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ARTICLE

Topological scoring of protein interaction networks
Mihaela E. Sardiu1, Joshua M. Gilmore1,3, Brad D. Groppe1,4, Arnob Dutta1,5, Laurence Florens1 &

Michael P. Washburn 1,2

It remains a significant challenge to define individual protein associations within networks

where an individual protein can directly interact with other proteins and/or be part of large

complexes, which contain functional modules. Here we demonstrate the topological scoring

(TopS) algorithm for the analysis of quantitative proteomic datasets from affinity purifica-

tions. Data is analyzed in a parallel fashion where a prey protein is scored in an individual

affinity purification by aggregating information from the entire dataset. Topological scores

span a broad range of values indicating the enrichment of an individual protein in every bait

protein purification. TopS is applied to interaction networks derived from human DNA repair

proteins and yeast chromatin remodeling complexes. TopS highlights potential direct protein

interactions and modules within complexes. TopS is a rapid method for the efficient and

informative computational analysis of datasets, is complementary to existing analysis pipe-

lines, and provides important insights into protein interaction networks.
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Many large- and medium-scale analyses of protein
interaction networks exist for the study of protein
complexes1–4. These studies typically consist of affinity

purifications of different bait proteins analyzed using mass
spectrometry (AP-MS) and utilize statistical tools to provide
confidence that a prey protein is associated with a bait protein.
Approaches like CompPASS5, QSPEC6, SAINT7, and SFINX8

largely yield statistical values, like a p value, to provide a con-
fidence that two proteins are associating or are part of a protein
complex. Within a protein interaction network, an individual
protein may have multiple interactions, may be part of a large
protein complex or complexes, which can be composed of
important functional modules. For example, modularity is a
hallmark of protein complexes involved in transcription and
chromatin remodeling. Within this area of protein interaction
networks, Mediator9, SAGA10,11, and SWI/SNF12 are just a few of
the many complexes well known to have modules that carry out
distinct functions. Determining these modules in these complexes
has required years of study using biochemical, genetic, and pro-
teomic methods9–12. In addition, within protein interaction net-
works and protein complexes, there are also direct protein
interactions that are critical for biological functions. For example,
in DNA repair, the formation of the Ku70-Ku80 (XRCC5-
XRCC6) heterodimer is critical for recognition of DNA double
strand breaks that occur during nonhomologous end joining13.
Existing statistical tools struggle to gain insight into the behavior
of an individual protein in a protein interaction network. Meth-
ods are needed to dig deeper into protein interaction datasets to
determine direct protein interactions and to capture modularity
within complexes.

We have used approaches like deletion network analyses,
network perturbation, and topological data analysis to determine
the modularity in protein interaction networks and protein
complexes themselves14. Here we describe a topological scoring
(TopS) algorithm for the analysis of protein interaction networks
derived from quantitative proteomic AP-MS datasets. TopS can
be used by itself or in addition to existing tools5–8 to analyze and
interpret datasets. Here, we apply TopS to a protein interaction
network centered on human DNA repair proteins, to a previously
published human polycomb complexome dataset4, and to yeast
chromatin remodeling datasets from the INO80 and SWI/SNF
complexes12,14. TopS yields insights into potential direct protein
interactions and modularity within these networks. TopS is a
simple and powerful algorithm based on the likelihood ratio
method to infer the interaction preferences of proteins within a
network consisting of reciprocal and nonreciprocal purifications.
The TopS algorithm generates positive or negative values across a
broad range for each prey/bait combination relative to the other
AP-MS analyses in a dataset. TopS can differentiate between
high-confidence interactions found with large positive values and
lower confidence interactions found with negative values. TopS
has the advantage that the scores it generates can be easily further
integrated into additional computational workflows and cluster-
ing approaches.

Results
Definition of topological score based on likelihood ratio.
Determining whether a protein in a single affinity purification is
significantly enriched without additional information remains a
challenge. Therefore, by comparing several biologically related
baits, one can determine whether a protein is truly enriched in a
sample. The concept behind computing TopS is to collectively
analyze parallel proteomics datasets and highlight enriched
interactions in each bait relative to the other baits in a larger
biological context. For each individual bait, instead of calculating

a score by concentrating only on a single bait column via nor-
malization or modeling, we aggregate information from the whole
dataset where all data from all rows and all columns are used. Our
topological score is based on the likelihood ratio and reflects the
interaction preference of a prey protein for an affinity-purified
bait. For each protein detected in a bait AP-MS, TopS calculates
the likelihood ratio between the observed spectral count Qij of a
protein i in a bait j, and the expected spectral count Eij in row i
and column j (Fig. 1, Eq. (2)). Each prey protein from each AP-
MS experiment has a distinct TopS value. TopS assigns positive or
negative scores to proteins identified in each bait using spectral
count information. If the actual number of spectra of a prey
protein in a specific bait AP-MS exceeds that in all baits AP-MS,
the presumption is that we have a positive preferential interac-
tion. Likewise, fewer spectra in the bait AP-MS indicate a negative
interaction preference.

Unlike p values or fold changes where the difference between
the largest and the smallest values is relatively small, TopS
generates a wide range of positive and negative scores that can
easily differentiate high, medium, or low interaction preferences
within the data. This is an advantage for proteomics data analysis
since these scores not only reflect the interaction preference of
proteins relative to others, but can now be directly integrated to
further analyses such as clustering or network analysis in order to
discover network organization. TopS is written in R and the
platform is built with SHINY (https://shiny.rstudio.com/). It is
easily implemented and includes correlations and clustering for
bait/prey relationships.

Analysis of a human DNA repair network dataset. We first
tested TopS on a dataset generated from HaloTag proteins
involved in human DNA repair. DNA repair mechanisms are
complex, independent, interdependent, and have been extensively
studied15,16. To uncover the connectivity between proteins
involved in these pathways, we selected 17 proteins that are part
of different DNA repair mechanisms. In addition to the affinity
purifications of known elements of the DNA repair pathways
such as MSH2, MSH3, and MSH6 (involved in mismatch repair),
RPA1, RPA2, and RPA3 (involved in nucleotide excision repair),
XRCC5 and XRCC6 (involved in double strand break repair),
SSBP1 and PARP117, we analyzed an additional seven proteins
(WDR76, SPIN1, CBX1, CBX3, CBX5, CBX7, and CBX8) with
chromatin associated functions and some of which had been
associated with DNA repair18. For example, we have previously
demonstrated that WDR76 is a DNA damage response protein
with strong associations with members of DNA repair pathways
and the CBX proteins19. It is important to note that our objective
here was not to describe a human DNA repair protein interaction
network. The proteins chosen for this small-scale study were of
interest because of their potential relationship to the poorly
characterized WDR76 protein19. Furthermore, these proteins
were transiently overexpressed in HEK293 cells, and given the
potential issues with transient overexpression20, the dataset would
be expected to be noisy. We reasoned that using a noisy dataset
would be an excellent test of the TopS method and its ability to
extract meaningful biological information.

We used Halo affinity purification followed by quantitative
proteomics analysis to identify proteins associated with any of the
17 baits. Three biological replicates were performed for each of
the bait proteins and the distributed normalized spectral
abundance factor (dNSAF)21 was used to quantify the prey
proteins in each bait AP-MS. To eliminate potential nonspecific
proteins, three negative controls were analyzed from cells
expressing the Halo tag alone. A total of 54 purifications were
completed and 4509 prey proteins identified (Supplementary
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Data 1). To determine the proteins that were enriched in the
samples versus negative controls, QSPEC6 was used (Supplemen-
tary Data 1). A protein was considered specific in a sample if its Z
score was greater than or equal to 2 and the FDR was less than
0.01 in the bait AP-MS versus the control AP-MS. A total of 801
prey proteins passed these strict statistical criteria and they were
further used in the analysis. Because of the higher number of
spectra identified for overexpressed bait proteins, we adjusted the
spectral counts for each bait protein according to Eq. (1) (Fig. 1).
To depict the interactions in this DNA repair dataset that
consisted of a matrix of 801 proteins in 17 baits, we calculated
topological scores based on Eq. (2) and assigned positive or
negative TopS to proteins identified in each bait AP-MS. The
FDR values for these proteins using the QSPEC6 pipeline were
also calculated (Supplementary Data 1 and Supplementary
Figure 1). To focus on proteins with positive interaction
preferences, we used a TopS cutoff of 20 (Supplementary
Figure 2). A total number of 617 proteins passed this filtering
criteria (Supplementary Data 2).

Next, we hypothesized that proteins within the same complexes
should have high preferences to the same bait purification. To test

this hypothesis, we sorted proteins into known complexes using
ConsensusPathDB22 and detected 118 protein complexes con-
sisting of 230 proteins. Some of these 230 proteins were shared by
multiple protein complexes. We systematically examined their
TopS values and found that indeed proteins within complexes
tended to associate with the same baits with high topological
scores (Fig. 2 and Supplementary Data 3) even though some of
the proteins were detected in most of the baits. To further
investigate this observation, we hierarchically clustered all of the
proteins belonging to known complexes and obtained a strong
separation of the baits: bait proteins that belong to the same
complexes clustered together (Fig. 2a). Thus, by using TopS
values, we could illustrate the preferential interactions between
protein complexes and baits in a large dataset.

Certain complexes showed significant enrichment to some of
the baits. For example, in the case of the polycomb complex, we
detected five members of the complex including CBX8. These
five proteins had high preferential interactions to the CBX8 bait
(Fig. 2b). Similar results were observed in the case of the BRAFT
complex where we observed that five components of the
complex, including RPA proteins, show high scores specifically

Proteins detected  by AP-MS
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Fig. 1Workflow for topological scoring of protein interaction datasets. In the first step, contaminant proteins are filtered using Z scores and FDR generated
from QSPEC; however, other approaches could be used. Next, overexpressed bait proteins that have high spectral counts in the data are adjusted using Eq.
(1). After prey proteins as baits are adjusted, topological scores (TopS) are then calculated, using an automated SHINY application, as described in Eq. (2),
where Qij is the observed count in row i and column j and Eij is the expected count in row i and column j. Direct input of TopS values can be used in many
different ways, such as data clustering to investigate the modularity and linkage in a network; additional filtering may be conducted using the CRAPome27,
for example; and a topological data analysis network may be generated. FDR false discovery rate
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with the RPA3 bait AP-MS dataset confirming the connectivity
between these proteins (Fig. 2b). The high TopS value observed
with RPA3 suggests that this subunit of the RPA1/RPA2/RPA3
module brings in the other two BRAFT-specific proteins.
Finally, to further illustrate all of the connections between

complexes and baits, we constructed a network using the
Cytoscape platform23 (Fig. 2c). This network showed that
PARP1, SPIN1, and XRCC6 baits have the most connections,
and PARP1 and SPIN1 share a significant connected subnet-
work (Fig. 2c).
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Topological network assembly and extreme value analysis. We
have previously demonstrated that topological data analysis
(TDA)24 can be used to identify clusters of proteins in protein
interaction networks using normalized correlations25 and to find
topological network modules in perturbed protein interaction
networks using fold change ratios14. We then assembled a protein
interaction network based on TDA using TopS values as input
(Fig. 3a). TDA in conjunction with TopS values resulted in
proteins with high topological scores clustering to the same
region of the network (Supplementary Data 4). For example,
proteins that are likely to interact with PARP1 were located in the
same topological area on the right side of Fig. 3, whereas proteins
that interact with WDR76 were on the upper left side. WDR76
localized in a node containing another 18 proteins including
HELLS, GAN, and SIRT1, which have also been observed by
independent studies to associate with WDR762,26. Similarly,
SPIN1 was in a node with another 18 proteins, four of which
(SPIN1, SPIN4, THRAP3, and BCLAF1) have been reported by
others in SPIN1 purifications2.

Many additional approaches may be used to further interpret
the dataset. For example, we introduced another filter to the TopS
associations by adding information from the CRAPome, which is
a database of proteins known to be present in 411 negative
controls for human affinity purifications27. The list of proteins
with high TopS values were analyzed using the CRAPome web
interface. We next removed proteins with high TopS values in our
dataset that were present in a maximum of 10/411 controls (~2%
of the negative controls) with a maximum spectral count of 15.
Using this threshold, we created a reduced network and inspected
these specific interactions (Fig. 3b). For simplicity, we focused on
the interactions of the CBX proteins where we observed a high
connection between a set of zinc finger proteins with KRAB
domains and the CBX proteins (Fig. 3b). Most of these zinc finger
proteins were not identified in any of the 411 negative controls
and are likely specific to the current dataset. KRAB zinc finger
proteins play an important role in the evolution of gene
regulatory networks28. While one of these KRAB proteins,
TRIM28/KAP1, has been shown to directly interact with HP1
proteins (CBX1, CBX3, and CBX5)29,30, all others are previously
undescribed high-confidence interactors. The reduced subnet-
work presented in Fig. 3b suggests a large number of additional
KRAB Zinc finger proteins associate with CBX proteins in
unexplored processes.

The known direct interactions of HP1 proteins (CBX1, 3, and
5) with TRIM2829,30 suggested we look deeper into TopS values
in our dataset. We sorted the TopS values for all the prey proteins
for each bait protein (Supplementary Data 2) from highest to
lowest to observe the extreme negative and positive values in the
dataset. The 28 prey proteins with the highest TopS values across
the 17 human DNA repair bait purifications are shown in Fig. 3c.
TRIM28 is the highest scoring protein with all three CBX/HP1
proteins. In every other bait, except RPA3, TRIM28 is among the
ten most negative TopS values and TRIM28 is the most negative
scoring protein in the CBX8, MSH6, and WDR76 baits
(Supplementary Data 2). This pattern of a prey having very high

TopS values in specific baits and extreme negative values
elsewhere in the dataset occurred for several additional bait
−prey interactions. These included XRCC5 and XRCC6, which
directly interact with each other to form a heterodimer13. In the
XRCC5 affinity purification, XRCC6 is the highest scoring prey
protein (Supplementary Figure 3), which is the highest TopS
value in the entire dataset, and in the XRCC6 affinity purification
XRCC5 is the highest scoring prey protein (Fig. 3c and
Supplementary Data 2). XRCC5 and XRCC6 are among the
most negative TopS values in several other bait purifications
including CBX5, CBX8, MSH2, MSH3, MSH6, RPA2, RPA3,
SPIN1, and WDR76 (Fig. 3c and Supplementary Data 2). These
results suggest that extremely positive TopS values may suggest
direct protein−protein interactions.

An alternative approach to visualize positive and negative TopS
scores is found in Supplementary Figure 4, where four subnet-
works are shown in different bait affinity purifications. Subunits
of the elF3 complex showed the same high positive scores in the
MSH3 and SPIN1 affinity purifications and negative scores in the
WDR76 and SSBP1 affinity purifications (Supplementary Fig-
ure 4a). Also shown are proteins found in the CBX/HP1
interactions, proteins of the CEN complex, and MSH2 interacting
proteins (Supplementary Figure 4b–d). In these cases, very high
TopS values were calculated in selected baits compared to others.
The similarity of TopS scores for proteins in complexes in
different affinity purifications further highlights the ability of
TopS scores to rapidly capture meaningful information from a
dataset. In addition, this illustrates a degree of similarity for
proteins in complexes in terms of interactions suggesting
coherence in TopS negative and positive sign assignments.
Similar results can be observed for multiple complexes and
groups of biologically related proteins (Supplementary Data 3 and
Supplementary Figure 4).

As an example of how to further utilize prey proteins with high
TopS values, we next sought to investigate the therapeutic aspect
of these interactions since proteins involved in DNA repair
pathways are known for their role in human diseases such as
cancer. We used WebGestalt31 to perform drug−gene association
enrichment for the proteins with high TopS scores in our dataset.
The enrichment analysis resulted in nine identified drug classes
(Fig. 4a). Unexpectedly, we observed that the enriched classes
consisted of proteins with high topological scores for the same
bait (Supplementary Data 5). For example, the association with
dactinomycin was mostly enriched with proteins with high
positive TopS scores for PARP1, SPIN1, and WDR76 (Fig. 4b and
Supplementary Data 5), whereas proteins associated with
tobramycin had high scores for SPIN1 (Supplementary Data 5).
Dactinomycin is approved for use in treatment of several cancers,
such as Wilms’s tumor32. These enrichment results indicate that
TopS can highlight interactions that may be targeted by drugs in a
dataset.

TopS analysis of yeast chromatin remodeling complexes. The
fact that the highest TopS value in the human dataset was

Fig. 2 Capture of protein complexes in a human DNA repair network. a Hierarchical biclustering on TopS values of the 17 baits and 535 preys in a human
DNA repair protein interaction network. Proteins identified in complexes in the DNA repair dataset were hierarchically clustered using normalized TopS
values as input using ClustVis46. a Scaling method was used to divide the values by standard deviation so that each row had a variance equal to one. Rows
were centered and unit variance scaling was applied to rows. Rows were clustered using correlation distance and average linkage. Columns were clustered
using correlation distance and Ward linkage. b Bait-specific protein complex enrichment. Two complexes are shown that exhibited high association with
specific baits. Red color corresponds to high TopS scores. Subunits of the polycomb complex exhibited high scores with the CBX8 bait, and components of
the BRAFT complex exhibited high scores with the RPA3 bait. c Interaction network between baits and known protein complexes identified in the dataset.
The network was constructed using the Cytoscape platform23. Large nodes correspond to a larger number of links. TopS topological scoring
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calculated for XRCC6 in the XRCC5 affinity purification, which is
a known heterodimer13, led us to investigate the TopS approach
in the well-characterized yeast chromatin remodeling system. We
have previously utilized deletion network analyses to determine
the modularity of the INO8014 and SWI/SNF12 chromatin

remodeling complexes. Here, we reanalyzed two published yeast
INO8014 and SWI/SNF12 protein complexes datasets for which
crosslinking data also exist33,34. However, we only applied TopS
to the wild-type affinity purifications and did not consider the
affinity purifications in genetic deletion backgrounds. We sought
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to determine if TopS analysis applied to the wild-type INO80 and
SWI/SNF data could capture modules as determined from the
deletion datasets and potential direct interactions as determined
from crosslinking data.

Identifying direct interactions from quantitative wild-type
affinity purification datasets has been a long-standing problem.
Examining protein abundances in separate samples, one cannot
identify the direct interactions using standard approaches. This
challenge is illustrated in Fig. 5 where the protein abundances, as

estimated by dNSAF, of the INO80 complex in the ARP8 bait
(Fig. 5a) and the protein abundance of the SWI/SNF complex in
the SWP82 bait (Fig. 5b) are shown. For example, ACT1, ARP4,
ARP8, IES4, and TAF14 are known to be part of a module based
on deletion network analysis14 and crosslinking data34, yet their
dNSAF abundances have no particular pattern.

To determine whether TopS values can capture the modularity
and potentially direct protein interaction in these complexes, we
merged a total of 24 wild-type affinity purifications for several
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Fig. 4 Enrichment of drug targets in the human DNA repair network. a The proteins detected and scored in our human DNA repair dataset were enriched in
nine gene−drug classes. The enriched classes were obtained using WebGestalt database31. b Proteins/genes enriched in the dactinomycin set are
represented. The red color represent high TopS values. TopS topological scoring

Fig. 3 Topological network and linkage analysis of a human DNA repair network. a TDA in combination with the TopS scores was applied to the proteins
with Tops > 20 in at least one of the baits. Norm Correlation was used as a distance metric with two filter functions: Neighborhood lens 1 and
Neighborhood lens 2. Resolution 30 and gain 3 were used here using the Ayasdi software24. Proteins are colored based on the rows per node. Color bar:
red: high values, blue: low values. Node size is proportional to the number of proteins in the node. b A reduced network was created using information from
the CRAPome27 database, and the network was generated using Cytoscape platform23. Proteins associated with CBX1, CBX3, and CBX5 are expanded and
highlighted in the inset. c Hierarchical biclustering using PermutMatrix47 of protein with extreme positive TopS values. The 28 proteins with the highest
TopS values across the dataset are shown. Rows and columns were clustered using Pearson as the distance and Ward linkage as the method. Yellow
corresponds to high TopS values and gray shows negative TopS values. Proteins not present in the purifications are shown in black. TopS topological
scoring
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INO80 and SWI/SNF subunits isolated from yeast (Supplemen-
tary Data 6 and 7). First, the INO80 data14 were preprocessed by
extracting nonspecific proteins, and proteins that passed the
contaminant extractions in INO80 purifications (Supplementary
Data 6) were also searched in the SWI/SNF dataset (Supplemen-
tary Data 7). A total of 237 proteins were shared between the two
complexes. TopS analysis was applied to both complexes and
FDR values for these proteins using QSPEC analysis were also
obtained (Supplementary Data 9 and 10 and Supplementary
Figure 5).

As with the human DNA repair network, we directly imported
TopS values into a TDA-based network analysis (Fig. 6). In the
INO80 complex, the ARP8 module was separated from the
NHP10 and ARP5-IES6 modules (Fig. 6a, Supplementary
Figure 6). Interestingly, the ARP8 module was connected via
the shared protein TAF14 to a module consisting of SWI/SNF

subunits (Fig. 6a). In addition, the ARP9, ARP7, and RTT102
module in SWI/SNF was also clearly separated from the other
modules (Fig. 6a, Supplementary Figure 7). ARP7, ARP9, and
RTT102 are part of both the SWI/SNF12 and RSC35 complexes.
Additional components of RSC were therefore present in the
affinity purifications of these shared subunits and localized to an
SWI/SNF subunit/RSC complex partition of the network (Fig. 6a).
Overall, TopS values of wild-type affinity purifications were able
to identify the modules of the INO80 and SWI/SNF complexes
(Fig. 6a) in a manner comparable to the results from the deletion
network analyses12,14.

Next, similarly to how we processed the human DNA repair
network, we sorted the TopS values for all the prey proteins for
each bait protein (Supplementary Data 6 and 7) from highest to
lowest to observe the extreme negative and positive values in the
dataset. The 35 prey proteins with the highest TopS values across
the 24 yeast chromatin remodeling wild-type bait purifications
were hierarchically clustered (Fig. 6b). The highest TopS value in
the entire dataset was ARP5 in the IES6 affinity purification.
Furthermore, ARP5 and IES6 were the only two proteins in the
IES6 affinity purification from the INO80 complex with positive
TopS values; all the other proteins in the INO80 complex have
negative values in the IES6 affinity purification (Fig. 6b and
Supplementary Data 6 and 7). ARP5 and IES6 are well-
characterized direct interactors in a subcomplex within the
INO80 complex14,36. A similar result occurred in the ARP9
affinity purification where ARP7, RTT102, and ARP9 had the
three highest TopS values, and all the other components of the
SWI/SNF and RSC complexes had negative values in the ARP9
affinity purification (Fig. 6b and Supplementary Data 6 and 7).
Again, ARP7, RTT102, and ARP9 are a known module since they
are shared by both the SWI/SNF12 and RSC35 complexes.

An alternative approach to visualize positive and negative TopS
scores in the INO80 and SWI/SNF datasets is found in
Supplementary Figure 8, where six modules are shown in
different bait affinity purifications. For example, in the INO8O
dataset, the four proteins of the NHP10 module had high positive
TopS scores in IES1 affinity purifications but negative values in
the ARP5 and ARP4 affinity purifications (Supplementary
Figure 8a). In the SWI/SNF dataset, the three proteins of the
SNF5, SWP82, and TAF14 module had high TopS values in the
SWP82, SNF6, and SNF2 baits, but negative values in the ARP7
bait (Supplementary Figure 8f). Similarly to the analysis of the
human DNA repair dataset, modules in INO80 and SWI/SNF
complexes showed similar patterns of interactions in different
affinity purifications (Supplementary Figure 8), highlighting once
again the accuracy of TopS positive and negative sign assignment
to protein interactions.

We next evaluated the overlap of our high TopS values with
reported crosslinking interactions from INO8034 and SWI/SNF33

(Fig. 6c, d and Supplementary Data 6 and 7). Our results showed
a high overlap between crosslinking interactions and proteins
−baits pairs with high TopS values. We observed 77% and 63%
overlap for the INO80 and SWI/SNF complexes, respectively. The
direct interactions identified by crosslinking are mostly between
subunits located within the same module and TopS identified the
majority of these interactions (Fig. 6c, d). The major exceptions
were for proteins that are shared between different complexes like
RVB1, RVB2, ARP7, ARP9, and RTT102 (Supplementary Data 6
and 7). In these cases, TopS give the highest scores to other
complexes which share these proteins. For example, the module
ARP7, ARP9, and RTT102 is shared with the RSC complex and
we can see from Fig. 6b that members of the RSC complex are
highly enriched in the ARP7 purifications. Overall, we found that
TopS values from an analysis of wild-type INO80 and SWI/SNF
AP-MS captured the known modularity of the complexes and
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high TopS values correlated with known direct interactions
within these protein complexes.

Comparison of TopS to alternative analysis pipelines. Several
computational pipelines exist for the analysis of protein interac-
tions generated from quantitative proteomic analyses of affinity
purifications. These include the commonly used SAINT7 and
CompPASS approaches5. We applied these two pipelines to the
human DNA repair and yeast INO80 and SWI/SNF datasets and
compared the results to the TopS approach (Supplementary
Methods, Supplementary Discussion, Supplementary Figures 9,
10, and Supplementary Data 8–10). First, as expected, we
demonstrated that all three approaches effectively determine the
components of protein complexes when bait purifications are
compared to negative controls (Supplementary Figure 10a). Next,
we analyzed the recall of potential direct protein interactions
from all three approaches using human DNA repair proteins
from BioGRID37 and from the crosslinking-based results of the
INO80 and SWI/SNF dataset. In this case, every affinity pur-
ification was compared to all other affinity purifications in the
dataset, which were considered positive controls (Supplementary
Methods, Supplementary Discussion). In all three cases, TopS
showed improved recall over SAINT7 and CompPASS5 (Sup-
plementary Discussion and Supplementary Figure 10b). As
described earlier, an important feature of TopS is the large range
of values it generates allowing the capture of modules and
potentially the direct protein interactions in datasets.

One issue with such computational analyses is that the TopS
algorithm may have been tailored to be particularly well-suited to
the type of AP-MS datasets generated in our laboratory. To
demonstrate the larger capabilities of the TopS algorithm, we
reanalyzed an independently generated and previously published
protein interaction network of the human polycomb complex-
ome4. CompPASS5 was also used to analyze this polycomb
dataset that contains at least two biological replicates for 64
unique baits, for a total of 174 AP-MS containing 9853 candidate
interactions4. As shown in Fig. 7a, TopS and TDA separated the
interactions and revealed the cross-talk between different baits.
For example, BAP1 and ASXL1/ ASXL2 baits were connected in a
cluster on the left side of the topological area, with several
interactions showing the same high scores to all three baits in
agreement with the observations in the original study4. We also
observed proteins that associated only with a single bait, such as
SKP1 that linked to CSK interactions, while DSN1, ZN211, and
TYY1 were isolated (Fig. 7a and Supplementary Data 11).
Although the polycomb dataset contained spectral counts in an
intermediate abundance range (Fig. 7b) when compared to our
own human and yeast datasets described earlier, TopS recovered
the majority of interactions (90% overlap with TopS ≥ 2 and
WDN≥ 1.5) reported in Hauri et al.4.

As described earlier with the human DNA repair and yeast
chromatin remodeling datasets, an important feature of the TopS
approach is capturing extreme values. A biclustering analysis of
selected baits and preys with high TopS values in the polycomb
complexome dataset (Fig. 7c) revealed modules within the
network including the BAP1, HCFC1, and OGT1 module seen
in the ASX1, ASX2, OGT, and BAP1 baits (Fig. 7c). BAP1,
HCFC1, and OGT1 are known interacting proteins38–40. Other
modules captured in this analysis included a CBX2, PCGF4,
RING1, PHC1, and PHC2 module, an EED, EZH2, SUZ12,
MTF2, and JARID2 module, which are both known modules
within the polycomb system4, and a previously uncharacterized
ADNP1, CHAP1, POGZ, and TIF1B module (Fig. 7c). Intrigu-
ingly, components of this last module, CHAP1 and POGZ, have
been shown to interact and play a role in a rare form of

syndromic intellectual disability41. Overall, our TopS analysis of
the polycomb complexome dataset4 demonstrates the ability of
the approach to rapidly analyze existing quantitative protein
interaction network datasets, to generate distinct network
visualizations, and to detect modules within these networks and
potentially identify direct protein interactions.

Discussion
To predict protein interactions from affinity purifications using
quantitative proteomics, we have devised a TopS algorithm for
evaluating the preference of each prey protein for a bait relative to
other baits. We have built on the concept of TDA24 as applied to
protein interaction networks14,25 to devise the TopS approach.
Here, we have combined information from row, column, and
total distributed spectral counts into this score to differentiate the
preference of interaction with baits. This is specifically important
for cases where proteins are detected in many runs. We have
illustrated the methodology and its advantages through the ana-
lysis of two AP-MS datasets: a human DNA repair protein
interaction network generated using transient transfections and a
yeast chromatin remodeling protein interaction network. TopS
values are directly incorporated into clustering and network
assembly approaches and provide important insights into three
protein interaction networks.

TopS values cover a broad and meaningful negative to positive
range. In the human DNA repair proteins dataset, the highest TopS
value was calculated for the XRCC6 prey in the XRCC5 affinity
purification and these two proteins are known to interact and form
a heterodimer13. Furthermore, XRCC5 and XRCC6 are among the
most negative TopS values in several other bait purifications in
the human DNA repair network dataset. The highest TopS value in
the entire yeast chromatin remodeling dataset is ARP5 in the IES6
affinity purification, and again these two proteins are a well-
characterized, directly interacting, submodule of the INO80
complex14,36. Again, ARP5 and IES6 had negative values in other
INO80 bait purifications. Extreme positive TopS values in specific
baits are typically reflected as extreme negative values in other bait
purifications, even if these bait proteins are part of the same
complex. This distinguishing feature of TopS provides important
insights into proteins within a complex and suggests potential
direct interactions. Furthermore, in the INO80 and SWI/SNF
analysis, we were able to capture modularity from wild-type affinity
purifications that we previously could only capture with the ana-
lysis of affinity purifications in deletion mutant backgrounds12,14

and our results correlated strongly with crosslinking data33,34. A
second important feature of TopS is its ability to identify modules
within wild-type protein complex datasets.

The TopS platform has several important features. It is easy to
implement. There are no parameters or assumptions of a prob-
ability distribution in our algorithm. The number of replicates
can vary for the baits, where the replicates could be averaged by
the user, without severely affecting the results. In addition, TopS
is parameter free, distribution free, and independent of reference
knowledge. TopS values can serve as a starting point or as a
scaffold for other computational methods, visualization tools, and
can be directly used in clustering and network analysis approa-
ches. Lastly, multiple datasets can be integrated by merging their
TopS scores. For straightforward usage by the community, TopS
is implemented as a SHINY application (https://shiny.rstudio.
com/). TopS is complementary to many computational pipelines
used to process quantitative AP-MS datasets5–8,42,43. TopS can be
used in addition to any of these approaches to provide a different
perspective on a dataset. The TopS platform can be easily
implemented in addition to these approaches to further analyze
such datasets. If quantitative values are provided for all the prey
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proteins in a given bait, TopS can be used to reanalyze the data,
like the recent description of the human polycomb complexome4,
for potential direct interactions and/or modules within protein
complexes.

Methods
Materials. Magne HaloTag magnetic affinity beads were purchased from Promega
(Madison, WI). The following clones from the Kazusa DNA Research Institute
(Kisarazu, Chiba, Japan) were used: Halo-WDR76 (FHC25370), Halo-XRCC5
(FHC07775), Halo-XRCC6 (FHC01518), Halo-RPA1 (FHC01462), Halo-RPA2
(FHC11655), Halo-RPA3 (FHC06678), Halo-MSH2 (FHC07773), Halo-MSH3
(FHC12698), Halo-MSH6 (FHC08173), Halo-CBX1 (FHC07438), Halo-CBX3
(FHC02188), Halo-CBX5 (FHC10519), Halo-CBX7 (FHC10535), Halo-CBX8
(FHC01705), Halo-PARP1 (FHC01012), Halo-SPIN1 (FHC10419), and Halo-
SSBP1 (FHC07926). Flip-In HEK293T cells were purchased from Thermo Fisher
Scientific (Waltham, MA) and authenticated using the ATCC (Manassas, VA) cell
line authentication service. Cells are tested quarterly for mycoplasma and using the
ATCC Mycoplasma detection kit (#30-1012K).

Affinity purification and quantitative proteomic analysis. Human proteins in
the pFN21A plasmid with an N-terminal HaloTag were transiently transfected into
HEK293T cells and whole cell extracts prepared and Halo affinity chromatography
was performed on each independent whole cell lysate44. Briefly, 300 μl of whole cell
extract diluted with 700 μl Tris Buffered Saline (TBS) was used for purifying Halo-
tagged bait complexes using Magne HaloTag magnetic affinity beads (Promega,
Madison, WI). The extracts were then incubated for 1 h at 4 °C with beads pre-
pared from 100 μl bead slurry. The beads were then washed four times in buffer
containing 50 mM Tris·HCl (pH 7.4), 137 mM NaCl, 2.7 mM KCl, and 0.05%
NonidetP40. Bound proteins were eluted by incubating the beads for 2 h at 25 °C in
100 μl buffer containing 50 mM Tris·HCl (pH 8.0), 0.5 mM Ethylenediaminete-
traacetic acid (EDTA), 0.005 mM Dithiothreitol (DTT), and two units of AcTEV
Protease (Invitrogen, Carlsbad, CA). To remove any traces of affinity resin, the
eluates were spun through Micro Bio-Spin columns (BioRad, Hercules, CA).
Samples were then processed and analyzed using label-free quantitative proteomic
analyses using standard methods19. Briefly, after affinity purification of proteins
using Halo affinity chromatography, samples were precipitated with trichloroacetic
acid and centrifuged at 21,000 × g for 30 min at 4 °C. The resulting pellet was
washed twice with acetone and resuspended in buffer containing 100 mM Tris·HCl
(pH 8.5) and 8M urea. The sample was treated with Tris(2-carboxylethyl)-phos-
phine hydrochloride to reduce disulfide bonds, chloroacetamide (to prevent bond
reformation), and digested with endoproteinase Lys-C for 6 h at 37 °C. After
dilution to 2M urea with buffer, samples were digested overnight with trypsin.
Digested samples were then analyzed via multidimensional protein identification
technology (MudPIT) on linear ion trap mass spectrometers (LTQ, Thermo Fisher
Scientific, Waltham, MA)19. RAW files were converted to the ms2 format using
RAWDistiller v. 1.0, an in-house developed software. The ms2 files were subjected
to database searching using SEQUEST (version 27 (rev.9))19. Tandem mass spectra
of proteins purified were compared against 29,375 nonredundant human protein
sequences obtained from the National Center for Biotechnology (2012-08-27
release). Randomized versions of each nonredundant protein entry were included
in the databases to estimate the false discovery rates (FDR)19. All SEQUEST
searches were performed without peptide end requirements and with a static
modification of +57 Da added to cysteine residues to account for carbox-
amidomethylation, and dynamic searches of +16 Da for oxidized methionine.
Spectra/peptide matches were filtered using DTASelect/CONTRAST45. In this
dataset, spectrum/peptide matches only passed filtering if they were at least seven
amino acids in length and fully tryptic. The DeltCn was required to be at least 0.08,
with minimum XCorr values of 1.8 for singly, 2.0 for doubly, and 3.0 for triply
charged spectra, and a maximum Sp rank of 10. Proteins that were subsets of
others were removed using the parsimony option in DTASelect on the proteins
detected after merging all runs. Proteins that were identified by the same set of
peptides (including at least one peptide unique to such protein group to distinguish
between isoforms) were grouped together, and one accession number was arbi-
trarily considered as representative of each protein group. Quantitation was per-
formed using label-free spectral counting. The number of spectra identified for
each protein was used for calculating the distributed normalized spectral abun-
dance factors (dNSAF)21. NSAF v7 (an in-house developed software) was used to
create the final report on all nonredundant proteins detected across the different
runs, estimate FDR, and calculate their respective distributed Normalized Spectral
Abundance Factor (dNSAF) values.

Topological scoring. Since our approach aims to identify the enrichment of each
protein in each bait relative to a collection of baits, overexpression of affinity-
tagged bait proteins can diminish the interaction score. With this knowledge, we
therefore selected to use a normalization method where the baits are estimated
directly from the dataset.

To adjust for baits enrichment, we used this approach

yij ¼
aTi: þ bT:j � T::

a� 1ð Þ b� 1ð Þ ; ð1Þ

where a is the number of columns, b is number of rows, Ti represents the bait total
spectral counts, Tj is the row total spectral counts, and T.. is the total spectral
counts in the matrix. Using this approach, the estimated values of the bait proteins
are now close to their average spectral counts in all the AP-MS runs of the dataset.

Next, topological scores were calculated as follows. All the data that passed
criteria from the QSPEC analysis was used as an input to the TopS determinations.
We used a simple model to calculate a score for each prey–bait interaction as
follows:

TopS ¼ Qij log
Qij

Eij
; ð2Þ

where Qij is the observed spectral count in row i and column j; and

Eij ¼
row sum ið Þ column sum jð Þ

table sumð Þ : ð3Þ

The data are treated in the following manner: (1) For each column and row, the
sum of spectral counts is calculated; (2) the total number of spectral counts in the
dataset is determined; (3) a TopS value for each protein in a bait AP-MS run is
determined as described in Eq. (2). If the actual number of spectra of a prey protein
in a bait AP-MS run exceeds that in all AP-MS results being analyzed, the
presumption is that we have a positive interaction preference. Likewise, fewer
spectra than in the AP-MS runs indicate a negative interaction preference. Proteins
that were not detected in a particular run were assigned the value 0. A high positive
score suggests a potential direct interaction between bait and prey. A negative score
suggests that prey protein and bait interact to form a complex elsewhere in the
dataset. We applied this framework to construct signed interaction networks
derived from two independent AP-MS datasets obtained for yeast chromatin
remodelers and human DNA repair proteins.

Next, TopS takes a numeric data matrix as input where multiple dimensions
(e.g. proteins) are measured in multiple observations (e.g. baits/samples). In our
case, the numerical values are distributed spectral counts. To make data input
easier for the end user, we have defined the input file formats that include rows and
columns annotation and numeric data. Any quantitative value, not only spectral
counts, can therefore be utilized. TopS includes an example dataset for testing
purposes: DNA repair dataset. TopS next generates an automatic output to make
this type of analysis easier. MS Excel can be used to visualize the output and
identify for example differences between samples or interactions between proteins
and baits. Pearson correlation map, clustering analyses on initial numeric values (in
our case distributed spectral counts), and TopS values are provided to the user as a
pdf format output.

Topological data analysis. The input data for TDA are represented in a bait–prey
matrix, with each column corresponding to purification of a bait protein and each row
corresponding to a prey protein: values are TopS values for each protein. A network of
nodes with edges between them is then created using the TDA approach based on
Ayasdi platform (AYASDI Inc., Menlo Park, CA)24. Two types of parameters are
needed to generate a topological analysis: First is a measurement of similarity, called
metric, which measures the distance between two points in space (i.e. between rows in
the data). Second are lenses, which are real valued functions on the data points. Lenses
could come from statistics (mean, max, min), from geometry (centrality, curvature),
and machine learning (PCA/SVD, Autoencoders, Isomap). In the next step the data
are partitioned. Lenses are used to create overlapping bins in the dataset, where the
bins are preimages under the lens of an interval. Overlapping families of intervals are
used to create overlapping bins in the data. Metrics are used with lenses to construct
the output. There are two parameters used in defining the bins. One is resolution,
which determines the number of bins; higher resolution means more bins. The second
is gain, which determines the degree of overlap of the intervals. Once the bins are
constructed, we perform a clustering step on each bin, using single linkage clustering
with a fixed heuristic for the choice of the scale parameter. This gives a family of
clusters within the data, which may overlap, and we will construct a network with one
node for each such cluster, and we connect two nodes if the corresponding clusters
contain a data point in common. Norm Correlation was used as a distance metric with
two filter functions: Neighborhood lens 1 and Neighborhood lens 2. Resolution 30 and
gain 3 were used to generate Fig. 3a. and Resolution 50 and gain 6x eq. were used to
generate Fig. 6a. Neighborhood lens 1 and Neighborhood lens 2 with the resolution 30
and a gain 4x eq. was used to generate Fig. 7a.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. TopS is written using Shiny application (R package version
3.4.2) for R statistics software. TopS uses several packages, including gplots, dev-
tools and gridExtra. TopS is freely available at https://github.com/WashburnLab/
Topological-score-TopS.
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Data availability
All the DNA repair data used here are deposited at the https://massive.ucsd.edu/ with
MassIVE ID # MSV000081377. The data used for the analysis of the S. cerevisiae INO80
and SWI/SNF chromatin remodeling complexes are from previous studies on INO80 14

(MSV000079138) and SWI/SNF (MSV000081417)12. Original data underlying this
manuscript can be accessed from the Stowers Original Data Repository at http://www.
stowers.org/research/publications/libpb-1280.
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