process performs as expected. 

 

Number of PPQ Batches: 

 

One of the most important discussion and interpretation of FDA’s 2011 guideline is about 

the number of batches. Until the new guidance came along, the process validation was 

done by performing a three-batch requirement. “...it was widely accepted throughout 

industry, and, indeed, implied or stated in some FDA guidance documents, that process 

validation was a static, three-batch demonstration event. [16]”. The EU GMP Annex 15 

states that “It is generally considered acceptable that three consecutive batches/runs within 

the finally agreed parameters would constitute a validation of the process” [17].  The 2011 

guidance does not mention anywhere about the number of PPQ runs required for 

successful completion PPQ stage. The decision about number of PPQ batches it open for 

interpretation. One can interpret that ‘process validation as a continuous process of 

collection and evaluation of data, rather than as a three-batch static event” [10]. 
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The number of batches is not an acceptance criterion; however, the results of the data 

obtained from the batches are the acceptance criteria. The new definition of validation 

caused one industry member to state at the workshop that for the past 30 years, industry 

has been told that process validation is a documentation exercise. FDA expects industry to 

consider process validation as a scientific endeavor. That is quite a shift and 30-year 

habits are hard to break [10, 18, 19]. 

 

The existing products which are already in the market may have already crossed this 

hurdle by making three process validation (PV) batches, which got the approval of FDA 

for commercial manufacturing. The 2011 guidance is also applicable to these products. 

The FDA directive for the manufacturers of these products is to follow the life cycle 

approach. The legacy product manufacturers benefit from the knowledge they have 

already gained about the manufacturing process and the product over course of the 

commercial manufacturing. Use of PAT tools for these manufacturing processes can 

really enhance their process monitoring capabilities to achieve the stage 3 – continued 

process verification.  

 

At the same time, new products and new manufacturing processes have the benefit of 

following the QbD and PAT principle right from the beginning to gain process 

understanding during stage 1 so that they can scientifically justify the number of batches 

required for PPQ. The manufacturers must make deliberate, rational decisions about 

whether their specific processes are validated and their products ready for commercial 

release. A manufacturing process that uses PAT may warrant a different PPQ approach. 

PAT processes are designed to measure in real time the attributes of an in-process 

material and then adjust the process in a timely control loop so the process maintains the 

desired quality of the output material [7]. 
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Justification for selecting number of batches for PPQ: 

The PPQ validation strategy can be used to scientifically justify the required number of 

batches selected for PPQ. The knowledge gained from previous molecules and during the 

process design stage through development, scale-up activities and engineering runs can 

be used to demonstrate that the current process is well characterized. A thorough process 

understanding has been developed by virtue of a comprehensive set of pilot and 

robustness studies. Operating parameter and performance parameter classifications and 

ranges have been determined, and a strategy for overall process control has been 

established. The operating and performance parameter classifications and ranges have 

been developed based on the studies performed as part of Stage 1 Process Design and 

documented in the characterization report. A manufacturing process at commercial scale 

is established based on this process knowledge. This information can be used to justify 

the required number of PPQ runs. By establishing the sufficient data, scientific 

justification can be provided to prove that one, two or five process validation runs are 

sufficient instead of three process validation runs per the traditional approach. 

 

Sampling during PPQ batches: 

 

The 2011 guidance also emphasized on the sampling plan, sampling points, number of 

samples, frequency of sampling for each unit operation and using a statistical approach 

for PPQ samples.  The number of samples should be adequate to provide sufficient 

statistical confidence of quality both within a batch and between batches [7]. The use of a 

statistical tool and the approach is not specified but the manufacturers are expected to 

choose a suitable statistical tool. Homogeneity within a batch and consistency between 

batches are goals of process validation activities. The expectation is to use the heightened 

sampling and monitoring period to gain the confidence and assurance for the high risk 

parameters.   
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Stage 3 – Continued Process Verification (CPV):  

The goal of the third validation stage is continual assurance that the process remains in a 

state of control (validated state) during commercial manufacture. A system needs to be in 

place for detecting unplanned departure from the process as designed during stage 1 and 

stage 2 [7]. Ideally, this stage should be treated as extension to stage 1 and stage 2 

because all the scientific knowledge of operating space and its verification is done during 

process validation phases. But, this is still creating confusion because it is a new concept 

and the expectations stated in the 2011 guidance are vague.  

The new guidance outlines that upon regulatory filing and receiving the approval for 

commercial manufacturing, the manufacturers maintain the same state of control as it was 

shown during PPQ runs to ensure that each batch is a process validation batch. When 

implementing stage 3, manufacturers should consider the semantic difference between 

the terms “continued” and “continuous”. The 2011 Guidance deliberately speaks to 

continued process verification, which some organizations have misinterpreted to mean 

continuous, with mandatory enablement via PAT. The expectation is decidedly not that 

in-process or release testing required under the cGMP regulations be replaced by PAT 

approaches. Rather, the expectation is for ongoing, (i.e., inter and intra-batch, monitoring, 

and review) [18]. 

The 2011 guidance has been rolled out for two and half years. Most of the manufacturers 

are still in the process of digesting this concept. By taking the hints from the 2011 

guidance, various ideas are being explored. Most of the manufacturers are in the process 

of modifying their procedures to adapt the CPV philosophy so that they can slowly but 

steadily join the band wagon. Some manufacturers are ahead in the game because they 

were early adaptors of QbD and PAT principles. Here are some of the examples 

discovered from the workshops and seminars on CPV interpretation and adaption: 

Current practices for the implementation of CPV [20]: 

Sampling during CPV: Instead of monitoring PPQ level sampling, only a few appropriate 

parameters are selected for the stage 3 sampling plan. The data is collected from these 

parameters until sufficient information is available to generate sufficient variability 
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estimates by review of historical data trends. Standard operating procedures (SOP) are 

put in place to define additional monitoring and the heightened sampling and monitoring 

period [21], list of additional parameters monitored, and statistical methods to measure 

Process Capability and Product Trends review [7]. 

Review of Supplier Audit: The incoming materials are ensured to be in a state of control. 

This can be demonstrated by [19] supplier audits and by verifying documents such as 

supplier quality agreements, certificates of analysis and raw material testing results. 

MMP (Master Monitoring Plan):  The drug manufacturers are planning to monitor the 

critical and key process parameters using pre-defined master monitoring plans for the 

products prior to commercial manufacturing so that the data and the data trends can be 

routinely monitored. Once the MMP is put in place, any change to the operating 

conditions (ranges and set-point), process controls post filling and regulatory 

inspectional commitments can be reflected in the MMP.  In order to have a robust MMP, 

preliminary process control limits and centerlines (if applicable) must be established for 

all in process control (IPC) parameters and critical and key post-filling parameters being 

monitored at or about lot 15. The statistical process control limits and centerlines (if 

applicable) must be established for all IPC parameters and critical and key post-filling 

parameters being monitored at or about lot 30. 

 

Monitoring Quality Systems: There are other periodic review quality systems are also 

being used to monitor the achieve CPV such as periodic review of post approval change 

control process [7], periodic review of non-conformances and defect reporting systems, 

verification of Root Causes and CAPA process, periodic review of validated equipment, 

systems and utilities at regular intervals, periodic review of monitoring for CIP and SIP 

cycles, periodic review, monthly and annual review of equipment and facility 

qualification [7], incorporating appropriate detection, control and mitigation strategies, 

collecting regular feedback from the process operators and quality staff on the process 

performance and maintaining and reviewing the product complaints data. 
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Statistical Evaluation and Analysis of Process Data [7, 21] 

The drug manufacturers are following the FDA’s suggestion of using statistics in the 

evaluation of data trends for analyzing the data. In order to achieve this, all IPC 

parameters and critical and key post filling parameters must be monitored starting from 

the first lot scheduled for commercial release. The product specific control limits must 

be established using generally accepted statistical process control practices with upper 

and/or lower control limits computed nominally at three standard deviation units from 

the mean for normally distributed data. The use of Nelson rules for supporting the 

making the statistical decisions is followed by many drug makers. As outlined in Nelson 

rules [22], all parameter results from each production lot must be examined across lots 

for statistically abnormal behavior. This approach shall include using the following 

Nelson (NEL) run rules for normally distributed parameters: 

 NEL 1: One point beyond a control limit 

 NEL 2: Nine points in a row on one side of the centerline 

 NEL 3: Six points in a row steadily increasing or decreasing 

 NEL 4: Fourteen points in a row alternating up and down 

 

Use of PAT Tools: Lastly, due to the technological developments, many new process 

capabilities are available for manufacturers. They can install the on-line, at-line and in-

line sensors to monitor critical and key process parameters in real-time. Installation of an 

electronic data collection system is a new trend in the industry, which stores batch 

historical batch data so that this data can easily accessed to analyze the trends between 

batches and within the batches.  The use of multivariate statistical analysis methods for 

real time process monitoring [23] is also a growing trend. 
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INDUSTRIAL APPLICATION OF PAT TOOL TO ACHIEVE CPV 

 

As discussed in the previous section, the manufactures are in the process of implementing 

various tools to include CPV into their manufacturing processes to meet the FDA’s 2011 

guidance. The use of real-time multivariate statistical process monitoring system is 

utilized here to show the how CPV can be achieved.   

Material 

SIMCA Software v13.0.3 [8]: The SIMCA software version 13.0.3 is utilized for the 

creation of statistical MV models.  This software is developed by Umetrics.  

This software is used to create design of experiments and multivariate data analysis. This 

tool transforms data into information, which can be seen in the form of colorful graphical 

control charts to enable the process analyst to make the correct decisions and take the 

appropriate actions in real-time.  

 

Historical data from the good batches (batches which have minimum deviations) are used 

from one of the well-known commercial biological manufacturing process. The data is 

extracted from the historical databases by making configurations, tags, scan rates, and 

compression settings to the source system. This data is pre-treated and organized in 

appropriate format prior to importing it into the SIMCA software for the creation of 

multivariate models.  

 

Methods  

 

Two popular and commonly used Multivariate Data Analysis (MVDA) Methods are 

principal components analysis (PCA) and partial least squares (PLS), which are used to 

show the use of the PAT tool described in the QbD, and PAT framework. [PAT 

Framework, QbD [2, 11, 24]. 

The commercial biological manufacturing process is enabled with various modern 

process analyzers and is equipped with a distributed control system to collect the process 

data. The real-time multivariate statistical process monitoring system is linked to the 
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process databases obtain the process data.  Various modifications were made to the 

existing databases for the collection of data from the unit operations. The study is focused 

one upstream unit operation (i.e. bioreactor) and one downstream unit operation (i.e. 

UF/DF).    

The propriety data were modified and normalized as necessary prior to using it for the 

creation of the multivariate (MV) model in SIMCA application.    

The goal is to demonstrate that the following PAT tools can be utilized to ensure 

continued process verification is met as outlined in FDA’s 2011 process validation 

guidelines [7]: 

I. Multivariate data acquisition and analysis  

II. Continuous improvement and knowledge management tools  

 

Most of the existing manufacturing processes for biologics product at scale are not 

designed to inherently enable the real-time process monitoring. The real-time process 

monitoring (PAT software tools) and QbD principles are required for monitoring a 

biologics manufacturing process in “Real-Time”.  

The bioreactor and UF/DF unit operations were monitored against the input parameters 

listed in table 1 and table 2. These unit operations were connected to the distributed 

control system (DCS) to collect the process data [11]. The process database was 

connected to DCS, which saved the historical and current batch data continuously 

generated from the ongoing batches. The continuous plant data historian was configured 

with the correct tags. The cell viability and viable cell density data were also collected 

from off-line measurements to check the process performance at twenty-four hour 

intervals during the course of the unit operation. The configuration of trigger tags, timers 

and batch tags were made as required to get all the relevant batch and continuous process 

data from the historical databases. 

 

The on-line data was collected at fifteen minute intervals for the bioreactor unit operation 

and at 10 second intervals for UF/DF unit operation. The data from fifteen batches were 



 

108 
 

used for the creation of MV model and control charts for the real time statistical process 

monitoring. The historical batches which had lowest number of deviations and alarm 

conditions were selected as an input for the MV model creation. The goal for this 

selection criterion was to create a reference MV model. The MV created the average and 

± 3 standard deviation for the confidence limits for the control charts. Two new batches 

were selected for the analysis to find out if they were good or bad batches. One batch of 

the two new batches data was deliberately modified by making known changes to certain 

variables for testing purposes.  This study was used to prove if the real-time multivariate 

statistical process monitoring system can achieve: 

 

1. Real time process monitoring  

2. Fault detection due to process failure or sensor malfunction  

3. Root cause analysis and process control   

 

MV Model Creation for Bioreactor and UF/DF unit Operation  

 

Bioreactor: The dataset contains data for N=17 batches. Out of these, fifteen batches were 

selected for the creation of MV model. The batch selection criteria were to have little 

variability among the batches used for the bioreactor cell culture process. The main 

objective of the study was to create a MV model so that it could be used as a reference to 

monitor new batches as they evolve and identify good batches from the bad batches. 

Fourteen variables (J=14) were monitored and the data was collected at every fifteen 

minute interval, giving a total of ~ K = 279 time points per batch. The total duration of 

the unit operation was 68 hours, and 30 minutes. The bioreactor unit operation is assumed 

a single phase process. 

 

MV for UF/DF: The dataset contains data for N=17 batches. Out of these, fifteen batches 

were selected for the creation of the MV model. The batch selection criteria were to have 

a little variability among the batches used for the UF/DF process. The main objective of 

the study was to create a MV model so that it could be used as a reference to monitor new 

batches as they evolve and identify good batches from the bad batches. Nineteen 

variables (J=19) were monitored and the data was collected at ten second interval, giving 
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a total of ~ K = 800 time points per batch. The total duration of the unit operation was 2 

hours: 31 minutes: 10 seconds. UF/DF unit operation has three phases such as 

concentration, diafiltration and recovery. 

The data are scaled to UV variance and unfolded by the SIMCA software prior to using 

for the model creation [24].  
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Table 1: Bioreactor Variables Monitored 

Variable 

Name 

Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Dissolved O2 % Operating Input 

Dissolved oxygen is monitored 

as a measure of cell culture 

performance 

Culture pH pH units Operating Input 
pH affects final viable cell 

density 

Air flow sLPM Operating Input 

Air flow is monitored as a 

measure of cell culture 

performance 

O2 flow sLPM Operating Input 

O2 flow is monitored as a 

measure of cell culture 

performance 

CO2 flow sLPM Operating Input 

CO2 flow is monitored as a 

measure of cell culture 

performance 

Bioreactor 

level 
L Operating Input 

Bioreactor level is monitored to 

maintain consistent volume 

Agitation RPM Operating Input 

Agitation maintains a 

homogenous solution and 

oxygen transfer to the cells 

Vessel 

pressure 
psig Operating Input 

Pressure influences mass 

transfer and mitigates 

contamination 

Temperature °C Operating Input 

Temperature (controlling 

probe) excursions  can impact 

final viable cell density and 

viability 

Culture 

duration 
days Operating Input 

Culture duration affects final 

viable cell density and is the 

maturity variable 

Temperature 

probe 

difference (A-

B) 

°C Operating Input 

Temperature probe difference 

(A-B) is monitored to detect 

equipment drift or malfunction 

VCD 
10

6
 

cells/mL 
Performance Output 

VCD is monitored as a measure 

of cell culture performance. 

Viability % Performance Output 

Viability is monitored as a 

measure of cell culture 

performance. 
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Table 2: UF/DF Variables Monitored 

Variable Name 
Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Feed pressure psig Operating Input 
Feed pressure is monitored to 

detect excursions in pressure 

Retentate pressure psig Operating Input 

Retentate pressure is 

monitored to detect 

excursions in pressure 

Permeate pressure psig Operating Input 

Permeate pressure is 

monitored to detect 

excursions in pressure 

Transmembrane 

pressure (TMP) 
psig Operating Input 

TMP is monitored to detect 

any excursions in pressure 

Feed flow LPM Operating Input 

Feed flow is monitored to 

detect any excursions in flow 

rate 

Retentate flow LPM Operating Input 

Retentate flow is monitored 

to detect any excursions in 

flow rate 

Permeate flow LPM Operating Input 

Permeate flow  is monitored 

to detect any excursions in 

flow rate 

Feed Retentate DP  psig Operating Input 

Feed retentate pressure is 

monitored to detect 

differential pressure 

Permeate flux L/hr/m2 Operating Input 

Permeate flux (permeate flow 

rate normalized by membrane 

area) is monitored to detect 

excursions in flow rate 

Permeate UV AU Operating Input 

Permeate UV is monitored to 

detect product loss during 

UF/DF II 

Permeate 

conductivity 
mS/cm Operating Input 

Permeate conductivity is 

monitored to ensure product 

conductivity targets 

Concentration 

factor 
N/A Operating Input 

Concentration factor is 

monitored to ensure 

concentration targets are met 

Diafiltration 

Factor 
L Operating Input 

A minimum number of 

diavolumes are required to 

meet pH and conductivity 

specifications for the UF/DF 

II Pool 



 

112 
 

Variable Name 
Unit of 

Measure 

Variable 

Type 

Variable  

Class 
Variable Use 

Feed flow process 

totalizer 
L Operating Input 

Feed flow totalizer is 

monitored to ensure 

concentration and 

diafiltration targets are met 

Permeate flow 

process totalizer 
L Operating Input 

Permeate flow totalizer is 

monitored to detect any 

excursions in the total 

permeate volume 

Retentate flow 

process totalizer 
L Operating Input 

Retentate flow totalizer is 

monitored to ensure 

concentration and 

diafiltration targets are met 

and is the maturity variable 

Permeate control 

valve 
% Operating Input 

Permeate control valve is 

monitored as a controller 

output 

Retentate control 

valve 
% Operating Input 

Retentate control valve is 

monitored as a controller 

output 

Step yield % Performance Output 

Step yield is monitored as a 

measure of UF/DF 

performance. 
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The MV model created for bioreactor unit operation using fifteen good batches is shown 

in Figure 5a and Figure 5b by a score plot and a batch contribution plot. The MV model 

created a default 95% confidence limit using F distribution, which is shown by an 

ecllipse in Figure 5a.  In Figure 5b, the batch contribution plot shows a ±3 standard 

deviation and averages using the data from the reference batches. The ±3 standard 

deviation and averages are shown in red and green. Figure 5a and Figure 5b plots show 

that all batches are aligned properly and ending in a similar fashion within the confidence 

limits.   

 

 
 

Figure 5a: The Score Plot (BEM) for bioreactor. The score plot was created for 

the bioreactor using the scores of first two principal components. The score plot 

shows that all batches are aligned properly and fitting the 95% confidence limit 

ecllipse. 
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Figure 5b: The PC 1 Score Batch Plot for bioreactor. The batch score plot for the 

bioreactor using the scores of the first principal components on the vertical axis 

and the elapsed time on the horizontal axis. The score plot shows that all  batches 

are starting and ending within a similar fashion within ±3 standard deviation 

confidence limit. 

 

UF/DF unit operation has three different phases. Therefore, SIMCA created three 

separate batch evolution models for each phase. The UF/DF MV model for the 

concentration phase is shown in Figure 6a and 6b. The model is created using fifteen 

good batches and is depicted by a score plots and a batch contribution plot. The MV 

model created a default 95% confidence limit using F distribution which, is shown by an 

ecllipse in the Figure 5a.  In Figure 5b, the batch contribution plot shows a ±3 standard 

deviation and averages using the data from the reference batches. The ±3 standard 

deviation and averages are shown in red and green. Figure 5a and Figure 5b plots show 

that all batches are aligned properly and ending in a similar fashion within the confidence 

limits.   
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Figure 6a: The Score Plot (BEM) for UF/DF. The score plot created for UF/DF 

using the scores of the first two principal components. The score plot shows that 

all batches are aligned properly and fitting the 95% confidence limit ecllipse. 

 

 

 
 

Figure 6b: The PC 1 Score Batch Plot for UF/DF. The batch score plot for UD/DF 

using the scores of the first principal components on the vertical axis and the 

elapsed time on the horizontal axis. The score plot shows that all batches are 

starting and ending within a similar fashion within ±3 standard deviation 

confidence limit. 
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Use of MV Model for real time process monitoring and fault detection  

 

In this section, we can see how these models can be used to monitor the new batches as 

they evolve. If the new batch is a good batch then it is expected to evolve with in the 

confidence limits. This can be seen on the control charts. At the same time, if for any 

reason, there is a deviation then the cause and source of the deviation can be tracked 

using control charts. Introduction of this tool within the cGMP manufacturing facility 

which is equipped with the on-line data collection technologies can monitor every new 

batch in real time and provide an opportunity for continuous improvement and scientific 

knowledge management to meet the FDA’s stage three life cycle approach.    

In order to test the real-time process monitoring system to ensure the continued process 

verification, two new batches were selected for both the bioreactor and UF/DF unit 

operations each. One of the two new batches was a good batch and the second new batch 

was deliberately modified by making deliberate changes to a few variables to see if they 

can be detected by the real-time process monitoring system.  

In this case study 1, a new batch (batch# 1016) was projected on MV model created for 

the bioreactor process using fifteen good batches to see if this batch was running in the 

state of control. The batch score plot and the individual batch plot in Figure 7 showed 

that the batch# 1016 (shown in red) was well within the 95% control limit. The batch 

contribution plot shows that batch# 1016 was moving within ± 3 standard deviations 

shown in red and around the average (shown in green). 

 



 

117 
 

  

Figure 7: The batch score plot for the bioreactor batch# 1016. The plot shows that 

it was within the 95% confidence interval. The individual batch plot shows that 

the batch 1016 moved within ±3 standard deviation confidence limit. 

In this case study 2, a new batch (batch# 1017) was projected on the MV model created 

for the bioreactor process using fifteen good batches to see if this batch was running in 

the state of control. The batch score plot and the individual batch plot in Figure 8 showed 

that batch# 1017 (shown in red) was outside of the 95% control limit. The batch 

contribution plot showed that batch# 1017 is outside of ±3 standard deviations at several 

time points. This graphical presentation of new batch in real time reveals that the batch 

was not a good batch and the cause of deviation to be addressed immediately.  

 
 

Figure 8: The batch score plot for the bioreactor batch# 1017. The plot shows that 

it was outside of the 95% confidence interval and the individual batch plot shows 

that the batch# 1017 moved outside of ±3 standard deviation confidence limit at 

several time points. 



 

118 
 

In order to find out the cause for the batch deviation, the contribution plot for each 

variable was evaluated. It revealed that the pH and the temperature sensors were 

malfunctioning. Figure 9 shows the pH and temperature batch plots with the specific time 

points where the batch was out of the confidence limit. 

 
 

Figure 9: The Variable Batch Plots for pH and Temperature. The plot shows the 

exact time points where the batch was outside of ±3 standard deviation confidence 

limit.  

In this case study 3, a new batch# 116 was projected on MV model created for UF/DF 

using fifteen good batches to see if this batch was running in the state of control. A batch 

score plot and a batch contribution plot in Figure 10 shows that the batch# 116 (shown in 

red) was well within the 95% control limit. The batch contribution plot shows that batch# 

116 was moving within ± 3 standard deviations (shown in red) and around the average 

(shown in green). 
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Figure 10: The Batch Score Plot for the UF/DF batch# 116. The plot shows that it 

was within the 95% confidence interval and the individual batch plot shows that 

the batch# 116 was evolving within ±3 standard deviation confidence limit.  

 

In this example 4, a new batch# 117 was projected on the MV model created for the 

UF/DF using fifteen good batches to see if this batch was running in the state of control. 

The batch contribution plot in Figure 11 shows that batch# 117 was outside of ±3 

standard deviations at several time points. This graphical presentation of new batch in 

real-time revealed that the batch was not a good batch and the cause of deviation to be 

addressed immediately. 

 

Figure 11: The Batch Score Plot for the UF/DF batch# 117. The plot shows that it 

was going outside of ± 3 standard deviation at several places. 
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In order to find out the cause for the batch deviation, the batch plot for each variable was 

evaluated. It revealed that the feed pressure and feed flow sensors were malfunctioning. 

Figure 12 shows the feed pressure and feed flow contribution plots with specific time 

points of where the batch was outside of the confidence limit. 

 
 

Figure 12: The Variable Batch Plot for Feed Pressure and Feed Flow for batch# 

117. The plot shows the time of when the feed pressure and feed flow were 

outside of ± 3 standard deviation confidence limits.  
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Benefits of MVDA PAT Tool   

 

The above examples show that the use of a multivariate process monitoring tool enables 

the real-time process monitoring for the timely fault detection and analysis. The tool also 

helps in detecting the root cause.  

 

In an ideal situation complete implementation of a lifecycle approach using QbD and 

PAT tools, the raw material and equipment related process variability could be identified 

early on leading to thorough process understanding and effective process control of a 

particular process. The process scientist can take scientific, risk based decisions to 

justify the changes made within the operating space. This will result into tremendous 

benefits to the manufacturers and to the regulatory agencies during approval process as 

listed below:  

 

Each of the following benefits can be transformed into financial benefit. There are a lot 

of cost savings associated with each benefit. Ultimately, cost savings in the long range to 

meet the product and prize demand is the ultimate objective along with meeting the 

regulatory expectation. 

 

Benefits [6, 13, 25]: 

1. Thorough understanding of the process makes it easy to establish an operating 

space.  

2. Provides the scientific knowledge and classification of each and every input 

and output parameters 

3. Early fault detection  

4. Process changes within operating space may not require additional PPQ runs 

which may reduce the frequent regulatory review and approval  

5. Scientific and data driven justification for every future modification will save 

time during investigations 

6. Consistent and better quality product; a more robust manufacturing process 

7. Consistent product quality with minimal variability and higher yield  

8. Real time release 
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CONCLUSION 

 

The latest Q11 [5] guideline, along with a new Process Validation guidance by FDA for 

process validation [7] about Continued Process Verification are eliciting the same 

message that “Process validation should not be viewed as a one-off event. A lifecycle 

approach should be applied linking product and process development, validation of the 

commercial manufacturing process and maintenance of the process in a state of control 

during routine commercial production”.  

With this, the regulatory agencies are encouraging the manufacturers to implement the 

QbD and PAT. In the traditional approach, set points and operating ranges for process 

parameters are defined and the control strategy based on the demonstration of process 

reproducibility and testing to meet the established acceptance criteria. There are certainly 

flaws in the traditional approach which can be improved with an enhanced approach. The 

enhanced approach is backed by risk management studies, scientific knowledge, and 

process understanding. The process knowledge and understanding gained during the 

process design and process qualification stages can be utilized to develop appropriate 

control strategies which are applicable over the lifecycle of the product. 

The RT-MSPM system used in the study can be applied to any legacy manufacturing 

process. Even if it requires investment of resources and time, it can be applied easily with 

appropriate management support. It can definitely offer a significant enhancement to 

process understanding, process monitoring, scientific thoroughness in decision making 

qualitative and quantitative performances and cost savings. The use of MVDA tool 

provides an opportunity to have better control on monitoring the process real-time so that 

issues can be identified and addressed quickly.  

There are multiple benefits of implementing a PAT during the drug development phase, 

and manufacturing phase. In the development phase, it can provide process 

understanding. In manufacturing phase, it can help gain the real-time monitoring and 

assurance that the batch is moving in a right direction.  It can also eliminate off-line 

testing and minimize batches that are out of specification [25]. 
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If QbD and PAT are applied to new products, a sufficient number of bench scale, 

development runs and engineering runs are performed to obtain sufficient data then the 

justification for a number of batches required for PPQ can be easily made prior to process 

validation campaign.  

If the MVDA tool is applied to an existing product, then every batch can be monitored in 

real-time similar to a process validation batch. The early fault detection and any deviation 

from the targeted range can be detected in real-time. These capabilities not only provide 

financial benefit but also meet the regulatory expectation for continued/continuous 

process verification. 
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