
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2013 

METABOLISM, HYPOXIA TOLERANCE AND HEAT SHOCK METABOLISM, HYPOXIA TOLERANCE AND HEAT SHOCK 

RESPONSE OF AMPHIPODS, EMPHASIZING THE HYPERIID RESPONSE OF AMPHIPODS, EMPHASIZING THE HYPERIID 

AMPHIPOD PHRONIMA SEDENTARIA AMPHIPOD PHRONIMA SEDENTARIA 

Leanne Elizabeth Elder 
University of Rhode Island, Leanne.elder@yale.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Elder, Leanne Elizabeth, "METABOLISM, HYPOXIA TOLERANCE AND HEAT SHOCK RESPONSE OF 
AMPHIPODS, EMPHASIZING THE HYPERIID AMPHIPOD PHRONIMA SEDENTARIA" (2013). Open Access 
Dissertations. Paper 133. 
https://digitalcommons.uri.edu/oa_diss/133 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/133?utm_source=digitalcommons.uri.edu%2Foa_diss%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


METABOLISM, HYPOXIA TOLERANCE AND HEAT SHOCK RESPONSE OF 

AMPHIPODS, EMPHASIZING THE HYPERIID AMPHIPOD PHRONIMA 

SEDENTARIA 

BY 

LEANNE ELIZABETH ELDER 

 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

BIOLOGICAL SCIENCES 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2013 



 

 
DOCTOR OF PHILOSOPHY DISSERTATION 

OF 
 

LEANNE ELIZABETH ELDER 
 
 
 
 
 
 
 
 
 
 
 

APPROVED:  
 

Thesis Committee: 
 

Major Professor Brad Seibel 
 
   Steve Irvine 
 
   Terence Bradley 

    

 
       

      Nasser H. Zawia 
  DEAN OF THE GRADUATE SCHOOL 

 
 
 
 
 
 

UNIVERSITY OF RHODE ISLAND 
2013 



 

 

ABSTRACT 

This work investigates the ecophysiology of marine amphipods.  Amphipods 

are an important part of the zooplankton community in the pelagic environment.  

Amphipods are a food source for a variety of fishes and also have a role in carbon 

cycling.  Little is known about their physiology and how they have adapted to 

environmental variation.   

The Intergovernmental Panel on Climate Change (IPCC) reports that global 

warming is causing temperatures to rise throughout the world’s oceans, a trend that 

will continue with rising human carbon emissions.  As temperature and CO2 levels 

increase, oceanic oxygen levels are predicted to decrease, and as a result, oxygen 

minimum zones will expand.  Ocean general circulation models have shown that the 

detectable decrease in dissolved oxygen concentrations is driven by increasing ocean 

surface temperatures and enhanced stratification.  Low oxygen concentrations and 

high temperatures affect physiological performance and, consequently, vertical 

distribution and ecology of marine organisms. Vertically migrating amphipods living 

in the Eastern Tropical North Pacific currently experience temperature changes of 15 

degrees Celsius or more and changes in oxygen concentration from saturation to near 

anoxia.  

 Metabolic depression is the reduction in total metabolic rate, including aerobic 

and anaerobic ATP consumption, to below the basal metabolic rate. This happens in 

response to environmental stress such as extreme temperatures, desiccation, anoxia 

and food deprivation.  The tolerance of an organism to low oxygen is inversely related 

to the extent of their metabolic.  



 

 

Organisms subjected to physiological stress, such as stresses that cause 

proteins to denature, will respond by producing heat shock proteins (hsps).  Hsps act 

as molecular chaperones and are able to prevent/reduce denaturing of proteins and 

target proteins that are irreversibly denatured for removal from the cell via the 

ubiquitin-proteosome pathway.  No previous studies have been done on midwater 

amphipods to see if the temperature gradient they experience during diel vertical 

migration induces a stress response.    

 Chapter 1 examines how temperature and oxygen gradients affect the 

physiology of the amphipod  Phronima sedentaria by quantifying the aerobic and 

anaerobic metabolic rates at oxygen levels consistent with those experienced across 

Phronima’s vertical range in tropical regions.  Total ATP production (metabolic rate) 

was compared in specimens subjected to night time surface conditions (oxygenated) 

and day time conditions (hypoxia).   

 In Chapter 2 protein concentrations of hsp 70 were measured in specimens 

subjected to a range of temperatures within and above what they typically experience.  

Understanding the adaptations of pelagic amphipods to their current environment will 

help predict the physiological impacts of global warming for amphipods and their 

predators. One adaptation for living in hypoxia is metabolic depression.  Metabolic 

rates of organisms are affected by a number of variables, particularly by temperature, 

body mass and ecology.  Metabolic rate typically doubles or triples for every 10°C 

change in body temperature.  Routine oxygen consumption rates of most vertically 

migrating, visually oriented, midwater crustaceans decline with depth primarily due to 

temperature, but also due to the low light and consequential lack of visual cues which 



 

 

reduces locomotion needs. Transparent organisms in epipelagic regions would be 

relieved of this selective pressure because they are hidden from their visual predators.  

Hyperiid amphipods are the only group of crustaceans that are truly dominated by 

transparency. The influence of transparency on metabolic rate has not been examined 

in amphipods. 

Chapter 3 sought to determine what environmental and ecological factors 

influence the rate of metabolism in marine amphipods by examining a broad data set 

from polar to tropical environments, and including transparent specimens.  The data 

set for this study was obtained from the literature and original data.  Recent molecular 

work allowed us to look at hyperiid metabolism in a phylogenetic context.  

Understanding patterns of pelagic and deep sea metabolism is important for  further 

understanding of global carbon flux and the consequences of climate change on 

migration strategies. 
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PREFACE 

This dissertation is presented in manuscript format in accordance with the guidelines 

set forth by the Graduate School of the University of Rhode Island. Each chapter is 

written to stand alone as a separate research question while contributing to the greater 

body of knowledge ecophysiology of amphipods. Chapter 1 will be submitted to the 

Marine Ecology Progress Series. Chapter 2 is in preparation for Journal of 

Comparative Physiology and Biochemistry part A. Chapter 3 is in preparation for 

Marine Ecology Progress Series.  
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CHAPTER 1 

Ecophysiological implications of vertical migration into 
oxygen minimum zones for the hyperiid amphipod Phronima 
sedentaria 

Leanne E. Elder 1,*, and Brad A. Seibel1  
1 Biological Sciences Department, University of Rhode Island, 120 Flagg Road, Kingston, RI 02881, 

USA 

*corresponding author, Email: Leab83@MY.URI.EDU 

Abstract 
Phronima sedentaria is a hyperiid amphipod that undergoes a diel vertical migration 

into a pronounced oxygen minimum zone in the Eastern Tropical North Pacific 

(ETNP).  In this study, oxygen consumption and lactate production were measured in 

P. sedentaria to estimate the aerobic and anaerobic contributions, respectively, to total 

metabolism under conditions that mimic its day- (1% oxygen, 10°C) and night-time 

(20% oxygen, 20°C) conditions.  When exposed to hypoxia and low temperature, the 

total metabolism of P. sedentaria was depressed by 78% compared to normoxic 

conditions.  The metabolic enzymes citrate synthase (CS) and lactate dehydrogenase 

(LDH) were also measured as indicators of aerobic and anaerobic metabolism, 

respectively, and were compared to specimens collected from the California Current 

and the North Atlantic to assess potential adaptations to low oxygen.  LDH activity 

was not significantly different between regions. Significant differences in CS activity 

between specimens from different oceans may be due to variation in food availability. 

 

Key words: Metabolic depression, climate change, hypoxia, anaerobic metabolism, 

oxygen minimum zones, Phronima, hyperiid amphipods, zooplankton, lactate 
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Introduction 

In some regions of the oceans, at intermediate depths, biological oxygen use 

exceeds the rates of oxygen replenishment via the processes of advection and diffusion 

(Packard et al. 1988) leading to zones of low oxygen.  These oxygen minimum zones 

(OMZs) occur in areas of high primary productivity such as the Eastern Tropical 

North Pacific, where organic matter from the surface sinks and decays, adding to the 

oxygen demand at intermediate depths (Levin 2002, Fiedler & Talley 2006).  The 

OMZ in the Eastern Tropical North Pacific (ETNP) is remarkable for both its size and 

degree of hypoxia (Kamykowski & Zentara 1990).  This OMZ extends vertically from 

50m to 1200m (Fernández-Álamo & Färber-Lorda 2006).  Below 300m oxygen levels 

vary, but levels can be less than 2 µM (0.15kPa, 0.04ml l-1) (Wishner et al. 2013).  The 

California current has a less severe OMZ, with oxygen levels reaching a minimum of 

13.4 µM (0.8kPa, 0.3 ml l-1)  (Childress & Seibel 1998).  

OMZs are predicted to expand both vertically and horizontally as a result of 

the changing world climate (Bograd et al. 2008, Stramma et al. 2008, Keeling et al. 

2010, Deutsch et al. 2011).  Most of the oxygen decrease is attributed to increased 

stratification, which limits the mixing of oxygenated surface waters with subsurface 

waters and reduces the subsurface oxygen concentrations (Clark et al. 2013).  

Increasing global temperatures will warm ocean surface waters, leading to a decrease 

in oxygen content because oxygen is less soluble in warm water.  Oxygen levels 

influence vertical distribution and ecology of marine animals (Vinogradov et al. 1996, 

Wishner et al. 2013). The effects on crustacean zooplankton are particularly important 
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because of the role of zooplankton as a link between marine primary producers and 

upper trophic levels (Ekau et al. 2010).  Understanding how oxygen concentrations 

affect crustacean physiology is important because expanding OMZs may cause 

fluctuations in species’ vertical and horizontal habitat ranges.  Those fluctuations 

could, in turn, change ecosystem trophic structures due to alterations in predator-prey 

interactions as well as affecting carbon cycling (Seibel 2011, Doney et al. 2012). 

Most studies on hypoxia tolerance of marine animals have been conducted in 

OMZs where dissolved oxygen levels are relatively higher than in the OMZ of the 

Eastern Tropical North Pacific.  Organisms found in the California Current OMZ are 

often able to remain aerobic (Childress 1977), so there is little effect of low oxygen on 

organism distribution. This ability to extract oxygen from hypoxic water is due to a 

variety of adaptations including: increased ventilation and circulation capacity, high 

gill surface area, short blood to water diffusion distances, and respiratory proteins with 

high oxygen affinity and cooperativity (Sanders & Childress 1990, Childress & Seibel 

1998). The distribution in such moderate OMZs is dominated by permanent deep-

living zooplankton and micronekton throughout the depth range (Vinogradov et al. 

1996, Childress & Seibel 1998, Robinson et al. 2010).   

At oxygen concentrations less than ~ 10 µM in the ETNP, there is a reduction 

in biomass at depth.  Most organisms either live at the upper or lower OMZ interfaces 

(zones of steep oxygen gradients), or vertically migrate to more oxygenated waters at 

night (Vinogradov & Voronina 1962, Wishner et al. 1990, Saltzman & Wishner 1997, 

Wishner et al. 2013).  However, organisms accustomed to variable and transient 

hypoxia, such as that experienced by diel vertical migrators, will often depress their 
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total ATP consumption rate to limit the accumulation of harmful anaerobic end 

products (e.g., H+) and to conserve fuel stores.  For example, the euphausiid 

Euphausia eximia reduces its oxygen consumption rate by more than 50% at 1% 

oxygen (0.8 kPa), and the contribution from anaerobic pathways was insufficient to 

make up the energy deficit (Seibel 2011).  Thus, total metabolism was depressed.  

Similarly, metabolic depression has been suggested for the copepods Gaussia princeps 

(Childress 1977) and Subeucalanus subtenuis (Cass 2011).  Metabolic depression 

(also known as metabolic suppression) is a common response among marine animals 

to environmental stressors such as desiccation, food deprivation and low oxygen  

(Dymowska et al. 2012). The duration of animal survival in anoxia is inversely related 

to the extent of their metabolic depression (Hand 1998).   

Hyperiid amphipods are the third most abundant type of marine zooplankton in 

the crustacean subphylum, after euphausiids and copepods (Bowman & Gruner 1973, 

Diebel 1988).  The hyperiid amphipod Phronima sedentaria (Forskal, 1775), in 

particular, has a worldwide distribution (Shih 1969, 1991) and is abundant in the 

pronounced oxygen minimum zone of the Eastern Tropical North Pacific.  P. 

sedentaria is a diel vertical migrator, spending nighttime near the surface (0-25 m) and 

living at depths of 350-600 m during the day (Shih 1969, Childress & Nygaard 1974, 

Shulenberger 1977).  Like most hyperiid amphipods, P. sedentaria often lives 

parasitically on tunicates or siphonophores, using them as a food source and a brood 

chamber (Madin & Harbison 1977, Laval 1978, Diebel 1992, Gasca & Haddock 2004, 

Bishop & Geiger 2006).  Phronimids eat the internal tissue of their host leaving the 

remaining gelatinous matrix in a barrel shape (Hirose et al. 2005) that is propelled 
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through the water with the urosoma (tail) half out the back (Land 1992).  Childress 

and Seibel (1998) suggested that amphipods may be especially tolerant of low oxygen 

because their gelatinous host provides a substrate that can fuel extended anaerobic 

metabolism.  

This study was conducted to determine whether, and to what extent, P. 

sedentaria depresses metabolism to survive migration into a pronounced oxygen 

minimum zone and to what extent it relies on anaerobic metabolism. To test this, total 

metabolic rate was estimated from the accumulation of anaerobic end-products and the 

rates of oxygen consumption under hypoxia and normoxia.  Metabolic enzyme 

activities were also measured as indicators of the capacity for aerobic and anaerobic 

metabolic rate in P. sedentaria from regions with varying oxygen levels. 

 

Materials and methods 

Collection: 

 Specimens of Phronima sedentaria (Forskal, 1775) were collected from the 

Gulf of California (27ºN 112ºW) in June 2007 and from the Eastern Tropical North 

Pacific (at the Tehuantepec Bowl, 11°N 98°W and the Costa Rica Dome, 9°N 90°W) 

in October-November 2007 and December 2008 - January 2009. Specimens were also 

collected from the North Atlantic, 37º 45N, 71º 24W in September 2011. For all of 

these locations, specimens were collected in a modified opening-closing Tucker Trawl 

equipped with a 30 l thermally insulated cod-end (Childress et al. 1978).  The net was 

opened and closed using a MOCNESS- type step motor (Wiebe et al. 1985) and 

equipped with temperature and pressure sensors. Specimens from the California 
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Current (between 33 and 34ºN, 118 and 119ºW) were collected in November 2012 

using a 505µm mesh bongo net and a 1 m2 MOCNESS net with 332 µm mesh.  A 

CTD (conductivity, temperature, density) cast was conducted daily at each station to 

obtain water profile information (Figure 1).  

 Specimens from each location were used for metabolic rate experiments. 

Enzyme activities were compared between specimens collected from: the ETNP, a 

region with a pronounced OMZ; the California Current, where the oxygen levels are 

higher than in the ETNP; and the North Atlantic, which does not have a strong OMZ. 

Only female specimens were used for this study because they were more 

abundant than males in all locations.  A low male to female ratio in hyperiid amphipod 

populations has been demonstrated in specimens from the North Pacific Central Gyre, 

with a mean ratio of 1 male to 2 females for 49 distinct species.  P. sedentaria in the 

North Pacific Gyre study had a male to female ratio of 2.17 (Shulenberger 1977), but 

the total number caught was only 19 specimens.  The lower abundance of males in the 

collection for this study with a higher sample size indicates the ratio may be closer to 

the mean ratio of 0.5 found in other species of hyperiid amphipods.  

 

Total metabolism: 

 Glycogen stores have been shown to be an important energy store in 

gammariid crustaceans (Foucreau et al. 2013). Assuming glycogen stores are also used 

by hyperiids amphipods as substrate during anaerobic metabolism, 1.5 moles of ATP 

are produced per mole lactate accumulated. 6 moles of ATP are produced per mole O2 

consumed during aerobic metabolism (McDonald et al. 1998). Combining these 



 

8 
 

components provides a measure of the total ATP produced (total metabolic rate).  ATP 

production in normoxic conditions is considered to be the stable pool of lactate for an 

organism’s function. This stable pool of lactate was subtracted from the total ATP 

produced in normoxic and hypoxic conditions. Metabolic depression was then 

calculated from the reduction in total ATP produced when exposed to hypoxic 

conditions.  

 

Metabolic rate (MO2): 

 All respiration experiments were conducted at sea.  After collection, specimens 

found parasitizing tunicates or siphonophores were gently removed from the host 

before acclimation. For acclimation to laboratory conditions specimens were 

individually transferred to filtered seawater and allowed to recover for at least 12 

hours, ensuring they were in a post-absorptive (starved) state.  Filtered (0.2 μm 

demicap filter, Fisher scientific, USA) and treated (25 μmole l -1 each of streptomycin 

and ampicillin) seawater was poured into a water jacketed gas-equilibration column, 

which was connected to a temperature controlled circulating water bath (Lauda, 

Germany). Hypoxic experiments were conducted only in the ETNP.  For hypoxic 

experimental conditions, the water column was bubbled with a certified gas mixture of 

1% oxygen (~10 µM, 0.8kPa at 10°C).  For normoxic experimental conditions, water 

was bubbled with 21% oxygen, (balanced with nitrogen) to ensure air saturation.  

Hypoxic treatments were conducted at 10, 15, and 20 ºC. Normoxia treatments were 

conducted at 10, 15, 20 and 25ºC in the ETNP and 10, 15 and 20°C in the Gulf of 

California. Hypoxia at 10ºC is consistent with conditions in the ETNP at ~ 300m 
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depth, 15ºC is the temperature at intermediate depths of the Phronima distribution and 

20 ºC is the temperature experienced at night. Surface temperatures can reach 25ºC in 

this region, so Phronima may occasionally experience temperatures that high.  

Depending on the size of the organism, either 25 ml glass scintillation vials or 

glass gas-tight syringes were used as respiration chambers. There was no significant 

difference in metabolic rate between the chambers used for hypoxic 

(T(17)=1.06;p=0.3030) or normoxic conditions (T(66)=1.74;p=0.0861). The chambers 

were filled with water from the gas equilibration column and a single specimen was 

immediately placed in the chamber using feather forceps. A blank chamber with no 

specimen was filled with identically treated water and processed simultaneously to 

monitor background respiration of microbes. The chambers were sealed (air bubbles 

were removed) and incubated in a temperature controlled circulating water bath 

(Lauda, Germany) at 10, 15, 20 or 25°C.  All experiments were carried out in 

darkness. Normoxia experiments were conducted for 5-27 hours.  The size and 

metabolic rate of individuals was used to estimate the duration needed to provide 

measureable changes in oxygen saturation. Hypoxia experiments were incubated for a 

shorter duration of 2-6 hours to prevent complete depletion of oxygen in the chambers.  

Water was removed from incubation chambers using a 500 microliter syringe 

(Hamilton, USA). Oxygen concentrations of the water in incubation chambers was 

measured at the end of the experiment using a Clark-type oxygen electrode (Clark 

1956) connected to a Strathkelvin Instruments 782 Oxygen Interface (Strathkelvin 

Instruments, United Kingdom). The oxygen electrodes were maintained in a thermally 

jacketed electrode holder (MC100 Microcell, Strathkelvin Instruments, United 
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Kingdom) attached to the water bath of the appropriate experimental temperature 

(Marsh & Manahan 1999). The electrode was calibrated prior to measurements using 

air- and nitrogen-saturated seawater. The oxygen consumption rate of each specimen 

was calculated by subtracting the final oxygen concentration in the experimental 

chamber from final concentration in the blank chamber. At the end of incubations, all 

specimens were immediately blotted dry, frozen in liquid nitrogen, then transferred to 

a -80ºC freezer. Weights were determined from frozen specimens in the lab for all 

specimens except for those collected in the Gulf of California.  Specimens from the 

Gulf of California were weighed on a shipboard balance system (Childress & Mickel 

1980) and frozen in liquid nitrogen.  Metabolic rate was determined per hour 

incubation per gram body weight for each individual. 

A temperature coefficient, or Q10 (= (R2/R1)
 ((T2-T1)/10), R= oxygen consumption 

rate, T= temperature), quantifies the factorial change in metabolic rate with 10°C 

change in temperature and typically falls in the range of 2-3 (Hochachka & Somero 

2002).  Q10 was calculated from the average mass specific routine metabolic rate at 

each temperature. 

 

L- Lactate measurements: 

To determine reliability of handheld lactate meters, measurements of lactate 

standards were compared using the traditional spectrophotometric method by 

Gutmann and Wahlefeld (Gutmann & Wahlefeld 1974, Engel & Jones 1978), and the 

lactate meters Accutrend (Roche Diagnostics Corp., Indianapolis, USA), and Lactate 

plus (Nova Biomedical, USA). Using the meter instead of the traditional 
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spectophotometric method reduces cost and duration of sample processing. In the 

preliminary trials for this study, the Lactate plus meter was not sensitive to lactate 

values < ~10 µmol g-1.  The Accutrend lactate meter provided measurements 

comparable to the spectrophotometric method.  Prepared standard solutions of lactate 

were used to determine both the Accutrend meter and spectrophotemeter provide 

reliable and repeatable results.  Other studies have also demonstrated that the 

Accutrend meter is an acceptable alternative to the spectrophotometric method for 

lactate measurement (Beecham et al. 2006, Pérez et al. 2008).  

Lactate was measured in whole organisms from the ETNP. Tissue-specific 

measurements would miss lactate present in other parts of the body.  Determining 

lactate of the whole organism allows lactate involved in exchange mechanisms, known 

as lactate shuttles (Brooks et al. 1996), to be accounted for.  Measurements were done 

on the same specimens used for oxygen consumption in order to calculate the total 

metabolic rate for each individual.   

Whole frozen specimens were ground on ice in a prechilled glass tissue 

homogenizer (Kimble Chase, USA) using a 1:2 or 1:1 dilution with homogenization 

buffer (465mm NACL, 19mm KCL, 20 mm Tris). The homogenate was centrifuged at 

2000 rpm for five minutes at 4°C and the supernatant was removed.  L-Lactate 

concentrations were measured on the Accutrend lactate meter using a 25 µl sample of 

supernatant. All samples were assayed in triplicate and compared to a lactate standard 

curve (sodium lactate, L7022, Sigma- Aldrich, MO, USA) which was run daily.  The 

Accutrend lactate meter measures lactate in the homogenate using enzymatic 
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determination and reflectance photometry at a wavelength of 660nm (Shimojo et al. 

1989, Beecham et al. 2006). 

 

Field study: 

 P. sedentaria samples were collected in two separate trawls, one within and 

one above the oxygen minimum zone, during the day and night respectively, to assess 

environmental lactate production for comparison with lab experiments. These trawls 

were done on January 2, 2009 at station 2 in the ETNP (figure 1). The deep trawl 

(250-300m depth) was put in the water at 15:20 local time (21:20 GMT) at 09 

01.6328º N, 89 59.1241º W. The shallow trawl, (25-50m depth) was put in the water at 

22:12 local time (4:12 GMT) at 08 59.4018º N, 90 01.1542º W. Upon net retrieval, 10 

specimens of P. sedentaria were collected from each trawl and immediately frozen in 

liquid nitrogen and transferred to a -80ºC freezer. Any specimens found on a tunicate 

or siphonophore, were gently removed prior to freezing.  All specimens were alive and 

in good condition. The CTD data from that day (Figure 1) indicate that the oxygen 

concentration at the depth specimens were collected was between 1.6 and 10.6 μM 

oxygen for the deep trawl and between 48.9 and 195.3 μM oxygen for the shallow 

trawl. Specimens were weighed in the lab prior to L-Lactate measurement.   

 

Enzymatic activity:  

 After collection, live specimens were identified and flash frozen in liquid 

nitrogen at sea.  Frozen specimens were shipped back to the University of Rhode 

Island on dry ice and stored at -80°C. Metabolic enzymes citrate synthase (CS, 
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Enzyme Commission number (EC) 4.1.3.7) and lactate dehydrogenase (LDH, EC 

1.1.1.27) were measured on frozen specimens.  

Individual, frozen P. sedentaria were hand homogenized on ice in 0.01M Tris 

buffer, (pH 7.5 at 10ºC) in a prechilled glass tissue homogenizer (Kimble Chase, 

USA) using a 1/3 dilution for CS and a 1/3-1/15 dilution for LDH (depending on size 

and activity levels). Homogenate was centrifuged at 4,500 rpm for 10 minutes at 4ºC. 

Aliquots of supernatant (25 µl) were added to 1 ml cocktail solution in a quartz 

cuvette. Assays were performed at 20ºC using a Shimadzu spectrophotometer 

(UV160U, Shimadzu Scientific instruments, Japan) equipped with a water-jacketed 

cuvette holder connected to a recirculating water bath. Measurements were done 

within one hour of homogenization in triplicate when possible (some specimens were 

too small to allow for this).  Activities are expressed as µmol of substrate converted to 

product min-1 g-1 P. sedentaria frozen tissue weight.  

The cocktail solution for CS is made of: 0.05 M imidazole buffer, 15 mM 

Magnesium Chloride solution, 4 mM DTNB (5,5-dithio-bis-2-nitronezoic acid) 

solution, and 3 mg Acetyl Coenzyme A. 25 µl of 40 mM oxaloacetate solution was 

added to start the reaction. The background activity was measured before the addition 

of oxaloacetate and subtracted from the final rate to derive CS activity. The 

spectrophotometer measures the increase in absorbance at 412 nm, which follows the 

increase of absorbance as coenzyme A is reduced by DTNB (Bergmeyer et al. 1985). 

 The LDH cocktail solution is made of: 0.2M Tris buffer (pH 7.2 at 20ºC), 0.15 

mM NADH, 100mM KCL, 0.5 mM na-pyruvate; distilled water. The 
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spectrophotometer records the oxidation of NADH through the decrease in absorbance 

at 340nm (Bergmeyer et al. 1985). 

 

Statistics: 

 Statistics were performed using the software SAS version 9.2 (SAS institute 

inc. USA). One-tailed Students t-tests were used to compare metabolic rates scaled to 

a common body size. One-way Analysis of Variance (ANOVA) and one-way Analysis 

of Covariance (ANCOVA)s were used to compare differences between treatments.  

 Linear regression was used to test the relationship between body mass and 

metabolic rate.  Mass-specific metabolic rate (MO2) and enzymatic activities typically 

decline with increasing body mass (M) according to a power equation (MO2 = aMb), 

where a is a normalization constant and b is a scaling coefficient that describes the 

slope of the relationship. The relationships of metabolism and enzymatic activities 

versus mass were linearly regressed on a log scale using KaleidaGraph version 4.1 

(synergy software, USA) to obtain the power equation.  

 

Results 

Total metabolism: 

In the species P. sedentaria from the ETNP, total metabolism (in ATP 

equivalents) was depressed by 78% in the hypoxic experimental conditions, consistent 

with the migration from surface conditions (normoxia, 20ºC) to ~ 300m in the OMZ of 

the ETNP (10ºC, 1% O2). Exposure to OMZ conditions (10ºC, 1% O2) compared to 

normoxic conditions at the same temperature caused a 35% reduction in total 
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metabolism.  Surface temperature with OMZ oxygen concentrations (20ºC, 1% O2) 

resulted in a 64% reduction in metabolism compared to normoxic oxygen 

concentrations at 20ºC (Figure 2).   

 

Metabolic rate: 

The temperature dependence of metabolism, or Q10 (Q10= (R2/R1)
 (10/(T2-T1), R= 

oxygen consumption rate, T= temperature) for specimens from the ETNP was 1.75 

between 10 and 25 °C.  The Q10 was 1.83 between 10 and 20°C, and 1.26 between 15 

and 20°C.  For specimens from the Gulf of California, the Q10 was 1.79 between 10 

and 20°C and 1.90 between 15 and 20°C.  Using the Q10 values, metabolic rates were 

normalized to 20°C for comparison. The average oxygen consumption for P. 

sedentaria normalized to 20°C in normoxia was 3.65 ±0.26 µmol O2 g-1hr-1, and 

1.87±0.73 µmol O2 g
-1hr-1 in hypoxia.  In the ETNP, MO2 was significantly related to 

body mass according to MO2=0.3268*M-0.543 and MO2=2.4572*M-0.208 for hypoxic 

and normoxic treatments respectively (Figures 3 and 4).  The slopes of regression lines 

for hypoxic and normoxic linear regressions were significantly different (ANCOVA 

f(2,55)= 34.53; p<0.0001).  Metabolic rates were scaled to a common weight of 0.25g 

using the above regression equations. Hypoxia had a significant effect on metabolic 

rate (t-test: t(56)=8.23; p<0.0001). Mean metabolic rate for specimens normalized to 

20°C and 0.25g was 0.842±0.120 µmol g-1hr-1 in hypoxia, and 3.44±0.23 µmol O2 g
-

1hr-1 in normoxia (Figure 5).  

The average oxygen consumption for specimens from the Gulf of California 

normalized to 20°C was 2.99±0.155 µmol O2 g
-1hr-1.  MO2 was significantly related to 
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body mass according to: MO2=1.9071M-0.25.  The average rate for specimens from the 

North Atlantic normalized to 20°C was 6.34±0.94 µmol O2 g
-1hr-1, and the regression 

equation relating body mass to metabolic rate is: MO2= 3.92M-0.263 (Figure 5).  Slopes 

of the regression lines are not significantly different (ANCOVA: F(5,87)=-0.21; 

p<0.8103).  There is a significant difference in MO2 in normoxic conditions between 

the ETNP, Gulf of California and the North Atlantic (ANCOVA: 

F(3,89)=21.88;P<.0001, Figure 5, Table 1). 

 

L-Lactate: 

The concentrations of L-lactate in whole organism samples of P. sedentaria 

after approximately five hours of exposure to ~1% oxygen or normoxia levels at 

different temperatures are presented in Figure 6.  Total L-lactate concentrations in 

whole organisms were significantly higher (T(34)=-4.76; p<0.0001) in hypoxic 

(10.49±1.82 µmol g-1, n=15), compared to normoxic (2.85±0.40 µmol g-1, n=21) 

treated specimens. There was no significant effect of temperature on lactate 

accumulation in normoxic conditions. Lactate accumulation was significantly higher 

at higher temperatures for hypoxic conditions (ANOVA, f(2,11)= 4.92; p<0.0297, 

Figure 6). Lactate accumulation in hypoxia was an average of 4.51±1.23 umol g-1 at 

10° C, 8.71±1.24 umol g-1 at 16°, and 17.15±4.75 umol g-1 at 20°C.   

 

Field study: 

There was no significant difference in lactate accumulation for specimens 

collected in the shallow trawl versus the deep trawl (t-test: t(19)=-1.52; p=0.1461, 
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Figure 7). Based on CTD data from the day of collection (ETNP station 2, Figure 1), 

specimens from the deep trawl were collected at oxygen concentrations between 1.581 

and 10.637 μM, close to and below P. sedentaria's critical partial pressure (Pcrit, the 

oxygen partial pressure at which an organism’s aerobic metabolic rate can no longer 

be maintained, Seibel, 2011) of 28 µM at 10°C (Childress 1975). The shallow trawl 

collected specimens at oxygen concentrations above the Pcrit, between 48.9 and 195.3 

μM.  Specimens from the deep trawl had an average L- lactate accumulation of 22.56 

± 1.38 µmol g-1 (n=10). Shallow trawl specimens had an average L- lactate 

accumulation of 26.019 ± 1.78 µmol g-1 (n=11). CTD data from that same day and 

station recorded that the oxygen levels for the deep trawl were between 1.6 and 10.6 

μM oxygen and the shallow trawl were between 48.9 and 195.3 μM oxygen (Figure 

1).  

Field caught specimens of P. sedentaria had significantly higher accumulation 

of lactate than any of the specimens used in laboratory experiments (t-test: t(55)=-

11.47, p<0.001), and a significantly higher lactate accumulation than specimens for 

normoxia treatment experiments (t-test: t(40)=-17.30; p<0.0001, figure 7).  Specimens 

from the two trawls had a combined average lactate accumulation of 24.29±1.58 µmol 

g-1. Specimens used in normoxia experiments in the lab had an average lactate 

accumulation of 3.60±0.67 µmol g-1. 

 

Enzymatic activity: 

 For whole specimens from the ETNP, CS activity was an average of 1.11± 

0.07 units g-1 (range in mass 0.07-0.47 g).  CS activities were plotted on a log axis to 
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obtain the regression equation CS=1.3609x0.157 (Figure 8A).  Specimens from the 

North Atlantic had a regression equation CS=1.1204x-0.328 and an average activity of 

2.23 ± 0.27 units g-1 (span in activity from 1.02-3.23 units g-1 , range in mass 0.058-

0.497 g). The regression equation for specimens from the California Current was 

CS=0.811x -0.214. Specimens from the California Current had an average activity of 

1.37±0.1 units g-1  (range 0.88-2.94 units per g, size range, 0.04-0.39 g). The slopes of 

the linear regressions for each collection location were significantly different 

(ANCOVA: F(5,47)=14.4, p=<0.0001) (Figure 8A).  Enzyme activities were then 

scaled to a common weight of 0.15g (using the regression equations in Figure 5A) to 

eliminate weight as a factor in the comparison; regressions could not be compared due 

to differences in slopes. There was a significant effect of location on scaled CS 

activity, (one-way ANOVA between subjects design, F(2,50)=30.23; p<0.0001). Mean 

scaled CS activity was 1.05±0.06, 1.25±0.07 and 2.133±0.16 units g-1 CS for the 

ETNP, California Current and North Atlantic respectively (Figure 9A). Tukey’s 

Honestly Significant Difference (HSD) test showed that specimens from the North 

Atlantic had significantly higher CS activity than specimens from the ETNP and 

California current (Figure 9A; p<0.05). There were no significant differences between 

the ETNP and California Current.  

 In ETNP specimens, LDH activities scaled positively with body mass, with a 

regression equation of LDH =49.073x 0.727 (Figure 8B).  LDH activity was an average 

of 19.002±2.09 units g-1 (range in mass from 0.07-0.47g). LDH activity for specimens 

from the North Atlantic was an average of 9.96±1.73 units g-1 (range from 4.79-20.28 

units g-1, range in size from 0.058-0.497g) and the regression equation was 
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LDH=7.3406x-0.108.  LDH activity for the California Current was an average of 

9.89±1.06 units g-1 (range 5.21-22.3 units per g, range in size, 0.04-0.39 g) and the 

regression equation for the California Current was LDH= 24.63x 0.443.  The slopes of 

the regressions were significantly different (one way ANCOVA: f(5,45) 6.08, 

p<0.0002, Figure 8B).  Enzyme activity was then scaled to a common weight of 0.15g 

using the regression equations from Figure 5B. There was no significant effect of 

location on LDH activity (one-way ANOVA between subjects design: f(2,48)=2.17; 

p<0.1251). Mean scaled LDH activity was 13.87±1.47 units g-1 for the ETNP, 

11.08±1.67 units g-1 in the California Current and 9.89±1.67 units g-1 in the North 

Atlantic (figure 9B).  

 

Discussion  

Total metabolism:  

When Phronima sedentaria was exposed to conditions matching those to 

which they are exposed during their daytime migrations into the OMZ, total 

metabolism was depressed by 78% relative to normoxic conditions at surface 

temperatures (Figure 2). Anaerobic metabolism, estimated from lactate accumulation, 

did increase in hypoxic conditions, but was not enough to compensate for the decrease 

in aerobic ATP production during hypoxic exposure.  Hypoxic conditions alone 

reduced total metabolism by 35% compared to normoxia at the same temperature.   

 In pronounced OMZs, where oxygen concentrations are commonly below 5% 

of air saturation (1% O2, ~15 µM ), metabolic depression is anticipated to be a 

widespread mechanism allowing energy conservation during daytime forays into 
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hypoxia (Seibel 2011).  Two other vertical migrators found in the ETNP exhibit 

metabolic depression under the same conditions to which P. sedentaria was subjected 

(1% O2 at 10ºC): Humboldt squid and euphausiid Euphausia eximia.  Humboldt squid, 

Dosidicus gigas, reduced total metabolism by 82%; decreased routine metabolic rate 

from 8.9 to 1.6 umol O2 g
-1hr-1 and increased mantle octopine production from 0.5 to 

5.24 umol g-1 at 10ºC (Rosa & Seibel 2010). Euphausia eximia exhibits a 45% 

reduction in total metabolism (Seibel 2011).  Studies conducted in the ETNP  have 

demonstrated metabolic rate depression in response to  hypoxia in the copepod S. 

subtenuis (Cass, 2011;  exposed to 3% oxygen at 17°C), and three species of pteropod 

((Maas et al. 2012) reduced respiration rate 35-50% under 1% oxygen at 11°C), but 

the anaerobic contribution to total metabolism was not measured on these organisms.  

Metabolic depression is often accomplished by a decrease in energetically 

costly activities.  Depression below resting metabolic rate would include reduction of 

bodily activities such as movement, feeding, digestion, heart rate and ventilation 

(Storey & Storey 1990).  Further metabolic depression below basal metabolic rate can 

be accomplished by a combination of decrease in protein synthesis, reduced 

transcription/translation, or diminished ion transport (Storey & Storey 2004).  

Meganyctiphanes norvegica, a species of krill from Osloford, Norway, have a lower 

swimming speed in water with lower oxygen content (Klevjera & Kaartvedta 2011).  

The krill species Euphausia mucronata slowed swimming and decreased oxygen 

consumption slightly when subjected to oxygen concentrations between 0.564 and 

4.794 µM, (equivalent to a partial pressure between 0.203 kPa and 1.72 kPa) and 

stopped swimming below 0.564 µM (Teal & Carey 1967).  Other marine diel 
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migrators have low locomotor activity during the day as well (Jaffe et al. 1999, 

Svetlichny et al. 2000), even in oxygenated conditions (Hiroki 1988). The pelagic 

shrimp (Sergestes similis) from the North Pacific Ocean is a diel migrator that exhibits 

similar swimming speeds during the day and at night and actively swims for 

downward migration.  However, this species remains primarily above the oxygen 

minimum zone (Cowles 2001), indicating that low daytime activity may be more 

common in crustaceans adapted to migrate into OMZs.  Swimming activity monitored 

in the Cowles study (2001) was always in a downward pattern, regardless of depth.  

Therefore, Cowles results may be a response to the lights from the ROV used to 

observe the shrimp and not a reflection of true day and night swimming behaviors.  

One study demonstrated that Phronima sedentaria will swim actively only at low light 

levels (below 3 cd m-2), and suggested that this is a mechanism to remain at a constant 

light level (isolume) and therefore maintain the desired depth in the water column 

(Land 1992).  Thus, it is not possible to conclude definitively that low oxygen is 

driving the reduced locomotion at depth in OMZs.  Regardless, reduced activity in 

response to low light at depth represents an adaptation that facilitates survival in low 

oxygen regions. 

P. sedentaria feeds more readily at night.  Passage of salps through the gut of 

Phronima at night required, on average, 4 hrs 46 min and during the day  more than 14 

hours (Diebel 1988).  This suggests that P. sedentaria may be able to decrease 

metabolism by reducing feeding and digestion rates at depth.  In addition to reduction 

of feeding, digestion and movement, P. sedentaria is able to regulate biochemical 

pathways to accomplish metabolic rate depression.  This is evident because the current 
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study eliminated feeding and digestion as factors by the long acclimation period, and 

movement was minimized by keeping specimens in darkness.  Therefore, metabolic 

depression exhibited by hypoxia-treated specimens compared to the control specimens 

must have been accomplished by the shutdown of cellular processes.  The arrest of 

cellular processes as potential mechanisms for rate reduction has not yet been 

examined in hyperiid amphipods, but may include reduced protein synthesis, reduced 

transcription/translation or ion transport (reviews by: Hand, 1998; Storey and Storey, 

2004).   

In the OMZ of the California current, some migrating crustaceans are able to 

regulate their routine metabolism down to the lowest oxygen level they experience 

during the day, and therefore remain aerobic.  These species have very low critical 

partial pressures (Pcrit), at which anaerobic metabolic pathways are upregulated 

(Pörtner & Grieshaber 1993, Seibel 2011).  At oxygen concentrations below the Pcrit, 

anaerobic pathways may be used as a supplement to oxidative phosporylation for ATP 

production.  The crab Pleuroncodes planipes is an example of a pelagic crustacean 

that is able to remain aerobic when migrating into the OMZ of the California Current.  

The Pcrit  of P. planipes  decreases with temperature, allowing it to have a very low 

Pcrit of 0.26 kPa (3.53 µM) at 10°C when migrating into the OMZ (Quetin & Childress 

1976).  P. planipes is more abundant in the ETNP, which has lower oxygen levels than 

the California Current.  In the ETNP, P. planipes' low Pcrit at 10°C is most likely 

sufficient to remain aerobic in the lowest oxygen exposure.  The lophogastrid 

Gnathophausia ingens is a permanent resident of the California Current OMZ that is 

able to remain aerobic.  This species has a large gill surface area compared to 
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crustaceans living at higher oxygen partial pressures, as well as the ability to 

efficiently ventilate the gills, and a high ventilatory volume in low oxygen (Childress 

1971).  Euphausiids in OMZs have enlarged gill surface areas to increase oxygen 

uptake from the water so they can continue using aerobic metabolism in addition to 

supplementing it with anaerobic metabolism.  At least one species, Euphausia 

mucronata, actively swims and feeds while in the OMZ. This is based on equal 

probability of finding fed animals from day and night collection, and finding plant 

material in the guts of surface specimens and animal material in those collected at 

depth  (Antezana 2002).  

The copepod Gaussia princeps cannot remain aerobic at the lowest oxygen 

concentrations experienced in its vertical distribution near California, but it can 

tolerate hypoxic conditions (0.2 ml l-1, 8.93µM) for approximately 12 hours, 

presumably by using anaerobic metabolism and a lower metabolic rate during the day 

at depth (Childress 1977). In more pronounced OMZs, such as the one in the ETNP, it 

is uncommon for organisms to remain fully aerobic at depth because the oxygen levels 

are below the Pcrit for most species.  Seibel (2011) postulated a hypoxic threshold 

(~0.8 kPa), below which further enhancement of oxygen extraction capacity is 

constrained.  It is not known if Phronima from the sampled locations have different 

adaptations for enhanced oxygen extraction from the water.  Hyperiid amphipods that 

have been examined do not have oxygen binding pigments to enhance oxygen 

extraction from the water (Spicer & Morritt 1995).  The reported mean Pcrit for P. 

sedentaria is 2.11 kPa (28 µM at 10°C) which was determined from two specimens 

from the California Current (Childress 1975).  For this study, specimens from the 
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ETNP were able to survive 6 hours at 0.8 kPa at 10°C (13.4 µM) but accumulated 

4.51±1.23 µmol g-1 lactate.  Assuming the Pcrit is the same for the ETNP as the 

California Current, Phronima sedentaria is adapted to survive below its critical partial 

pressure by depressing total metabolic rate and increasing anaerobic metabolism. 

 

Metabolic rate: 

Thermal effects on respiration are often quantified by the Q10, the factorial rise 

in a rate process for a 10°C increase in temperature  (Hochachka & Somero 2002).  

The Q10 for respiration is often between 2 and 3.  Outside an organism’s normal 

temperature range, the Q10 may be elevated (Hochachka and Somero, 2002).  Hence, 

the Q10s of 1.26-1.9 reported in this study imply that P. sedentaria is probably within 

its normal physiological temperature range when vertically migrating.  The mean 

oxygen consumption rate for P. sedentaria when compared between regions and 

normalized to the same temperature is significantly different between the ETNP, Gulf 

of California and North Atlantic (Figure 5).  The average rate for the ETNP is 

approximately 20% higher than the Gulf of California.  As shown in Table 1, the rates 

for the ETNP and California Current both fall within the range of most literature 

values. The sample size for the North Atlantic is small (4 total).  Future work in the 

North Atlantic on a larger sample size would clarify if rates are higher in this region, 

The difference in oxygen consumption rate between the ETNP and North Atlantic is 

relatively small and may also be due to differences in regional productivity at the time 

of collection. The variation in metabolic rate could be due to differences in food 

availability in the regions when the studies were conducted, or local adaptations.   
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Bishop and Geiger (2006) reported a mean MO2 of 13.07 µmol g-1hr-1 at 20 °C.  

The size range overlapped with the present study (range ~0.04-.45g).  This value is 10 

times higher than literature values and the rates from the current study (Table 1). We 

suspect these rates are exaggerated by stress as their specimens were only acclimated 

to laboratory conditions for one hour before measurements were started, which is 

probably not adequate time to allow for gut clearance or for animals to become 

accustomed to respirometry chambers. Also, it was not mentioned if experiments were 

conducted in darkness. These differences in methodology may result in rates for the 

Bahamas specimens to be elevated relative to the rates reported here. Two specimens 

from the current study in the North Atlantic were not used in the analysis because they 

were both brooding females and had very high rates, 18.67 and 9.74 µmol g-1hr-1 at 20 

°C. The higher of the two was very active in the chamber, had been used for 

photographs prior to incubation, and is representative of an extremely stressed 

organism. Bishop and Granger (2006) concluded that the metabolic rate of Phronima 

is not lower than other pelagic crustaceans or pelagic amphipods.  However, they 

compared Phronima's rate to intertidal gammarid amphipods and various epipelagic 

shrimp species.  They did not compare it to any pelagic amphipod species or to the 

results from Childress 1975.    

In fact, the rates of oxygen consumption are close to the relatively low rates of 

many mesopelagic dwelling organisms.  Respiratory rates in some midwater groups 

decrease with increasing depth of occurrence (Childress 1971, 1975).  Childress 

(1975) examined the respiratory rates of some midwater crustaceans at temperatures 

characteristic of their minimum depth of occurrence near southern California.  
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Excluding P. sedentaria, the range of rate for epipelagic species (Minimum depth of 

occurrence, MDO,  0-100m) was 17.32-3.47 µmol g-1hr-1. The range in rate for 

mesopelagic (MDO 400-900m) species in the same study was 2.4-0.924 µmol O2 g
-

1hr-1.  P. sedentaria from Childress's study at 10°C had a respiration rate of 1.69 µmol 

O2 g
-1hr-1, which falls in the range of mesopelagic specimens from that region despite 

the fact that its minimum depth of occurrence is shallow (25 m).  Low metabolic rates 

in mesopelagic zooplankton are hypothesized to be related to the decreasing selection 

for locomotory capacity because low light levels limit predator-prey interactions 

among visually oriented organisms (Childress 1995, Seibel & Drazen 2007).  The low 

rate in Phronima may be related to its transparency, as this limits their visibility to 

predators and prey even in well-lit surface waters.  Cephalopods, being highly visual 

predators, exhibit a decline in oxygen consumption with increasing minimum habitat 

depth similar to the crustaceans.  However, squids from the family Cranchiidae have 

low metabolic rates despite occupying shallow water for at least part of their life 

history.  It has been suggested that transparency relieves them from selective pressures 

on locomotion and metabolism associated with predator-prey interactions (Seibel & 

Carlini 2001).  Phronima is highly transparent (Johnsen 2001), as is the salp barrel 

they are housed in. In fact, hyperiid amphipods are the only group of pelagic 

arthropods that are truly dominated by transparent forms (Johnsen 2001). 

 

L-Lactate: 

 In laboratory experiments, whole specimens of P. sedentaria exposed to 1% 

oxygen concentrations (0.8 kPa, 14 µM at 10°C) had a significantly higher 
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accumulation of lactate (4.51±1.23 µmol g-1) than specimens exposed to normoxic 

conditions (3.07±0.58 µmol g-1, Figure 6). Increasing temperature significantly 

elevates the amount of lactate accumulated in hypoxic exposed specimens, but did not 

have a significant effect on normoxic exposed specimens (Figure 6).  The lactate 

accumulation in hypoxic conditions is lower than reported concentrations for other 

crustaceans considered to be relatively hypoxia intolerant.  The intertidal prawn 

Palaemon elegans subjected to slightly more hypoxic conditions (0.66 kPa, 8.96 uM 

at 10°C) for a similar duration accumulated a higher amount of lactate in the whole 

body (13.1±0.25 µmol g-1, (Taylor & Spicer 1987)).  Lactate accumulation in 

normoxic conditions was similar to this study: 3.4 µmol g-1.  Palaemon elegans 

experiences hypoxia in high shore tide pools but is not able to survive environmental 

anoxia (Taylor and Spicer, 1987).  The nordic krill, Meganyctiphanes norvegica, is a 

diel migrator that has poor anaerobic capacity but occasionally encounters hypoxia 

when there is poor bottom water exchange in the Nordic fjords.  In these conditions, 

oxygen concentrations at their daytime depth is close to or below their Pcrit of 4-5 kPa 

at 8°C.   Prolonged exposure (18hr) at 6 kPa PO2 resulted in haemolymph lactate 

concentrations of 9.91±1.68 mmol l-1.  There was 100% mortality at 1.8kPa.  18 hours 

exposure to oxygen of 14.9 kPa, well above their Pcrit,, led to 3.01±1.05 mmol l-1 

lactate (Spicer et al. 1999).  Although these lactate values are for haemolymph and not 

whole organisms, 9 mmol l-1 is higher than P. sedentaria whole body values (Figure 6) 

when subjected to oxygen concentrations below its own Pcrit of 28 µM (2.11 kPa at 

10°C; Childress 1975).  The low levels of lactate accumulated during hypoxic 
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exposure in P. sedentaria are possible because total metabolism is depressed, an 

ability that many of these other species apparently lack. 

 It has been proposed that the scope for total lactate production may be 

correlated with the duration of periods of environmental exposure to hypoxia or 

anoxia (Pritchard & Eddy 1979).  The prawns P. elegans and P. serratus have a low 

capacity for lactate accumulation, indicating they cannot survive long periods of 

hypoxia.  Immediately after death, maximum lactate concentrations in tissue are 16.7 

and 9.6 µmol g-1 for P. elegans and P. serratus respectively (Taylor & Spicer 1987).  

Anoxia tolerant crustaceans have been found to have much higher maximum levels of 

lactate.  For example, burrowing shrimp species Upogebia pugettenisis and 

Callianassa californiensis exposed to 12 hours of anoxia had levels of 22.1±5.6 and 

11.3±0.6 respectively, with maximum levels of 60 µmol g-1 lactate for Upogebia and 

20 µmol g-1 lactate for Callianasse. Callianasse can survive up to 60 hours of anoxic 

condition (Zebe 1982).  Live P. sedentaria specimens frozen directly from the trawl 

had an average lactate accumulation of 24.29±1.58 µmol g-1, with the highest being 

34.76 µmol g-1 (Figure 7).  This value suggests a high capacity for lactate 

accumulation, similar to intertidal species.  The laboratory P. sedentaria exposed to 

0.8 kPa water had an average accumulation of 4.51±1.23 µmol g-1 lactate, which is 

much lower than the highest levels from organisms collected in the trawl (mean 

24.29±1.58 µmol g-1, Figure 7).  The relatively low levels of lactate accumulated after 

exposure to oxygen partial pressures below their Pcrit is consistent with the idea that 

metabolism is depressed and the requirement for anaerobic metabolism is minimized.  

The relatively high capacity for lactate accumulation, as evidenced by the trawl caught 
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specimens, may be related to locomotory and metabolic activity above the routine 

level such as that required for predator-prey interactions or the migration in low 

oxygen itself. 

There was no significant difference in lactate accumulation for specimens 

collected in the shallow versus deep trawl (Figure 7).  This may be due to the stresses 

of capture in the cod end of the net including: crowding, containment, temperature, 

and pressure changes, among others.  This possibility would also explain the higher 

lactate concentrations in organisms frozen directly from the trawl compared to those 

acclimated in the laboratory for experiments.  This finding indicates the importance of 

allowing specimens to acclimate to laboratory conditions before conducting 

physiology experiments.  

 

Enzymatic activity: 

  The metabolic enzyme CS is an indicator of aerobic potential and LDH is an 

indicator of anaerobic glycolytic potential.  Both of these enzymes have been 

previously measured in Phronima specimens from Exumas Sound, Bahamas (Bishop 

& Geiger 2006) where there is not an oxygen minimum zone.  The average CS activity 

of P. sedentaria from the Bahamas was 3.00±1.90 (mean size ~ .25g, range ~0.04-

.45g).  The CS activity of Phronima in the Bahamas is higher than specimens from all 

three locations used in this study (mean 1.57 units g-1, Figure 8B).  This difference 

may be an artifact of the size distribution of the specimens used by Bishop and Geiger, 

for which we have only the range. The size ranges for their study and ours overlapped 

but if the distribution is skewed toward large or small specimens, the mean enzymatic 



 

30 
 

activity will be similarly skewed.  Their mean CS activity falls within the range of 

values reported here. 

 In the North Atlantic, the average CS activity scaled for a 0.15g organism 

using the measured scaling coefficient of -0.10845, is 2.133±0.16 units g-1.  The 

California Current average activity for the same size is 1.25±0.07 units g-1 and the 

ETNP enzyme activity is an average of 1.05±0.06 units g-1.  Specimens from the North 

Atlantic had a significantly higher CS activity than the other two locations (one- way 

ANOVA between subjects design, F(2,50)=30.23; p<0.0001).; Figure 8A). Nutritional 

status contributes to differences in metabolic enzyme activities in copepods, with 

activity decreasing in unfed specimens (Clarke & Walsh 1993).  Similarly, CS activity 

in the hepatopancrease of two deep sea crabs was significantly lower after one month 

of food deprivation, although activity in muscle tissue was not affected (Company et 

al. 2008). CS activity in the North Atlantic was 0.68 units g-1  higher than those 

measured in the ETNP and California Current.  The higher aerobic capacity is 

consistent with the higher average metabolic rate in the North Atlantic than the other 

locations (Figure 6).  This variation could be due to differences in food availability in 

the regions when the studies were conducted. 

 Gonzalez and Quiñones (2002) hypothesized that LDH activity would be 

elevated in organisms adapted to low oxygen environments.  Evidence in the literature 

for increased LDH activity in organisms, particularly crustaceans, adapted to hypoxia 

is mixed. A study comparing enzymatic activities of different copepods species found 

that epipelagic copepods have a lower LDH activity, and are therefore less reliant on 

glycolytic energy sources than mesopelagic and bathypelagic copepods. The meso- 
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and bathypelagic species may use glycolysis as an energy source for burst swimming 

in low oxygen (Thuesen et al. 1998).  LDH activities were distinct for each copepod 

species ranging from 0.086 to 70.027 units g-1. Thuesen et al. hypothesize that survival 

in low oxygen is influenced by buffering ability and substrate stores and that LDH is 

primarily for burst swimming (Thuesen et al. 1998).  

A species of scorpaenid fish, Sebastolobus alascanus, from the California 

Current OMZ had higher LDH activity (183±73 units g-1) following acclimatization to 

hypoxia  than those held for three months in normoxic laboratory conditions (89±28 

units g-1; Yang et al. 1992).  High LDH activities in some medusae was hypothesized 

to help sustain swimming during vertical migration and also promote hypoxia 

tolerance when migrating through OMZs (Thuesen et al. 2005). In the Humboldt 

current system off South America, where there is a permanent subsurface oxygen 

minimum zone, the euphausiid, Euphasia mucronata, has a specific LDH activity two 

orders of magnitude higher than the copepod, Calanus chilensis, from the same region 

that remains in oxygenated waters (Gonzalez & Quiñones 2002).  The LDH activity of 

a 0.25g E. mucronata is 12.98 units g-1, using the regression equation from Gonzalez 

and Quiñones (2002).  C. chilensis is a non-migrator that remains in oxygenated 

waters and is much smaller in maximum body size than the vertically migrating E. 

mucronata.  Given that C. chilensis and E. mucronata are not only different taxa, but 

also ecologically distinct, this comparison does little to answer the question at hand.  

To test the hypothesis of elevated LDH activity relating to survival in hypoxia, the 

same, or closely related species should be compared from regions with and without 
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OMZs.  This type of comparison would avoid confusion from variation in ecology and 

life history.  

 The LDH activity of P. sedentaria from the Bahamas measured at 20º C was 

3.00±2.00 units g-1 (mean size ~ 0.25g, range ~0.04- 0.45 g, Bishop & Geiger 2006), 

which is lower than activities for all locations in this study (Figure 9B). Similar to the 

difference in CS activity between the present study and Bishop and Geiger, the lower 

LDH value may be an artifact of the size distribution of the specimens, or variation in 

nutritional status.  P. sedentaria is expected to use anaerobic glycolysis for burst 

swimming as well as metabolic demand while migrating into regions of low oxygen.  

Anaerobic glycolysis may be an important strategy for burst swimming when 

manoeuvring the salp barrel they live in (Bishop and Geiger 2006).  In the current 

study, P. sedentaria mean scaled LDH activity for a 0.15 g organism measured at 20º 

C was not significantly different between specimens collected from regions with 

oxygen minimum zones versus the oxygenated Atlantic Ocean (figure 9B).  This study 

adds to the growing support that LDH activity is not related to survival in low oxygen 

environments.  

  

Body size in relation to oxygen availability: 

 Chapelle and Peck ( 1999;  2004) propose that the concentration of oxygen in 

the water limits the maximum potential size in aquatic amphipods. Because oxygen 

solubility increases at cold temperatures, this finding may explain polar and deep-sea 

gigantism, and the increase in body mass with latitude among interspecific, but closely 

related species (Blackburn et al. 2008).   
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The conclusions of Chapelle and Peck 1999 were questioned by Spicer and Gaston 

who argued that oxygen partial pressure, not its concentration, would determine the 

restrictions on size (Spicer & Gaston 1999). They propose that the oxygen partial 

pressure gradient across the gills is what drives the movement of oxygen.  Oxygen 

partial pressure does not change with latitude, but it does change with depth.  Spicer 

and Gaston (1999) postulated that temperature is the more likely factor for the 

correlation of latitude and size than oxygen concentration or partial pressure.  At the 

lower latitudes, the influence of increasing temperature on body size may be explained 

by oxygen limitation from reduced dissolved oxygen in water and increased 

respiratory rate (Atkinson 1995).  In the pelagic environment, some groups of 

zooplankton show specific adaptations of the circulatory system to enhance oxygen 

extraction and overcome the limitations of oxygen partial pressure (Childress & Seibel 

1998).  These circulatory adjustments allow organisms to obtain the oxygen they need, 

allowing routine metabolism to continue and therefore not impacting body size.  

Oxygen does not become limiting until a Pcrit has been reached.  Virtually all marine 

organisms can regulate their metabolism to at least 68 µM oxygen at 5°C (5kPa).  This 

critical level will increase with temperature (Seibel 2011).  If oxygen is not limiting 

size in low oxygen environments, it will not limit body size in well oxygenated 

conditions such as the Antarctic where oxygen concentrations are ~300µM or the deep 

sea.   

Previous work has suggested that broad theories of temperature-size 

relationships should incorporate multiple factors assessed in a taxon dependant way 

(Angilletta et al. 2004).  Similarly, theories on oxygen-size relationships need to 
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consist of multivariate factors including ecology, life history, and physiology, among 

other factors.  Recent work has proposed a more multivariate approaching by a 

measure of oxygen supply, known as the Oxygen Supply Index (OSI), that combines 

oxygen solubility and partial pressure with gas diffusion rates (Verberk et al. 2011).  

Moving forward, this new approach may achieve a better understanding of body size 

patterns for some taxa, but it has yet to be tested along gradients of oxygen found in 

OMZs.   

The current study did not set out to address the ongoing discussion of how 

oxygen concentration, partial pressure or a combination of the two drives patterns in 

body size of aquatic ectotherms.  However, if oxygen concentration is the limiting 

factor in maximum body size, then this trend would also be seen across the gradients 

of the water column such as in OMZs.  We examined a single species of amphipod 

from four different locations, each with varying oxygen concentrations; from a severe 

OMZ in the ETNP to no OMZ in the North Atlantic.  Due to this range, we felt it 

relevant to address the ongoing debate by addressing the size range of specimens from 

our collection.  As noted previously Phronima has not been examined for adaptations 

for enhanced oxygen extraction from the water. Hyperiid amphipods that have been 

examined do not have oxygen binding pigments to enhance oxygen extraction from 

the water (Spicer & Morritt 1995).   

Reported literature values for maximum size are in length (reported maximum 

size of female P. sedentaria is 42 mm (Vinogradov et al. 1996)).  Length was not 

measured in this study because specimens were frozen in liquid nitrogen at the end of 

experiments.  Length measurement and microscope light needed for a digital 
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measurement had the potential to increase stress on the specimens which could 

elevated lactate levels.  Some of the specimens collected at each location were 

brooding eggs, or had juveniles on the inside of the barrel they were removed from. 

This indicates that the size range sampled includes size at maturity. In the ETNP, 

mean size was 0.249 ± 0.018 g and range was 0.0068- 0.562g, n=79. In the Gulf of 

California, mean size was 0.261±0.025g, range 0.037-0.474g, n=27. In the California 

Current, mean size was 0.123±0.007, from 0.039-0.393g, n=21. North Atlantic 

specimens mean size was 0.224 ± 0.042g from 0.058-0.497g, n=8. When the 95% 

largest organisms from each location were compared for weight, location was not a 

significant factor (one-way ANOVA f(3,5)=4.31;p<0.0748).  Oxygen concentration 

decreases with depth in regions with OMZs. The ETNP has the most pronounced 

OMZ with the lowest levels of oxygen and the North Atlantic, which has no OMZ, has 

the highest oxygen levels (Figure 1).  The lack of a significant difference in maximum 

size between these locations indicates environmental oxygen concentration does not 

limit maximum size in this species of amphipod.   

 

Significance: 

The expansion of hypoxic zones due to global climate change may cause 

changes in zooplankton distribution which has ecological implications including: 

altered species composition of an area, changes in prey availability, prey size or 

predation risk (Ekau et al. 2010), and/ or changes in trophic dynamics due to shifts in 

predator-prey interactions (Taylor & Rand 2003, Kodama et al. 2006, Ekau et al. 

2010, Ikeda 2012, Wishner et al. 2013). 
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Climate change is causing an increase in surface water temperature and 

decrease in oxygen concentrations (Keeling et al. 2010) which will have important 

impacts on zooplankton physiology, ecology, and vertical distribution as well as 

carbon cycling in the region (Vinogradov & Voronina 1962, Somero 2002, Seibel 

2011).  Anaerobic metabolism and metabolic depression are not sustainable for long 

periods of time due to substrate limitations and end product accumulation. Organisms 

must return to oxygenated surface waters for part of the night to burn off accumulated 

end products. The combination of increasing temperature and decreasing oxygen 

supply will compress the habitable nighttime depth range of vertically migrating 

species (Seibel 2011, Wishner et al. 2013).    

In the southern California Current region, a > 60% decline in some 

mesopelagic fishes is likely due to the decline of midwater oxygen levels.  The 

aggregation of mesoplagic micronekton in the hypoxic boundary layer of the OMZ in 

the California Current suggests that they descend as deeply as possible to avoid visual 

predators while avoiding the effects of hypoxia. The shoaling of the OMZ may 

increase the vulnerability of these diel migrators by forcing them into better-lit waters 

during the day, enhancing the chance of predation from visually oriented predators 

(Koslow et al. 2011). Expanding OMZs would similarly effect zooplankton diel 

migrators that track oxygen levels, or are constrained by temperature, forcing them 

into shallower well-lit waters during the day and subsequent increased predation 

(Wishner et al. 2013).  

Diel migrators that are not able to alter daytime depths will be exposed to 

lower oxygen for a greater time and distance.  In the ETNP, the daytime biomass peak 
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at 200-300m, associated with diel vertical migration and located at the upper oxycline 

or OMZ core, was present at the same depth at two locations, despite different oxygen 

concentrations between the locations (Wishner et al. 2013).  Nordic krill, 

Meganyctiphanes norvegica, is an example of a crustacean that is not specifically 

adapted to maintain oxygen uptake or capacity for anaerobic metabolism, but still 

vertically migrates into hypoxia (oxygen concentrations equivalent to their critical 

partial pressure of 4-6 kPa).  Their migration rhythm must be very strong, and not 

overridden by low oxygen stress, since these krill enter potentially lethal conditions 

presumably to avoid visual predators (Spicer et al. 1999). As OMZs expand, some 

species of zooplankton may not be able to modify this migration rhythm. The distance 

to travel and duration in low oxygen could be beyond their physiological abilities, 

which could compromise their long term existence in regions with expanding OMZs 

(Wishner et al. 2013). 

 Oceanic transport of carbon is known as the biological carbon pump.  Diel 

migrating zooplankton play a significant role in this interaction (Ducklow et al. 2001). 

Zooplankton consume phytoplankton near the ocean surface at night and migrate 

down during the day where they metabolize ingested food, release carbon in the forms 

of dissolved organic carbon (DOC), sinking faecal material, and CO2, therefore 

transporting carbon to depth (Longhurst et al. 1990, Ducklow et al. 2001).  Respiration 

and metabolic activity are among the most important components of carbon flux (Burd 

et al. 2010).  To depress metabolism, Phronima will decrease feeding, digestion and 

respiration. This depression will result in a reduction of faecal pellet production and 

CO2 excretion at depth, leading to an overall decrease in the species’ contribution to 
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carbon flux.  If metabolic depression is common to vertically migrating zooplankton, 

the decreased carbon input at depth would reduce the efficiency of the biological 

carbon pump in regions with pronounced OMZs (Seibel 2011).  Burd and colleagues 

(2010) have noted a problem of imbalances in estimates of organic carbon sources 

(biogeochemical) and sinks (ecological) below the photic zone. An overestimate of 

metabolic activity at depth is one potential reason for this imbalance (Burd et al. 

2010). Metabolic depression may be one of the reasons for the overestimate of 

zooplankton contribution to carbon sources at depth since they are reducing their 

respiration and feeding rates while in the OMZ. 

Remineralisation of particulate organic carbon sets the concentration of deep 

ocean nutrients, which are then returned to the surface via upwelling, providing a 

feedback loop for the strength of primary productivity.  If the carbon pump is reduced, 

this remineralisation will also decrease (Buesseler et al. 2007).  Reduction in carbon 

transport to the deep sea would lead to amplification of the positive feedback on 

climate change and reduce total anthropogenic carbon sequestration in the ocean 

(Sarmiento et al. 1998, Buesseler et al. 2007).  

 

Conclusions: 

 In the ETNP, the species P. sedentaria is adapted for diel exposure to critical 

oxygen partial pressures by depressing metabolism while migrating into the OMZ.  

LDH activity of P. sedentaria did not increase with decreasing environmental oxygen 

concentrations.  This indicates that the anaerobic enzyme LDH is not used to increase 

anaerobic potential for P. sedentaria to survive migration into hypoxic conditions.  As 
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global warming continues, oxygen minimum zones may expand and Phronima 

sedentaria may change daytime depth to avoid hypoxic waters.  This could affect 

predator-prey interactions in the region as well as carbon cycling (Seibel 2011). 
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Figure 1: Representative water profiles of the top 500 meters for all study locations. 
Data collected with shipboard CTDs (conductivity, temperature, density), temperature 
-grey dashed line, and oxygen-black line.  
A: Eastern Tropical North Pacific Station 1, the Tehuantepec Bowl, 11°N 98°W. 
B: Eastern Tropical North Pacific station 2, the Costa Rica Dome 8.5ºN 90ºW, January 
2, 2009 
C: Gulf of California 27°14N  111°29W,  June 2007 
D: North Atlantic 39º58N, 67º59W, September 25, 2011 
E: California Current 33º44N, 118º46W November  11, 2012 
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Figure 2 : Total metabolism of P. sedentaria. Striped: ATP produced from anaerobic 
metabolism, L- Lactate µmol g-1. Grey: ATP produced from aerobic metabolism, 
µmole Oxygen g-1 hr-1.  At 10ºC the combine aerobic and anaerobic ATP production is 
reduced by 35% in hypoxic compared to normoxic conditions. At 20 ºC total ATP 
production is reduced by 64% in hypoxic conditions. The migration from normoxic, 
20ºC conditions to 1% 02, 10ºC results in a 78% reduction in total metabolism.  
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Figure 3:  Routine oxygen consumption rates (MO2) for Phronima sedentaria, from 
the Eastern Tropical North Pacific,  reported in micromoles per gram frozen weight 
per hour on a log scale. MO2 was significantly related to frozen weight for hypoxic 
(open circles) and normoxic (black squares) treatments. All MO2s were normalized to 
20ºC for comparison and are reported on a log scale.  Linear regression equation for 
hypoxia: MO2=0.3268M(-0.543), R2=0.58, normoxia: MO2=2.4572M(-0.2079) R2=0.21. 
n=19 hypoxia, n=39 normoxia. Slopes of the scaling curves are significantly different 
(ANCOVA (f(2,55)= 34.53; p<0.0001), therefore metabolic rates were scaled to a 
common weight for further comparison (figure 5).   
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Figure 4: Routine oxygen consumption rates (MO2) for Phronima sedentaria, reported 
in micromoles per gram frozen weight per hour. Values are mean ±se for specimens 
normalized to 20°C and 0.25g using the regression equations from figure 4. Metabolic 
rate was significantly reduced in hypoxic conditions, (t-test: t(56)=8.23; p<0.0001). 
N=19 for hypoxia, n=39 for normoxia.  
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Figure 5: Routine oxygen consumption rates (Mo2) in normoxic conditions normalized 
to 20°C, reported on a log scale. for the ETNP (black squares), Gulf of California 
(grey diamonds with no fill) and North Atlantic (x). ETNP data is also shown in figure 
4. N= 49 for the Gulf of California, regression equation Mo2=1.907M(-0.25), R2=0.29. 
For the North Atlantic N=4, regression equation Mo2=3.92M(-0.263), R2=0.93. Slopes 
of the regression lines are not significantly different (ANCOVA: F(5,87)=-
0.21;p<0.8103).  Mo2 is significantly different between regions, (ANCOVA: 
F(3,89)=21.88; p<0.0001.  The mean Mo2 for each region is shown in table 1.  
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Mo2  
(µmol o2 g

-1hr-1 ) 
Location Reference 

3.65±0.26 
Eastern Tropical 
North Pacific  This study 

2.99±0.16 Gulf of California This study 
6.34±0.94 North Atlantic This Study 

2.13 California Current (Childress, 1975) 

2.68 
Western Subarctic 
Pacific (Ikeda, 2012) 

3.65 Mediterranean Sea (Mayzaud et al. 2005) 
13.7 Central Atlantic (Bishop and Granger, 2006) 

Table 1: Average routine metabolic rate (Mo2) by location for Phronima sedentaria.  
Rates were normalized to a common temperature of 20°C using Q10s from this study 
when possible, or assuming a Q10 of 2. There is a significant different in average Mo2 
between the ETNP, Gulf of California and the North Atlantic: figure 6,  ANCOVA: 
F(3,89)=21.88; p<.0001. 

 
 
Figure 6: L- Lactate accumulation in whole specimens of Phronima sedentaria from 
the Eastern Tropical North Pacific. Striped: hypoxic, Dark grey: normoxic. Lactate 
accumulation was significantly higher at higher temperatures for hypoxic conditions 
(ANOVA, f(2,11)= 4.92; p<0.0297). There was no significant effect of temperature on 
lactate accumulation in normoxic conditions.  For 10°C n= 5 in normoxia and 3 in 
hypoxia, for 16°C n=10 in normoxia and 9 in hypoxia, for 20°C n=8 in normoxia and 
4 in hypoxia. All values shown are means ±SE.  
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Figure 7: Lactate accumulation in specimens of Phronima sedentaria collected 

directly from deep (250-300m) and shallow (25-50m) trawls compared to 
experimental organisms subjected to normoxia at 10 and 20 °C. There is no significant 
difference between the deep and shallow trawls (t-test: t(19)=-1.52; p=0.1461). 
Oxygen concentration at the depth the specimens were collected at was between 1.581 
and 10.637 μM oxygen for the deep trawl and between 48.852 and 195.333 μM 
oxygen for the shallow trawl. All values are mean ± se. This indicated organisms 
frozen directly after collection in the field (trawl samples) were more stressed than 
organisms allowed to acclimate to laboratory conditions (normoxia samples).  
Specimens from the trawls had a significantly higher lactate accumulation than 
specimens acclimated to the lab and used for normoxia experiments (t-test: t(40)=-
17.30;p<0.0001).  The average lactate accumulation for the two trawls  was 
24.29±1.58 µmol g-1. The average lactate accumulation for normoxia experiments in 
the lab was 3.60±0.67 µmol g-1.  
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Figure 8A: Mass specific activity Citrate synthase (CS) and 8B: Mass specific activity 
Lactate dehydrogenase (LDH) in whole specimens of Phronima sedentaria shown on 
a log scale.  N=25 for CS from the ETNP, N=23 for LDH Eastern Tropical North 
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Pacific, N=8 for CS and LDH from the North Atlantic, N=21 CS for the California 
current, 20 LDH California current. Regression equations are shown on the graphs. CS 
is an indicator of aerobic potential and LDH is an indicator on anaerobic potential. 
Location has a significant effect on LDH activity (ANCOVA: f(5,38)= 4.40; 
P<0.003), error bars represent standard deviation. The x in both plots represents the 
mean activity level from a previous measurement done in the Bahamas, in the Central 
Atlantic by Bishop and Geiger 2006, the x axis error bar represents the size range for 
that study, the y error bar represents the range in activity for their study.  
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Figure 9: Scaled enzyme activities in units per gram compared between Phronima 
sedentaria specimens from the Eastern Tropical North pacific (ETNP), California 
Current and North Atlantic. Values represent the mean activity scaled to a common 
mass of 0.15g ±se. A: CS activity was significantly higher in the North Atlantic than 
the other two locations (One- way ANOVA between subjects design, F(2,50)=30.23; 
p<0.0001).  B: LDH activity was not significantly different between the three 
locations (one-way ANOVA between subjects design: f(2,48)=2.17; p<0.1251). * 
indicated significant difference (P<0.05) 
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Abstract 

The hyperiid amphipod Phronima sedentaria experiences a temperature change of 

15°C during diel migration in the Eastern Tropical North Pacific (ETNP).  The aim of 

this study was to determine if the natural temperature gradient experienced by 

Phronima sedentaria results in a thermal stress response.  Specimens were acclimated 

to their night time temperatures (23°C) and subsequently subjected to a range of 

temperatures within and above what they typically experience.  In the ETNP P. 

sedentaria tolerates its normal migration to the surface, but is close to an upper 

temperature limit and approaching a maximum duration of exposure.  23°C is stressful 

for Phronima sedentaria, but is somewhat tolerated via heat-shock response at longer 

exposure times.  An escalation in hsp 70 concentrations occurred at 29°C, which 

coincided with a 50% mortality rate and a significant increase in anaerobic 

metabolism (measured as L-lactate accumulation) under oxygenated conditions.  

Understanding the adaptations of pelagic amphipods to their current environment will 

help predict the physiological impacts of global warming for amphipods and their 

predators.  
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Introduction 

Phronima sedentaria is an abundant species of hyperiid amphipod, rumored to 

have inspired the design of the monster in the ‘Alien’ movies.  Its enormous eyes and 

claws belie its small size.  Phronima parasitizes pelagic tunicates, turning their barrel-

shaped bodies into a brood chamber (Harbison et al., 1977; Laval, 1978; Diebel, 

1988).  While most pelagic species of  amphipods “hitch-hike” on gelatinous 

zooplankton that serve as physical and metabolic substrate (Harbison et al. 1977, 

Madin & Harbison 1977, Gasca & Haddock 2004), the relationship between Phronima 

and its parasitized host is unique in that the host is transformed by the parasite (Land 

1992).   Phronimids eat the internal tissue of their siphonphore or tunicate host leaving 

the remaining gelatinous matrix in a barrel shape (Hirose et al. 2005) that is propelled 

through the water with the urosoma (tail) half out the back (Land 1992).   

Phronima sedentaria (Forskål, 1775) is found throughout the world oceans 

and, like many zooplankton, is a diel vertical migrator, spending the day in deeper 

colder waters and nighttime foraging near the surface (Shih 1969, Shulenberger 1977, 

Vinogradov et al. 1996, Voznesensky et al. 2004).  P. sedentaria may encounter a 

temperature change of  15°C during its diel vertical migrations, experiencing surface 

temperatures approaching 30°C in some regions.  Such wide temperature variation 

within the natural range of a species can be stressful (Hofmann & Somero 1995).  

Furthermore, the maximum habitat temperatures of many warm-adapted organisms 

(such as those found in the tropics) are near their maximum thermal limits.  Additional 

increases in temperature due to climate change may not be tolerated by such 

organisms (Somero 2010).  
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Oceanic temperatures have increased over the past century as a likely result of 

anthropogenic carbon dioxide emissions (Trenberth et al. 2007).  Increasing 

environmental temperatures are predicted to affect the physiological performance, and 

consequently the vertical distribution and ecology of marine organisms (Saltzman & 

Wishner 1997, Somero 2002, Seibel 2011, Doney et al. 2012).  Organisms subjected 

to thermal stress typically respond by expressing heat shock proteins (hsps) (DuBeau 

et al. 1998) and may become oxygen-limited resulting in the upregulation of anaerobic 

metabolism (Pörtner, 2002).  Hsps act as molecular chaperones that are able to 

prevent/reduce denaturing of proteins and target those that are irreversibly denatured 

for removal from the cell via the ubiquitin-proteosome pathway.  Hsp 70 is one of the 

most highly conserved heat shock proteins, especially noted for its role in recovery 

from thermal stress (reviewed by (Feder & Hofmann 1999).     

We have quantified the critical temperature for a tropical population of 

Phronima sedentaria from the Eastern Tropical North Pacific.  The expression of hsp 

70 and the production of the anaerobic end product, lactate, were quantified at 

temperatures spanning the range experienced by Phronima sedentaria (Forskål, 1775) 

across their vertical distribution.  We tested the hypothesis that the highest 

temperatures experienced within the natural range can induce a stress response that 

would result in an increase in synthesis in heat shock protein 70, and a shift to 

anaerobic metabolism.   
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Materials and methods 

Collection: 

Phronima sedentaria (Figure 1) were collected in the Eastern Tropical North Pacific 

(ETNP)  at the Costa Rica Dome (8.5°N; 90°W; Station 2 Figure 2) in January 2009 

aboard the R/V Knorr (Woods Hole Oceanographic Institute).  Collection was done 

using a tucker trawl with a thermally insulated cod end (Childress et al. 1978).  

Specimens were identified according to published taxonomic keys (Shih 1991, 

Vinogradov et al. 1996).  Physical vouchers to confirm the identification were 

preserved in formaldehyde and housed in the Seibel lab at the University of Rhode 

Island. 

 Specimens were collected from two separate trawls on January 1st and 2nd 2009 

in discrete tows between the depths of 250 and 300m with a speed of 1.5- 2 knots. The 

first trawl was opened at depth at 1509 local time (2109 GMT) at 09 º 10.4370 N, 89 º 

56.5019 W and closed at 1539 (2139 GMT). The second tow was opened at depth at 

1525 local time (2125 GMT) at  09 º 01.6328 N,  89 º 59.1241 W and closed at 1614 

local time (2214 GMT).  CTD data from the same day show that the ambient 

temperature where these specimens were collected was approximately 12° Celsius.  

Sightings from blue water SCUBA diving, and other trawls has shown that this species 

can be found near the surface at night in water at temperatures of 23-25° Celsius 

(personal observations). 
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Thermal stress: 

 Specimens were sorted immediately after retrieval and identified quickly under 

a microscope to reduce stress.  Specimens were placed in chilled filtered seawater 

until experimentation.  The specimens in good condition (intact with no injuries) were 

separated into containers with 0.2 micron filtered sea water and exposed to their 

approximate nighttime temperature (23°C) for 3, 9 or 24 hours before raising or 

lowering the experimental temperature.  This acclimation of 3, 9 or 24 hours allowed 

enough time for specimens to recover from any trawl-related stress as indicated by 

lactate measurements (Elder & Seibel In Prep).  Passage of salps through the gut of 

Phronima at night requires, on average, 4 hrs 46 min (Diebel 1988). The acclimation 

to night time temperature followed by experimental duration was enough time for gut 

clearance in specimens of Phronima, ensuring that further analysis did not include 

genetic material from prey.  

 Exposure to subsequent experimental temperatures was accomplished using an 

aluminum thermal gradient block (Henkel & Hofmann 2008).  This block consisted of 

a piece of aluminum with holes drilled through each end and taped with brass fittings 

to accommodate heating and chilling lines.  The heating and chilling lines were 

connected to temperature controlled water baths (Lauda, Germany).  Water then 

flowed directly against the aluminum for optimal thermal transfer.  Evenly spaced 

wells were drilled in the top of the block in rows of four to allow up to four replicated 

experiments at each temperature.  Prior to experiments the wells were filled with fresh 

water and allowed to come to temperature.   
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 The specimens of P. sedentaria were placed in an open scintillation vial (25ml 

volume) with 0.2 micron filtered seawater at 23°C and then put in a well of the 

thermal block where the water was allowed to come to temperature.  The vials took 

~15 minutes to get to the desired temperature.  Experiments were run for five hours at 

temperatures: 10, 15, 20, 23, 25 and 29 ± 1 °C.  Table 1 outlines the number of 

individuals for each treatment.  During the experiment the thermal block was loosely 

covered by black plastic bags to block light.  Oxygen level of water in experimental 

vials was checked using a Clark-type oxygen electrode (1302 Strathkelvin 

Instruments, United Kingdom;(Clark 1956)) to make sure water remained above the 

published critical oxygen partial pressure of 2.11 kPa (28 µM at 10°C)(Childress 

1975).  Specimens were then taken out of the vial with feather forceps and blotted dry 

before being immersed in liquid nitrogen and stored at -80 degrees Celsius. 

Approximately one half of the specimens used for experiments were frozen at 0100 

local time.  The remaining experiments were ended at 1300 local time.    

 

Lactate: 

Individual whole frozen specimens were ground on ice in a prechilled glass 

tissue homogenizer (Kimble Chase, USA) using a 1/3 dilution with grinding buffer, 

465mm NACL, 19mm KCL, 20 mm Tris, 1mM EDTA, containing a 1 x protease 

inhibitor cocktail (Sigma p2714) and 0.1%  detergent (IGEPAL Sigma 18896). The 

homogenate was centrifuged at 2000 rpm for five minutes at 4°C and the supernatant 

removed.  L-lactate concentrations were measured on the Accutrend lactate meter 

using a 25 µl sample of supernatant. All samples were assayed in duplicate and 
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compared to a lactate standard curve (sodium lactate, L7022, Sigma- Aldrich, MO, 

USA) which was run daily. Remaining supernatant was flash frozen in liquid nitrogen 

and stored at -80 until needed for western blots. 

 

Western blots: 

 Lysate was thawed on ice and centrifuged at 13400 rpm for 2 minutes.  Protein 

concentration was determined using the Pierce BCA protein assay (Bio-Rad, USA). 

Thirty µg total protein of each sample lysate was mixed with 1/3 lysate volume of 4x 

NuPAGE LDS buffer containing 10% β-mercaptoethanol and then boiled for 10 

minutes at 95ºC. Lysate was loaded on to 4-12% bis tris gels (Invitrogen). Heat 

shocked HeLa cells (Enzo, USA, ADI-LYC-HL101) were added as a control between 

gels to compare relative intensities of samples to.  Proteins were electrophoresed at 

120V for 15 minutes, and 150V for approximately 2 hours in 1X MOPS running 

buffer.  Gels were soaked in transfer buffer (5.82g Tris, 2.93g Glycine, 2x 940 µl 20% 

SDS, 100mL Methanol, q.s. to 1000ml with deionized water) for 20 minutes and 

electroblotted (Bio Rad, Trans-blot 170-3940) for 30 minutes at 25 volts onto a 

polyvinylidene difluoride (PVDF) membranes (Fisher IPVH00010). The membrane 

was washed in 10X TBST (TBS: 400g NaCl, 10g KCl, 150g Tris then qs to 5L of DI 

water. With 5mL tween into 4.5L of DI water, pH of 7.4) 

twice for 10 minutes, and then blocked in 5% milk powder diluted in TBST for one 

hour at room temperature. This was followed by 3 five minute TBST washes. The 

membrane was then incubated in a 1:1,000 dilution of HSP 70 antiserum (Stressgen 

SPA-822) overnight at 4 ºC. After washing, the secondary antibody (anti-mouse 
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Igc:HRP-Linked, GE Healthcare Biosciences NA931) was added for one hour at room 

temperature. 

 Immunoreactive proteins were then visualized with Chemiluminecent substrate 

Western lightening (Perkin Elmer, NEL102001EA) for 2 minutes. Following a one 

minute exposure, on kodak biomax XAR film (Sigma, F5388-50EA) the film was 

developed and HSP 70 expression was determined semi-quantitatively using Image J 

software. 

 

Statistics: 

Statistics were performed using the software SAS version 9.3 (SAS institute inc. 

USA).  One-way Analysis of Variance (ANOVA), with between subjects design were 

conducted to compare differences in lactate accumulation or hsp 70 concentration 

between treatments. 

 

Results:  

 At the time of collection surface temperatures of the ETNP were between 23 

and 25°C.  The maximum surface temperature recorded in the ETNP during this cruise 

was 27°C. Based on published distribution for Phronima sedentaria, temperatures at 

the deepest range of daily migrations are between 8 and 10°C.  This indicates 

Phronima sedentaria may experience a temperature change of 13-17°C in the ETNP 

during diel migration in the ETNP (Figure 3).  

 There was no significant difference in mortality for 3, 9 or 24 h exposure to 

nighttime temperature (23°C).  Mortality data for those exposure times is combined 
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for subsequent analyses.  There was no mortality of specimens between 10 and 20°C.  

At 23°C 13% of specimens died (1 out of 7)  and at 25°C 30% of specimens died (2 

out of 8); Table 1, Figure 4). The most significant mortality occurred at 29°C, at which 

temperature 50% of the experimental specimens died (4 out of 8 total specimens at 

that temperature; Table 1, Figure 4). Dead organisms had a significantly higher 

accumulation of lactate, and so are not included further. 

 There was no significant difference in hsp 70 concentration or lactate 

accumulation between specimens frozen at 0100 local time and specimens frozen at 

1300 local time.  No further evaluation of diel rhythms was conducted. 

 No significant differences in lactate accumulation were observed between 

specimens exposed to the night time temperature of 23°C for 3, 9 or 24 hours 

(ANOVA: f((2,50)=2.35; p<0.1062).  Lactate data for the three exposure times are 

combined for further analyses (Figure 5).  Exposure to 29°C  resulted in a significant 

increase in lactate accumulation relative to all other temperatures (Figure 5; one way 

ANOVA, F(5,15)=8.26; p=0.0025).  At 29°C the average L-lactate production in live 

specimens was 20.5 ±4.52 µmol g-1.  For all other temperatures (10-25°C) there was 

no significant difference in lactate accumulation. The average lactate accumulation 

after five hour exposure to 10, 15, 20, 23 or 25 °C was 2.89±0.797 µmol g-1.  A 

previous study on P. sedentaria found that specimens frozen immediately after 

collection had very high levels of lactate (≥20 µmol g-1) indicating use of anaerobic 

metabolism in oxygenated conditions, which is thought to be a result of capture stress 

(Elder & Seibel In Prep).  The low values measured here at temperatures below 29°C 

indicated that acclimation time was sufficient to recover from collection stress.  
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 For western blot analysis using an antibody for hsp 70, one band occurred at 

approximately 70kDa (Figure 6).  Dead specimens were not used for western blot 

analysis.  Samples subjected to 23 and 25° C after the 9 hour incubation at 23°C were 

combined and designated 24°C.  Specimens acclimated to 23°C for only 3 hours had 

significantly lower hsp70 levels than either 9 or 24 hour acclimated specimens 

(ANOVA: F(2,47)=7.82; p<0.0012; Figure 7).  There was no difference in hsp70 

expression between the 9 and 24 h exposures at 10-20°C.  For specimens in the 24 h 

initial exposure, hsp70 levels were elevated at 29°C compared to lower temperatures 

for that exposure duration (Figure 7, ANOVA: F(5,24)=2.57, P<0.0535).  Elevated 

temperature (29°C) did not induce hsp70 expression in individuals pretreated for only 

3 hours at 23°C (Figure 7). 

 

Discussion:  

 For this study we assessed mortality, lactate and hsp 70 accumulations in 

specimens exposed to night time temperature (23°C) for varying durations to 

determine if temperatures at the surface induce a stress response.  During daily 

migrations Phronima sedentaria experiences a temperature change of ~15°C (Figure 

3) with sustained upper temperatures near 23°C at night.   Phronima migrates between 

the surface and 200-350m in during diel migration (Shulenberger 1977, Shih 1991). 

This temperature change when migrating through the thermocline would be rapid, 

with a change of up 10°C degrees across 50m (Figure 3).  The prediction for this study 

was that the temperatures routinely experienced by P. sedentaria within its natural 

range would induce a stress response.  If this stress response occurred, it would result 
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in a shift to anaerobic metabolism due to oxygen-limitation (discussed below; Pörtner, 

2002) which can be measured by a increase in lactate production under oxygenated 

conditions.  In addition a stress response would result in an increase in hsp 70 

concentrations.  In contrast to this prediction, we found that both lactate and hsp70 

levels were consistent across a temperature range of 10-25°C.  There was an increase 

in both lactate and hsp70 occurred at 29°C, a temperature not experienced during our 

expedition (December) in the Eastern North Tropical Pacific.  However, we further 

postulated that exposure time could be an important factor in the expression of a stress 

response.  In support of this latter hypothesis, we demonstrated a modest elevation in 

hsp70 expression in specimens that were pre-exposed to 23°C for 9 or 24 hours 

relative to those pre-exposed for only 3 hours (Fig. 7).  The 13% mortality at 23°C and 

30% mortality at 25°C (Figure 4)  indicates some amount of stress at night time 

temperatures.  In all acclimation treatments, including 3-hour specimens, subsequent 

exposure to 25°C for five hours did not result in significant hsp70 expression.  The 

less than 30% mortality and lack of an increase in hsp 70 suggests that Phronima is 

somewhat tolerant of nighttime temperatures for at least 8 hours, equivalent to its 

nightly exposure duration before returning to cooler depths.   

 Pörtner (2002) has suggested that upper critical temperatures are related to a 

mismatch between oxygen supply and demand.  This is supported by an elevation in 

lactate at 29°C.  However, lactate levels did not increase at temperatures below 29°C 

at any exposure duration.  This suggests that the heat-shock response in the 9 and 24-

hour pre-exposures is independent of oxygen stress.  In addition temperatures below 

23°C did not result in a reduced amount of lactate production or hsp70 concentrations 
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(figure 5 and 7), indicating that the low lactate levels measured were a true “basal” 

level.  Total mortality was 13% at 23 and 25°C and there was no mortality at 

temperatures below 23°C (Figure 4).  This suggests that the modest heat-shock 

response at temperatures below 29°C was successful at protecting the organism from 

detrimental effects of thermal stress. 

 At 29°C P. sedentaria had a significant increase in lactate production (Figure 

5), a significant increase in hsp 70 concentration (Figure 7), and a 50% mortality rate 

(Figure 4).   This indicates that the critical temperature range for Phronima sedentaria 

in the ETNP is between 26 and 29°C, which is slightly higher than the ambient surface 

temperatures during our expedition. 

 The increase in lactate production at 29°C represents the onset of anaerobic 

metabolism.   At their critical temperature, organisms experience a failure of 

ventilatory or circulatory systems to meet elevated oxygen demand, which results in 

reduced aerobic scope and a transition to anaerobic metabolism under oxygenated 

conditions.  This loss of system function is thought to reflect the earliest level of 

thermal stress and is known as oxygen and capacity limited thermal tolerance (Pörtner 

2010).  Our measurements suggest that thermal stress begins earlier than this critical 

or “pejus” temperature but that protective mechanisms are effective, at least for short 

periods of time.  Although we did not test heart or ventilatory function directly, the 

onset of anaerobic metabolism in aerobic conditions indicates this mismatch in oxygen 

supply, which is caused in part by the inability to deliver enough oxygen to the body 

(Somero 2005).  Survival beyond critical temperature leads to a decline in 
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performance and is time limited due to low ATP yield from anaerobic glycolysis 

(Pörtner 2002, Pörtner 2010).   

 The pejus range (Latin for 'turning worse') is the range when organisms are 

past optimum conditions but can still survive with reduced aerobic activity (Jost et al. 

2012).  During the pejus range, there is an increase in ventilation rate with temperature 

to compensate for increasing oxygen demand with temperature.  At the upper pejus 

temperature ventilation rate becomes relatively constant and Po2 begins to decrease 

(Frederich & Pörtner 2000).  Oxygen supply to tissues and overall aerobic scope, is 

suspected to be linked to fitness and functioning at the ecosystem level (Pörtner 2010), 

although this relationship has yet to be conclusively determined (Clark et al. 2013). 

 Lactate accumulation at 29° C in this study (20.5 ±4.52 µmol g-1, Figure 5) is 

similar to the lactate level of 17.15±4.75 µmol g-1 in the same species subjected five 

hours of environmental hypoxia levels (1% oxygen) at the intermediate temperature of 

20°C.  Lactate concentrations at 25°C and below were comparable to levels in the 

previous study when exposed to normoxic conditions 2.85±0.40 µmol g-1 (Elder & 

Seibel In Prep).  This indicates that specimens were experiencing tissue level hypoxia 

at 29°C despite the oxygenated conditions of the water they are in.  This tissue level 

hypoxia could be due in part to failure of ventilatory or circulatory systems, but factors 

other than oxygen transport can also be thermally limited and potentially cause decline 

in performance that leads to tissue hypoxia (Clark et al. 2013).   

 A critical temperature of approximately 30°C is found in several other 

crustacean species.  The spider crab Maja squinado from Roscoff France has a critical 

temperature close to 30°C, which was indicated by accumulation of anaerobic end 



 

72 
 

products succinate and lactate.  This coincided with very low arterial PO2 values 

(Frederich & Pörtner 2000).  The critical temperature range at which anaerobic 

metabolism begins in the intertidal crabs Carcinus maenas and Cancer irroratus is 

34°C and 30°C, respectively.  Interestingly, hsp70 was not detected in either of these 

crabs, but it may be due to the experimental design, which included a rapid rate of 

temperature increase (Jost et al. 2012).  Our results suggest a 14-30 hour lag in the 

onset of hsp70 expression following exposure to stressful temperatures. 

 In addition to anaerobic metabolism, survival beyond critical temperatures is 

supported by protection of proteins and membranes by heat shock proteins and 

antioxadative defense (Pörtner & Knust 2007, Pörtner 2010).  Hsp 70 is a biochemical 

indicator for the degree of protein unfolding in a cell and therefore an indirect 

indicator of protein damage (Hofmann 2005).          

 The majority of  studies on heat shock response in ectothermic invertebrates 

have focused on intertidal organisms, especially mussels.  A theme from these studies 

is the plasticity of hsp expression, where past thermal history has an impact on 

induction temperature (Hofmann et al. 2002, Hofmann 2005).  In the intertidal, 

thermal history can vary with season and tide level.  In temperate regions of the 

pelagic realm, seasonal changes can have an effect on surface temperatures.  In the 

tropics however, temperature profiles of the water column are relatively stable 

(Fernández-Álamo & Färber-Lorda 2006).  In both temperature and tropical waters 

vertical migators are the organisms that will experience drastic temperature changes 

during their transit between surface and deeper waters.  The lack of a full stress 
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response in Phronima sedentaria at 23°C indicates that this species is adapted to the 

current, relatively constant, surface temperatures of the region.   

 Vertically migrating calanoid copepods (Calanus finmarchicus) from the 

temperate waters of the Gulf of Maine demonstrated a heat shock response when 

exposed to high environmental temperatures (Voznesensky et al. 2004).  Following 

exposure to their maximum summer habitat temperature (18-20°C), C. finmarchicus 

had an increase in hsp 70 mRNA expression when compared to specimens kept at 

8°C.  After 30 minutes at 20°C and after 48 hours at 18°C, specimens exhibited a ~ 4 

fold increase in hsp 70 expression (Voznesensky et al. 2004).  The heat shock 

response in these vertically migrating copepods may increase survival by allowing 

them to tolerate high temperatures while at the surface before migrating down to deep 

waters with more optimal temperatures (Voznesensky et al. 2004).   The specimens of 

Phronima examined here were acclimated to their winter temperatures.  Summer 

temperatures may reach 30°C (Pennington et al. 2006). 

 Induction of hsp70 by heat shock has been shown in several studies on 

freshwater gammarid amphipods, primarily from Lake Baikal in Russia (Bedulina et 

al. 2010, Shatilina et al. 2011, Bedulina et al. 2013).  High constitutive levels of hsp 

70 are thought to provide a general protective mechanism against heat shock, and 

possibly other stresses, in freshwater amphipods (Bedulina et al. 2013). There was a 

stronger hsp response in intertidal amphipods from a variable habitat (sublittoral) 

versus a less variable habitat (supra-littoral) (Bedulina et al. 2010). This may indicate 

that the heat-shock response is critical for tolerating natural temperature fluctuations, 

even below critical extremes.       
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 Rythmic pre-synthesis of hsps to prepare for potential heat stress, such as prior 

to low tide, has not been found in rocky intertidal organisms (Hofmann et al. 2002).  

The dependable timing of diel migration compared to the variability of low tide levels, 

suggest that vertical migrators would be more likely to have an anticipatory increase in 

hsp production than intertidal organisms. For this study half the organisms were frozen 

at 1am, and half were frozen at 1pm.  At 1 am diel migrators would have been at the 

surface for a few hours, while at 1pm they would have arrived at depth several hours 

prior.  If P. sedentaria were producing hsp in anticipation of vertical migration, one 

would expect lower levels of hsp in the group subjected to the same temperature 

frozen at 1pm compared to the group frozen at 1am. However, there was no significant 

difference in the hsp concentrations or level of mortality between the two freezing 

times.    

 

Implications/conclusions 

 23°C is stressful for Phronima sedentaria, but is somewhat tolerated via heat-

shock response at longer exposure times.  Five hour recovery at lower temperature 

does not result in reduced hsp concentrations.  An escalation in hsp 70 concentrations 

occurred at 29°C (Figure 7) , which coincided with a 50% mortality rate (Figure 4) 

and a significant increase in anaerobic metabolism under oxygenated conditions 

(Figure 5).  In the ETNP P. sedentaria tolerates its normal migration to the surface, 

but is close to an upper temperature limit and approaching a maximum duration of 

exposure.  Though P. sedentaria experiences a large temperature fluctuation during 

vertical migration, the consistency of the surface temperatures has allowed P. 
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sedentaria to adapt to the change, which can be seen by the lack of stress response at 

surface temperatures of 23-25°C.  

  Upper thermal tolerance limits are correlated with the maximum habitat 

temperatures in intertidal organisms (Stillman & Somero 2000).  Although limited 

exposures to current maximum temperatures of the region do not induce a full stress 

response, the critical temperature of 29°C may be reached in summer and, due to 

global warming (Deser et al. 2010), during future winters.  The Eastern Tropical 

Pacific warms by approximately 0.8-1.0°C per century (Deser et al. 2010). If 

organisms are already close to their critical temperatures, global warming will cause 

some species to be over their thermal limits and may quickly affect their 

biogeographic range.  Increasing temperature and decreasing oxygen supply will 

compress the night time habitat of vertically migrating species (Seibel 2011, Elder & 

Seibel In Prep).  This change will have important impacts on zooplankton physiology, 

ecology, and vertical distribution as well as carbon cycling (Vinogradov and Voronina 

1962; Seibel 2011; Somero 2002).  
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Figures:  

 
Figure 1: Phronima sedentari photo taken by L. Elder. 
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Figure 2: Map of stations for Eastern Tropical North Pacific (ETNP) during collection 

aboard the R/V Knorr in 2008. Specimens for these experiments were collected at 

station 2, the Costa Rica Dome (8.5°N, 90°W) using a tucker trawl.  
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Figure 3: The Costa Rica Dome (Station 2) CTD profile of oxygen (black line) and 
temperature (grey line).  Boxes represent approximate day and night time distributions 
of Phronima sedentaria based on published distributions (Shih, 1991; Shulenberger, 
1977).  
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Duration of 
exposure to 23°C 

Five hour 
follow‐up 
exposure 

temperature 
°C

n 
n dead at 

end 

3 hours 

10 4  

15 4  

20 4  

23 4  

29 4 3

9 hour 

10 4  

15 4  

20 4  

23 3 1

25 3 2

29 1  

24 hour 

10 3  

15 3  

20 3  

25 3  

29 3 1

Table 1: Thermal stress experimental setup for initial duration of acclimation to night 
time temperature of 23°C for 3, 9 or 24 hours and a follow-up five hour exposure to 
the designated follow-up temperature.  n is number of individuals kept at those 
conditions. n deceased at end is the number deceased at the end of each experiment.  
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Figure 4: Percent mortality of Phronima sedentaria after acclimation to night time 
temperature of 23C and exposure to the follow-up temperature listed. Temperatures 
with no bar had no mortality.  There was a 50% mortality rate at 29°C.  
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Figure 5: There was no significant difference in lactate accumulation between the 
different night time exposure durations (ANOVA: f(2,50)=2.35; p<0.106). Therefore 
accumulation of lactate in µmol g-1 was averaged among the specimens acclimated to 
night time temperature (23°C) and then incubated for five hours at the designated 
follow-up temperatures. All values are mean ±se. There was a significantly higher 
accumulation of lactate at 29°C (one way ANOVA, F(5,15)=8.26; p=0.0025). 
 

 
 
Figure 6: 
Representative Western blot analysis of levels of hsp 70 in Phronima sedentaria 
relative to control (HELA cells first lane on the left).  The marker from the protein 
ladder at 75 Kda is also marked in the figure, to show that the band is at 70 Kda. This 
gel is the samples for 24 hours at 23°C and then incubated at the follow-up 
temperatures. The last three lanes on the right are samples that have been kept at 29°C.  
These three lanes had significantly higher relative intensity than the other samples, 
indicating significantly higher hsp 70 concentration.  
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Figure 7: 
Mean hsp 70 concentration ±se for specimens exposed to night time temperature of 
23°C for 3(gray), 9 (black) or 24 hours (white) followed by exposure to the designated 
temperatures. * indicates Hsp 70 concentration at 3 hours was significantly lower than 
9 and 24 hour: ANOVA: f(2,47)=7.82; p<0.0012. ** indicates there was a nearly 
significant increase in hsp 70 concentration in organisms acclimated to 23°C for 24 
hours before a five hour incubation at 29°C (ANOVA: F(5,24)=2.57, P<0.0535).  Hsp 
70 was not quantified for specimens that were dead at the end of the incubation. 
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Abstract: 

This study sought to determine what environmental and ecological factors 

influence the rate of metabolism in marine amphipods by examining a broad data set 

from polar to tropical environments, and including transparent specimens.  The data 

set for this study was obtained from the literature and original data.  Recent molecular 

work allowed us to look at hyperiid metabolism in a phylogenetic context.  

Understanding patterns of pelagic and deep sea metabolism is important for  further 

understanding of global carbon flux and the consequences of climate change on 

migration strategies.  hyperiid amphipods from the mesopelagic clade Physosomata 

had significantly lower metabolic rates than species in the epipelagic clade 

Physocephalata.  Transparent species also had significantly lower metabolic rates than 

nontransparent species.  The lower rates in mesopelagic and transparent amphipods 

support the visual interactions hypothesis: decreasing selection for locomotory 

capacity limits predator-prey interactions among visually oriented organisms and 

results in lower metabolic rates.  Lower rates of metabolism in benthic and 

mesopelagic gammarids may also be attributed to the visual interactions hypothesis.   
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Introduction: 

 Amphipods are a highly diverse group of peracaridan crustacean.  Peracaridans 

(which include amphipods, mysids, cumaceans, isopods and tanaids) bear eggs in a 

thoracic brood pouch, where juveniles hatch, rather than having true larval stages 

(Bousfield 1973, Dick et al. 1998).   The synapomorphic character uniting amphipods 

is the arrangement of the three pairs of posterior appendages known as the uropods 

(Browne et al. 2007) into a fan-like structure.   Pelagic amphipods, though low in 

relative abundance compared to copepods and euphausiids, are an important part of 

the epi- and meso-pelagic communities.  Hyperiidae and gammaridae are two 

suborders of amphipods that are found in the pelagic environment.   

 Gammarids comprise nearly 85 percent of all amphipod species, and are 

primarily benthic (though there are some pelagic species).  Gammarids can be found 

in almost every environment that has at least some moisture, including: marine, 

brackish and fresh water, sediment burrows and tubes, caves, as well as humid 

terrestrial environments (Bousfield 1973).  Hyperiids are the younger suborder that 

evolved from gammarid amphipods (Bousfield 1973, Martin & Davis 2001).  Recent 

phylogenetic work indicates hyperiids are polyphyletic, with two independent 

radiations from gammarids: the Physocephalata and the Physosomata (Browne et al. 

2007, Hurt et al. 2013).  Hyperiids are exclusively marine, primarily found in the open 

ocean, although there are a few coastal species (Bowman & Gruner 1973).  They are 

commensally or parasitically associated with gelatinous zooplankton at some time in 

their lives (Harbison et al. 1977, Laval 1980, Gasca & Haddock 2004).  Females are 
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thought to spend the majority of their lives on the host, while male hyperiids may be 

largely free swimming, spending time on gelatinous zooplankton as a food source 

during development and as the place to locate females for reproduction (Madin & 

Harbison 1977).  Hyperiid amphipods are known for their large, image forming eyes, 

with many having double eyes, which may be used for downward scanning of objects 

that reflect light from above (Land 1992), although eyes of some deep sea members of 

the clade Physosomata are reduced or absent (Bowman & Gruner 1973).  Hyperiid 

amphipods are dominated by transparent forms (Johnsen 2001).  They are also a food 

source for larger predators and contribute to carbon flux and other biogeochemical 

cycling via their strategy of diel vertical migration (Vinogradov et al. 2004, Yamada et 

al. 2004, Ikeda 2013). 

 Diel migrating zooplankton play a significant role as a link between marine 

primary producers and upper trophic levels (Ducklow et al. 2001, Ekau et al. 2010). 

Zooplankton consume phytoplankton near the ocean surface at night and migrate 

down during the day where they metabolize ingested food, release carbon in the forms 

of dissolved organic carbon (DOC), sinking faecal material, and CO2, therefore 

transporting carbon to depth (Longhurst et al. 1990, Ducklow et al. 2001).  Estimates 

of the contribution of migrating zooplankton to this "biological Pump" depend on 

accurate assessment of the rates of metabolism of species involved.  Respiration and 

metabolic activity are among the most important components of carbon flux (Burd et 

al. 2010).  Burd and colleagues have noted a problem of imbalances in estimates of 

organic carbon sources and sinks below the photic zone that may result from 

imprescise or inaccurate metabolic rates used  in calculations (Burd et al. 2010).  
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Metabolism can vary intarspecifically with temperature (Donnelly & Torres 1988), 

body mass (Glazier 2005, 2006), as well as with environmental differences such as 

oxygen levels (Seibel 2011, Elder & Seibel In Prep) and interspecifically due to 

ecological habits and phylogenetic influences (Seibel & Carlini 2001).  Metabolic 

rates in visually-orienting pelagic organisms, including crustaceans, are documented to 

decline with depth (Seibel & Drazen 2007), primarily due to reduced demand for 

energy for predator-prey interactions in the light-limited deep sea (Childress & Mickel 

1985, Seibel & Drazen 2007).  Transparency may relieve the demand for strong 

swimming abilities and high metabolism in such organisms (Seibel & Carlini 2001, 

Elder & Seibel In Prep). 

 Torres et al. (1994) noted that Antarctic pelagic crustaceans (when normalized 

to the same mass and temperature) have similar or lower metabolic rates compared to 

temperate species, suggesting no metabolic temperature compensation.  Torres et al 

(1994) also noted that the representation of amphipods within the micronektonic 

crustacea community decreases with increasing sea surface temperature.  Due to the 

abundance of amphipods in colder environments, previous work on their metabolism 

has primarily been conducted in polar coastal waters.  Metabolic rates of pelagic 

crustaceans, including both gammarid and hyperiid amphipods, decrease with 

increasing depth of occurrence in the Antarctic (Ikeda 1988, Torres et al. 1994).  A 

recent analysis found that metabolic rates of pelagic amphipods decrease with 

increasing depth of collection in all regions (Ikeda 2013); however, depth of collection 

is not always ecologically relevant and therefore it is difficult to interpret this result.  

Rates of hyperiid amphipods were higher on average than rates of gammarids in the 
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Antarctic, partially due to the smaller body size of hyperiids in that region (Torres et 

al. 1994) or to their association with the benthos, providing greater opportunities for 

refuge from predators.     

 This study aimed to determine what environmental and ecological factors 

influence the rate of metabolism in marine amphipods by examining a broad data set 

from polar to tropical environments and including transparent specimens.  

Specifically, we tested the effect of temperature, oxygen, body mass, habitat (benthic 

versus pelagic) and transparency on the metabolic rates of diverse amphipods across a 

latitudinal and depth range.  The data for this study was obtained from the literature 

and original data.  Recent molecular work (Hurt et al. 2013) allowed us to look at 

hyperiid metabolism in a phylogenetic context.  Understanding patterns of pelagic and 

deep sea metabolism is important for further understanding of global carbon flux and 

the consequences of climate change on migration strategies.  

 

Methods  

Collection: 

 Collection locations and methods are listed in table 1.  For most locations 

specimens were collected with a Mother Tucker Trawl, a modified opening-closing 

Tucker Trawl equipped with a 30 l thermally insulated cod-end (Childress et al. 1978).  

The net was opened and closed using a MOCNESS- type step motor (Wiebe et al. 

1985) and equipped with temperature and pressure sensors.  Immediately after the 

codend reached the surface, the contents were placed in a large container full of 

chilled seawater.  At McMurdo station, Antarctica, specimens were collected by hand 
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along shore.  The species Abyssochromeni was also collected using a bait bag filled 

with dead fish and left overnight in a hole on the sea ice just south of McMurdo 

station.  For all collection methods, upon retrieval, specimens were individually 

transferred to filtered seawater and allowed to recover for at least 12 hours, ensuring 

they were in a post-absorptive (starved) state. Specimens were identified using 

published keys (Vinogradov et al. 1996) and representatives of each species were 

preserved in 4% formaldehyde, or 70% ethanol to confirm identification. 

 

Metabolic rate (MO2): 

 All respiration experiments were conducted at sea or, in the case of Antarctica, 

at the lab in McMurdo station.  Depending on the size of the organism, either 25 ml or 

50ml glass gas-tight  syringes were used as respiration chambers. The chambers were 

filled with filtered (0.2 μm demicap filter, Fisher scientific, USA) and treated (25 μM 

liter -1 each of streptomycin and ampicillin) seawater, and a single specimen was 

immediately placed in the chamber using feather forceps.  A blank chamber with no 

specimen was filled with identically treated water and processed simultaneously to 

monitor background respiration of microbes. The chambers were sealed and incubated 

in a temperature controlled circulating water bath (Lauda, Germany).  All experiments 

were carried out in darkness.  Experiments were conducted for 5-27 hours. The size, 

volume and metabolic rate of individuals determined the duration needed to provide 

sufficient time for measureable changes in oxygen saturation.  

Water was removed from incubation chambers using a 500 microliter syringe 

(Hamilton, USA). Oxygen concentrations of the water in incubation chambers were 
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measured at the end of the experiment using a Clark-type oxygen electrode (Clark 

1956) connected to a Strathkelvin Instruments 782 Oxygen Interface (Strathkelvin 

Instruments, United Kingdom). The oxygen electrodes were maintained in a thermally 

jacketed electrode holder (MC100 Microcell, Strathkelvin Instruments, United 

Kingdom) attached to a water bath at the appropriate experimental temperature (Marsh 

& Manahan 1999). The electrode was calibrated prior to measurements using air- and 

nitrogen-saturated seawater. The oxygen consumption rate of each specimen was 

calculated by subtracting the final oxygen concentration in the experimental chamber 

from final concentration in the blank chamber. At the end of incubations, all 

specimens were immediately blotted dry, frozen in liquid nitrogen, then transferred to 

a -80ºC freezer. Specimens were weighed on a motion compensated shipboard balance 

system (Childress & Mickel 1980) and frozen in liquid nitrogen.  Metabolic rate was 

determined per hour incubation per gram body weight for each individual. 

A temperature coefficient, or Q10 (= (R2/R1)
 ((T2-T1)/10), R= oxygen consumption 

rate, T= temperature), quantifies the factorial change in metabolic rate with 10°C 

change in temperature and typically falls in the range of 2-3 (Hochachka & Somero 

2002).  Q10 was calculated from the average mass specific metabolic rate at each 

temperature.  Mean metabolic rates of hyperiid amphipod species were normalized to 

the same temperature (10°C) and mass (0.25g) using measured Q10 and scaling 

coefficient and plotted as a function of the minimum depth of occurrence (MDO) 

(Figure 2).  Routine metabolic rate data was summarized from our studies and those in 

the literature. 
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Rates from Literature: 

 Oxygen consumption values were adjusted to 10°C, which was chosen because 

it was the approximate median temperature for the range of data collected.  Published 

temperature coefficients were used where available, or we assumed a Q10 of 2.  For 

comparison between regions and across depth gradients, species rates were adjusted to 

a common body size of 0.25g using published scaling coefficients, the coefficient 

derived from the present study for data original to this study, or assuming a scaling 

coefficient of -0.25 for mass specific metabolism.  Quarter-power scaling is not 

universal (Glazier 2006) but is commonly used when scaling coefficients are not 

available because of its prevalence; thus we considered it a safe assumption (Schmidt-

Nielson 1984).  Mean oxygen consumption rates were used for some species because 

published papers often do not give all the data for individual specimens but give mean 

values and size range.  

 Literature values of oxygen consumption were used only if they met the 

following requirements: Measurements were made in the absence of food, in darkness, 

and at temperatures within the natural environmental range for the particular species.  

All rates in the present study are presented as oxygen consumed per unit wet body 

mass.  Thus, only studies providing wet mass, or the data necessary to calculate wet 

mass (e.g. dry mass and % water), were included.     

 

Statistics: 

 Statistics were performed using the software SAS version 9.3 (SAS institute 

inc. USA). One-way ANOVAs were used to compare differences in metabolic rates 
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between groups. Linear regressions were also used to compare the relationship of 

metabolic rate with mass or minimum depth of occurrence.  Mass-specific metabolic 

rate (MO2) and enzymatic activities typically decline with increasing body mass (M) 

according to a power equation (MO2 = aMb), where a is a normalization constant and 

b is a scaling coefficient that describes the slope of the relationship.   For linear 

regression against habitat depth, species were assigned a minimum depth of 

occurrence (MDO), the depth below which 90% of the individuals of a given species 

have been captured (Childress & Nygaard 1974, Childress 1975).  However, due to the 

uncertainty of the species’ vertical distributions, we also used a one-way ANOVA to 

assess differences in metabolic scaling curves for species believed to live above or 

below a particular depth.  For pelagic species, a depth of 100m was used, since the 

majority of the decline in metabolism occurs in the upper 100 m in other visually-

orienting pelagic taxa.  For benthic species, a depth of 500 m was used following the 

protocol of Torres et al. (1994).  Benthic organisms typically display little or no 

decline in metabolic rate with depth (Seibel & Drazen 2007).  

 A linear regression was used to compare the relationship of metabolic rate and 

environmental temperature in different species of the hyperiid amphipod Themisto.  A 

one tailed t-test was also used to compare the mean metabolic rate of cold water (less 

than 1°C) versus warmer water (5°C or above) species of Themisto.  

 

Results: 

 Oxygen consumption rates of eight species of hyperiid amphipod and two 

species of gammarid amphipods were measured (Table 2) from six study locations 
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(Table 1).  Representative study specimens are pictured in Figure 1. MO2 values for all 

species of hyperiid amphipods combined declined significantly with body mass 

(MO2=1.1074M-0.38, r2=0.54; Figure 2).  Regression equations for individual species 

are also provided in the figure legend.  Metabolic rates of 25 additional hyperiid and 7 

gammarid amphipod species were taken from the literature and used with data original 

to this study for the remaining analysis (Tables 3 and 4).   

 Mass- and temperature-normalized metabolic rates declined significantly with 

increasing depth of occurrence according to the regression equation MO2=1.074-0.38 

(p<0.0087, Figure 3).  The previously published regression equation for decline in 

MO2 with increasing depth of occurrence in pelagic crustaceans (Childress 1975) 

visually appears to be outside of the 95% confidence limits for the regression equation 

for hyperiid amphipods below 150m (Figure 3). 

 Only five species of hyperiid amphipods from the literature and this study had 

a minimum depth of occurrence below 150 meters (Table 3).  All these specimens are 

in the clade Physosomata.  Species with a minimum depth of occurrence deeper than 

150 meters had a mean metabolic rate of 1.54±0.67 µmol O2 g
-1hr-1 (n=5), which is 

significantly lower than the mean metabolic rate of 7.27±0.85 µmol O2 g
-1hr-1 (n=28) 

for species with a minimum depth of occurrence above 100 meters  (ANOVA: 

F(1,31)=7.46, P< 0.0087, Figure 4).   

 Deep living pelagic gammarids (500m and below) had an average metabolic 

rate of 3.18 µmol O2 g
-1hr-1  when normalized to 10°C and 0.25g.  Epipelagic 

gammarids from 100m and above had an average metabolic rate of 6.16 µmol O2 g
-

1hr-1 (Table 4).  
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 For this study there were 7 transparent species of hyperiid amphipod from the 

clade Physocephalata, and one species from the clade Physosomata (Table 3).  When 

normalized to a common temperature of 10°C, MO2 for transparent species of hyperiid 

amphipod had a significantly lower mean metabolic rate (3.74±0.88 µmol O2 g
-1hr-1, 

n=8) than non-transparent species in the clade Physocephalata (mean rate 12.00±1.38 

µmol O2 g
-1hr-1, n=20), ANOVA f(1,26)=13.16, P<0.0012 (Figure 5).  When 

normalized to the same temperature, all hyperiids from the clade Physocephalata 

(including transparent species) had a significantly higher MO2 than hyperiids from the 

deep-living clade Physosomata (ANOVA: f(1,31)=10.14, p<0.0033, Figure 5).   

  Metabolic rates were available for five species in the genus Themisto from 

five different locations (Table 3).  T. japonica has been studied at two locations.  The 

environmental temperature ranged from -0.1°C in the Barents Sea (North of Russia, 

connects to the Arctic Ocean) to 10°C in the North Atlantic.   Metabolic rates of these 

specimens were compared to see if rates from polar species were higher than species 

from warmer climates once normalized to temperature (10°C) and scaled to a body 

mass of 0.25g.  Metabolic rates were not significantly related to environmental 

temperature, according to the regression equation MO2=5.63-0.048x, R2=.09, Figure 6.  

MO2 is not significantly different between specimens from cold water regions (less 

than 1°C) and specimens from regions with temperature of 5°C or higher (t-test: t(4)=-

1.84; P<0.1617).   

 Rates of gammarid amphipods for the species Epimeriid sp. and 

Abyssochromeni plebs (pictured Figure 1G) were adjusted to 10°C.  In both species, 

the MO2 scales significantly with body mass (Figure 7). The scaling relationship 
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published by Seibel and Drazen (2007) for benthic crustaceans (MO2=1.9031m-0.27) is 

also plotted (Figure 7). This work on benthic crustaceans included gammarid 

amphipods from tropical to polar environments.  Neither the slopes nor the elevations 

of the regressions for the two Antarctic species was significantly different than the 

regression line from Seibel and Drazen (2007, Figure 7).  However there is a 

substantial interspecific variation ampng the species studied by Seibel and Drazen 

(2007). It may be worth noting that Epimeriid sp. falls entirely above the regression 

line. 

 

Discussion: 

 This study increases the number of amphipod species for which metabolic rates 

are available by nearly 50% and more than doubles the number of pelagic species 

measured.  The mean metabolic rates for marine hyperiid amphipods were lowest in 

the deep-living Physosomata, with a mean metabolic rate of 1.54±0.67 µmol O2 g
-1hr-1   

and highest in the shallow-living Physocephalata with and mean metabolic rate of 

7.27±0.85 µmol O2 g
-1hr-1 (Figure 5).  This 3-4-fold variation in metabolism is 

attributable to physical, morphological, ecological, and phylogenetic differences 

between species, as well as size differences within and between species.  Specifically, 

habitat depth, temperature, transparency, and body mass are determinants of 

metabolism, while their relative association with the benthos or latitude had little 

effect on metabolism.   Within the Physocephalata metabolic rates of transparent 

species had lower metabolic rates (mean of 3.74±0.88 µmol O2 g
-1hr-1) than non-

transparent species (mean12.00±1.38 µmol O2 g
-1hr-1) (Figure 5).  This difference in 
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metabolic rate may be attributed to the reduced susceptibility to visual predation and 

therefore less reliance on strong locomotion in transparent species.  Transparency is 

achieved, in part, by increased water content of tissues that further reduces wet-mass 

specific MO2.   

 

Habitat Depth 

 Respiratory rates in many midwater groups decrease with increasing habitat 

depth (Childress 1971, 1975, Seibel & Drazen 2007).  Low metabolic rates in 

mesopelagic zooplankton are hypothesized to be related to the decreasing selection for 

locomotory capacity because low light levels limit predator-prey interactions among 

visually oriented organisms (Cowles et al. 1991, Childress 1995, Seibel & Drazen 

2007).  Visually-limited groups (those without image-forming eyes or those found in 

constant darkness) have low, but variable, metabolic rates at all depths (Seibel & 

Drazen 2007).  Childress (1975) examined the respiratory rates of midwater 

crustaceans at temperatures characteristic of their depth of occurrence near southern 

California.  In Childress 1975 the range of metabolic rates for epipelagic species 

(MDO 0-100m) was 17.32-3.47 µmol g-1hr-1. The range in rates for mesopelagic 

(MDO 150-900m) species in the same Childress (1975) study was 2.4-0.924 µmol O2 

g-1hr-1.  Childress’ study included one gammarid and two hyperiid amphipods.  Data 

from those specimens were included in the present study (Table 3).  

 Studies on the vertical distribution of  hyperiid amphipods are scarce, but most 

species in the clade Physocephalata have a minimum depth of occurrence of 0-50m, 

well within the epipelagic zone (Table 3).  The hyperiid amphipod clade Physosomata 
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is generally found in the mesopelagic and bathypelagic zones (Vinogradov et al. 1996, 

Hurt et al. 2013).  Eyes are often small, inconspicuous or absent in the Physosomata 

(Bowman & Gruner 1973, Vinogradov et al. 1996).  In the mesopelagic, vision is used 

to see dim, downwelling daylight and bioluminescence, which is often point-source 

flashes not relevant for protracted predator-prey interactions (Warrant & Locket 

2004).  In this study, Physosomata with inconspicuous or absent eyes are represented 

by the genera Lanceola, Scina, and Chuleola.  The eyes of Scina crassicornis function 

like other mesopelagic zooplankton, with a spectral sensitivity and response latency 

that allows them to capture the maximum amount of light in the mesopelagic zone 

(Cohen & Frank 2007). Megalanceola spp. have eyes that are narrow, kidney shaped 

and relatively large (Vinogradov et al. 1996).  All of these Physosomata genera have 

significantly lower metabolic rates than hyperiids that have a minimum depth of 

occurrence above 100m (Figure 3).  The rate for these species (1.54 ± 0.67 µmol O2 g
-

1hr-1) is within the range of rates for other mesopelagic crustaceans  examined by 

Childress (1975).  The mean for epipelagic non-transparent hyperiids in this study 

(12.00 ±1.38 µmol O2 g
-1hr-1) is within the range of other epipelagic crustaceans.  The 

only other Physosomata species in this study was Paraphronima spp. (Figure 1 E), 

which, along with Cystosoma spp., was only recently assigned to this clade (Hurt et al. 

2013).  Paraphronima spp. is a vertical migrator with a much shallower minimum 

depth of occurrence than the other Physosomata represented but does reach depths of 

500m or deeper during the day (Brusca 1967, Vinogradov et al. 1996).  Since 

Paraphronima spp. spends some time in the photic zone, the low metabolic rate of this 
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species may be due to its nearly complete transparency (see below), more than its 

presence in the dimly-lit mesopelagic zone.   

 Deep living gammarids had lower rates (1.25 µmol O2 g
-1hr-1 ) than shallow 

living gammarids (4.01 µmol O2 g
-1hr-1) at 0.5°C (Torres et al. 1994).  Data from the 

Torres study is included in the present study (Table 4).  Data collected for this study 

had a similar trend; deep living gammarids (500m and below) had an average 

metabolic rate of 3.18 µmol O2 g
-1hr-1  when normalized to 10°C and 0.25g.  

Epipelagic gammarids, from 100m and above had an average metabolic rate of 6.16 

µmol O2 g
-1hr-1.  Torres et al (1994) noted that this difference in metabolic rate may 

not be due to reduced activity levels, since the ratios of maximum to minimum rates 

are not significantly different between shallow and deep living specimens.  Deep 

living species of micronekton crustaceans are able to alter their activity levels and 

metabolic rates equivalently to shallow species (Torres et al. 1994).  Their respiratory 

rate is lower probably because their body composition is different (reduced protein 

and lipid levels, higher water levels (Childress & Nygaard 1974) than epipelagic 

amphipods.   

 Some studies examine metabolic rates as a function of depth of capture rather 

than minimum depth of occurrence.  In these studies organisms are captured in  net 

tow where the net remains open between the deepest depth and the surface.  So 

epipelagic organisms are also captured in tows that start in the mesopelagic because 

the tow collects continuously from the mesopelagic up to the surface.  The mean 

metabolic rate of all individuals from a fixed collection depth interval is plotted 

against the middle of the depth interval.  As noted by Childress et al. (2008), this 



 

101 
 

method results in the same species represented in more than one depth interval.  For 

example Ikeda (2013) reports the species Phronima sedentaria with both deep and 

shallow capture depths, 2 m and 750 m.  This deeper depth is not ecologically 

significant since Phronima sedentaria is not found below 600m (Shih 1969, 

Shulenberger 1977).  Also because Phronima sedentaria is a vertical migrator, the 

minimum depth of occurrence is a more accurate depiction of the ecological pressures 

relevant to metabolic demand and visual predator-prey interactions.  Comparing this 

epipelagic species to deep sea species that do not spend time in the photic zone does 

not test the visual interactions hypotheses (Childress et al. 2008).  In addition, this 

misleading depth range results in inaccurate estimates of the contribution of these 

organisms to carbon flux. 

 

Transparency 

 Several species of epipelagic amphipods had rates that were low relative to 

other epipelagic crustacean species.  Phronima sedentaria (Figure 1D), like 

Paraphronima spp., was in the range of mesopelagic specimens from Childress's study 

(1975) on midwater crustaceans, despite the fact that its minimum depth of occurrence 

is shallow (25 m).  Elder and Seibel (in prep.) hypothesized that the low rate in P. 

sedentaria is related to its transparency, which should limit its visibility to predators 

and prey even in well-lit surface waters.  Similarly, squids from the family 

Cranchiidae have low metabolic rates despite occupying shallow water for at least part 

of their life history.  It was suggested that transparency relieves them from selective 

pressures on locomotion and metabolism associated with predator-prey interaction 
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(Seibel and Carlini, 2001). Other Cephalopods, being highly visual predators, exhibit a 

decline in oxygen consumption with increasing minimum habitat depth similar to the 

crustaceans (Seibel et al. 1997).  Transparency is one of the few means of camouflage 

from visual predators available to oceanic organisms.  The distribution of transparency 

in primarily photic aquatic environments overlaps with the habitat of visual predators 

(Johnsen 2001), providing evidence that this is an adaptation to avoid visual predators.    

 The families of Hyperiidae which are semitransparent or absolutely transparent 

included in this study are Oxycephalidae, Paraphronimidae, and Phronimidae 

(Bowman & Gruner 1973, Vinogradov et al. 1996).  Mean metabolic rates adjusted to 

10°C were compared between transparent and non-transparent hyperiid amphipods 

that have a minimum depth of occurrence above 100 meters.  Transparent amphipod 

species had a significantly lower mean metabolic rate (3.74±0.88 µmol O2 g
-1hr-1) than 

non-transparent species (mean rate 12.00±1.38 µmol O2 g
-1hr-1), when normalized to 

10°C (P<0.0012; Figure 5).  Metabolic rates ranged from 8.86 µmol O2 g
-1hr-1 at 10°C 

in Cranocaplalus scleroticus (Figure 1B), a species of Oxycephalidea, to 1.52 µmol 

O2 g
-1hr-1 at 10°C in Paraphronima spp. (Table 3, Figure 5). Transparent hyperiids in 

the Physosomata are 'globular' in shape, mainly bathypelagic, and have weakly 

developed muscles resulting in weak swimming abilities (Bowman & Gruner 1973).  

Paraphronima is the only transparent species of Physosomata for which metabolic 

rates have been measured, but in line with the low activity of Physosomata, the 

metabolic rate is lower than any of the transparent Physocephalata.  Transparent 

members of Physocephalata, including many Oxychechalidae (Figure 1B and H for 

examples), are slender and elongate (Bowman & Gruner 1973), improving their 
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swimming efficiency due to their streamline shape.  All transparent species from the 

family Oxycephalidae had higher metabolic rates than the other transparent amphipods 

species. This is most likely due to their reported strong swimming abilities and 

relatively active behavior.  

 The only two species of transparent hyperiid amphipods that have been 

previously studied for metabolic rate are Phronima sedentaria (Childress 1975, 

Mayzaud et al. 2005, Ikeda 2012) and a single specimen of Oxychephalus clausi 

(Ikeda & McKinnon 2012).  Rates for Phronima sedentaria were comparable with the 

data reported from our previous work (Elder & Seibel In Prep).  Oxychephalus clausi 

from the coral sea had an average rate of 5.5 µmol O2 g
-1hr-1 (Ikeda & McKinnon 

2012).  Oxychephalus clausi has been described as a predatory species that can rapidly 

devour salps, has a greater developed pleon and urosome (tail region), and can 

accelerate for burst swimming (Harbison et al. 1977).  The well developed pleon and 

urosome would assist Oxychephalus clausi in achieving faster swimming speeds than 

species with more reduced structures.  This is in line with the other activity levels of 

the other species of Oxychephalidae.  The ecological reasons selecting for this more 

active mode in Oxychephalidae compared to other hyperiids is not known.  

 

Temperature and Metabolic Cold Adaptation 

 Metabolic cold adaptation is the outdated concept that polar ectotherms have 

compensated for the depressing effect of temperature on metabolic rate (Clarke 1980).  

Metabolic rates represent the sum of numerous energetic expenditures, so elevating 

metabolic rate and the amount of ATP required is energetically costly.  It has been 
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noted that there is no selective advantage in arbitrarily increasing metabolic rate in 

order to achieve compensation for temperature (Clarke 1993).  Therefore metabolic 

cold adaptation as a concept is largely abandoned.   However, polar species are able to 

adjust or compensate some physiological processes (e.g. enzyme-mediated reactions 

(Kawall et al. 2002)) for living at low temperatures so that they attain greater activity 

levels than similar organisms from a warmer habitat acclimated to the same low 

temperature (Crockett & Sidell 1990).  There is an advantage to increasing metabolic 

rate to a level consistent with that required for ecologically relevant activity levels 

(Seibel et al. 2007).  For example, in pelagic pteropods, active predator-prey 

interactions select for high maintenance of wing-beat frequencies, the cost of which is 

reflected in the whole-animal metabolic rate.   Polar and temperate species need to 

swim at similar rates to capture prey, despite differences in habitat temperature, so 

energy consumption in support of swimming is similar across a latitudinal range 

(Seibel et al. 2007). 

 Previous work on amphipods has found no support for metabolic cold 

adaptation.  Torres et al (1994) compared rates of micronekton from studies in the 

Antarctic, temperate and tropical studies across a depth range.  The mass and 

temperature corrected regressions for Antarctic representatives are either below or 

similar to regressions from lower latitude locations (Torres et al. 1994).  Cowles et al. 

(1991) also found a lack of support for metabolic cold adaptation when comparing 

crustaceans from California and Hawaii.  Decline in metabolism with depth in 

isothermal waters support the conclusion that this decline is related to relaxation of 

pressure from visual predators, not from temperature (Torres et al. 1994).   
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 To examine if temperature compensation of metabolism is present in hyperiids, 

the genus Themisto was compared.  For this genus there are five species from five 

different locations, with two representatives of one species (Figure 1C pictures 

Themisto abyssorum).  The hyperiids in the genus Themisto are numerous in 

abundance and high in biomass in the world oceans and are primarily found in high 

latitude seas (Yamada et al. 2004).  Themisto are predominantly carnivores and are 

well studied because of their abundance and importance as an intermediate between 

primary producers and higher trophic levels (reviewed by (Auel & Werner 2003).  For 

this comparison, three species of Themisto were from regions with environmental 

temperatures of 0.5°C or below, two were from the western subarctic pacific where 

their habitat temperature is 5°C (Yamada & Ikeda 2003), and one species was 

collected from the North Atlantic Ocean where habitat temperatures were 10°C (Table 

3).  When normalized to the same temperature and body mass, the metabolic rates of 

these species were not significantly different (Figure 6).  This indicates that metabolic 

cold adaptation is not present in this genus.  If the species from the 0.5°C waters had a 

significantly higher rate than the species from the 10 and 5°C waters, than it would 

indicate metabolic cold compensation.   

  Two Antarctic gammarid amphipods from this work, Abysssochromene plebs 

(Figure 1G) and Epimmeriid sp. were normalized to 10°C and compared to the 

regression equation for benthic crustaceans from Seibel and Drazen (2007), also 

normalized to 10°C (Figure 7).  That regression includes an extensive review of 

benthic amphipods from polar to tropical and temperate waters.   There was no 

evidence of metabolic cold adaptation in the polar organisms compared to crustaceans 
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from other latitudes (Seibel & Drazen 2007).  The rates of gammarid amphipods from 

Antarctica in this study were not significantly different than the Seibel and Drazen 

(2007) regression, further substantiating the lack of evidence for metabolic cold 

adaptation in crustaceans. 

 

Ecology 

  Classification and phylogenetic confusion in hyperiids results from convergent 

evolution of traits correlated with their pelagic life history and parasitic relationship 

with gelatinous zooplankton (Hurt et al. 2013).  They are known descendants of 

gammarid amphipods, which are predominantly benthic.  Hyperiids are exclusively 

pelagic, but are commonly thought of as living a benthic-like existence because they 

live on gelatinous zooplankton (Laval 1980).  Juveniles are deposited on the host from 

the brood pouch of the female.  Juveniles are unable to swim on their own and 

therefore would be unlikely to encounter a host on their own.  Females do not produce 

large numbers of offspring (Gasca & Haddock 2004), as many broadcast spawning 

pelagic species do to increase chance of progeny survival.  This indicates that the 

gelatinous host acts as a secondary brood pouch for further development of the larva 

(Laval 1980).  The importance of gelatinous hosts for males of pelagic amphipods is 

not clear.  There have been far fewer observations of males on hosts (Harbison et al. 

1977), but as previously noted it has not yet been fully examined if males are more 

independent from hosts than females (Gasca & Haddock 2004).   

 The time hyperiids spend on substrate (hosts) does not appear to be equivalent 

to living an entirely benthic lifestyle, because of their relatively high metabolic rates 
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compared to benthic gammarids and to behavioral observations.  The degree of 

dependence on hosts varies according to species (Ohtsuka et al. 2009).  Many species 

of amphipods have been noted to be strong swimmers and relatively active, especially 

shallow living ones, and have been observed without a gelatinous host.  Pelagic 

amphipods remain in the water column by either active swimming or a combination of 

active swimming and resting on floating substrates (gelatinous zooplankton)(Ikeda 

2013).  Some species, such as Themisto occur in swarms in gatherings of up to 38 

individuals have been observed from submersibles, though the reason for this behavior 

is unknown (Vinogradov 1999).   Based on gut content analysis Themisto pacifica and 

Cyphocaris challengeri preyed on copepods, amphipods, ostracods and cladocerans 

(Haro-Garay 2004).  Examination of the mouth parts of T. pacifica determined they 

can feed on gelatinous tissue and hardier organisms that possess an exoskeleton. This 

indicates that T. pacifico has raptorial capacity.  Strong palps and sharp incisors on C. 

challengeri indicate they are predatory by nature, and are able to eat exoskeleton 

covered small planktonic invertebrates. These morphological conclusions were 

supported by gut content analysis.  C. challengeri is an active exclusively carnivorous 

predator; T. pacifica is a more passive predator relying on microphagy/canivory 

(Haro-Garay 2004).   

 Some pelagic gammarid amphipods are also adapted to associate with 

gelatinous zooplankton (Vader 1972).  Epipelagic gammarid amphipods have lower 

metabolic rates than epipelagic hyperiids.  Epipelagic gammarids from this study had a 

metabolic rate of 6.16 µmol O2 g
-1hr-1, while epipelagic hyperiids had an average rate 

of 12.92 µmol O2 g
-1hr-1.   Torres at al. (2004) also found gammarids had a lower rate 
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than hyperiids, but offered no explanation for this.  Few observations are available for 

pelagic gammarid amphipods.  Epipelagic gammarids may differ in ecology from 

epipelagic hyperiids. 

 Benthic gammarids have a lower metabolic rate than nontransparent pelagic 

hyperiids and gammarids.  Their lower rate may be explained by the lack of energy 

expenditure for vertical migrations or finding a host.  Epipelagic amphipods 

(Vinogradov et al. 1996) are known to vertically migrate on a diel cycle.  While they 

may be traveling on their gelatinous host, their high activity levels indicated they 

likely spend some time swimming for this migration.  Rather than remaining immobile 

on the gelatinous host, adult hyperiids wander from host to host, and use them as a 

platform for attaching other prey (Laval 1980).  Transparent species have a lower 

metabolic rate than other mesopelagic species because of the relief from pressure for 

locomotory performance to avoid visual predators discussed above.  Pelagic deep sea 

hyperiids have the lowest rates of any amphipods.  These species are known to have a 

less hydrodynamic shape (Bowman & Gruner 1973) than gammarids and epipelagic 

amphipods, as well as visual systems that function well for a lifestyle of sitting and 

waiting for prey when they are not on gelatinous zooplankton (discussed above in 

habitat depth section).  Deep sea hyperiid amphipod species do not conduct large 

energy costly vertical migrations on a diel cycle; this also reduces their selection for 

strong swimming abilities. 

 Respiration rates of amphipods are similar to euphausiids (krill) but greater 

than copepods (Ikeda 2013).  Euphausiids, which are entirely pelagic, are considered 

active swimmers with well-developed eyes.  Copepods lack image-forming eyes and 
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are documented to spend less time swimming, alternating between a swimming mode 

and a cleaning mode (Schmitt et al. 2006).  

 Many amphipods are negatively buoyant.  Phronima has a density of ~1.045, 

which makes it negatively buoyant relative to seawater (1.024; Davenport 1994, 

Tsukamoto et al. 2009).  Phronima specimens have increased buoyancy (1.030) when 

in their salp barrel (Tsukamoto et al. 2009).  Streetsia sp. has a high specific gravity of 

1.146, which is greater than all other crustacean zooplankton examined (Tsukamoto et 

al. 2009).  Most crustacean zooplankton are somewhat negatively buoyant.  Copepods 

have a density around 1.060  and the euphausiid examined has a density of 1.092 

(Tsukamoto et al. 2009).  Most hyperiid amphipods have a high water content (68 to 

93% of wet mass Ikeda 2013) compared to euphausiids (65-78%; Ikeda 2012),  

However some amphipods also have high ash content relative to copepods and 

euphausiids (mean 25% of dry mass) due to their robust exoskeletons (Ikeda 2013). 

This high ash content would decrease buoyancy.  Negative buoyancy may result in 

amphipods actively swimming to maintain position in the water column unless “hitch-

hiking” on gelatinous zooplankton, though no direct studies have been.  Amphipods 

may use the host jellies as a resting place and refuge between forays, and a food 

source at times.  The species that approach neutral buoyancy are likely to spend less 

energy swimming than negatively buoyant species.  However, previous work found 

there was no significant relationship between relative buoyancy and overall respiratory 

rate (Childress & Nygaard 1974).  Relative buoyancy in pelagic crustaceans decreases 

with increasing depth of occurrence (Childress & Nygaard 1974), but no specimens 

from the clade Physosomata were included.  This clade may be closer to neutral 
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buoyancy because their globular appearance indicates a high water content.  Also they 

are known to be more inactive than pelagic species. 

 

Conclusions 

 This study demonstrates that the differences in amphipod metabolism are 

associated with physical, morphological, ecological, and phylogenetic differences 

between species.  The species in the hyperiid amphipod clade Physosomata had 

significantly lower metabolic rates than species in the clade Physocephalata.  The 

clade Physocephalata is typically more streamline in morphology, and has a minimum 

depth of occurrence in the epipelagic zone.  Transparent species are found in both 

Physosomata and Physocephalata, although metabolic rate was only available for one 

species of Physosomata (Table 3).  The lower rates in mesopelagic and transparent 

amphipods support the visual interactions hypothesis: decreasing selection for 

locomotory capacity (by transparency or remaining below the photic zone during the 

day) limits predator-prey interactions among visually oriented organisms and results in 

lower metabolic rates (Childress & Mickel 1985, Cowles et al. 1991, Seibel & Drazen 

2007).  

 Lower rates of metabolism in benthic and mesopelagic gammarids may also be 

attributed to the visual interactions hypothesis.  Further research needs to be done to 

determine the reasons for lower metabolic rate in epipelagic gammarids compared to 

epipelagic hyperiids.  This study also adds to the evidence that polar amphipods do not 

exhibit temperature compensation of metabolism.   
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Tables and Figures: 

Date  Location  Coordinates  Vessel/ station  Collection method

June 2007  Gulf of California   between 27° N 112° W and 111° W  R/V New Horizon 
mother tucker 
trawl 

July 2007 
Pacific Ocean off the 
Coast of California 

between 36°N 122°W and 35°N 123° 
W  R/V Western Flyer  tucker trawl 

Oct‐Nov 
2007 

Eastern Tropical 
North Pacific  

Costa Rica Dome, 9°N 90° W and 
Tehuantepec Bowl, 11° N 98° W 

R/V Seward 
Johnson 

mother tucker 
trawl 

Dec 2008‐
Jan 2009 

Eastern Tropical 
North Pacific (ETNP) 

Costa Rica Dome, 9°N 90° W and  
Tehuantepec Bowl, 11° N 98° W  R/V Knorr 

mother tucker 
trawl 

Jan‐Feb 
2008  Ross Sea, Antarctica   ~ 162° to 171° E, ~77° to 78° S  McMurdo Station 

ice hole or dippers 
near shore 

Sept 2011  North Atlantic   between 37° N 71°W and 39°N 67° W  R/V Endeavor 
mother tucker 
trawl 

Table 1: Dates, locations and methods for collection of experimental organisms original to this study. 
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Hyperiella 
dilatica 

Hyperiid 
Ross Sea 
Antarctica 

12  0.015  0.005‐0.0869  3.79  ‐2  2  9.3    

7  0.0054  0.007‐0.0031  8.22  2  2  14.31  11.81 

Themisto 
abyssorum 

Hyperiid  North Atlantic  8  0.0715  0.037‐0.107  6.58  10     6.58  6.58 

Vibilia sp. 1  Hyperiid  ETNP 
4  0.015  0.012‐0.022  9.19  10     9.19    

9  0.017  0.015‐0.019  18.44  26  3.05  6.05  7.62 

vibilia sp. 2  Hyperiid  ETNP 
12  0.0059  0.0014‐0.0098  8.24  10     8.24    

18  0.0069  0.0012‐0.0143  21.89  20  2.66  8.7  8.47 

Phronimella 
elongata 

Hyperiid  ETNP 
5  0.021  0.006‐0.059  2.5  10     2.5    

Cranoceplalus 
sclerotious 

Hyperiid  ETNP 
8  0.004  0.0016‐0.0099  8.85  10     8.85    

8  0.063  0.0029‐0.238  6.25  20  0.705  8.87  8.86 

Streetsia sp.  Hyperiid  California   7  0.055  0.04‐0.091  3.14  5  2  4.45  4.45 

Paraphronima   Hyperiid  California   13  0.0667  0.022‐0.134  1.08  5  2  1.52  1.52 

Abyssochromeni 
plebs 

Gammarid 
Ross Sea 
Antarctica 

22  0.152  0.0161‐0.4248  1.26  ‐2  2  2.89    

21  0.177  0.023‐0.4547  1.28  0  2  2.49    

15  0.176  0.0201‐0.4311  2.05  2  2  3.72  3.03 

Epimeriid sp.  Gammarid 
Ross Sea 
Antarctica 

15  0.04  0.0138‐0.0658  3.03  ‐2  2  6.95    

7  0.042  0.0157‐0.0814  4.19  2  2  7.29  7.12 
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Table 2. Experimental specimens original to this study, including samples sizes, temperature at which experiments were conducted, 
and corrected metabolic rates. MO2=metabolic rate. ETNP= Eastern Tropical North Pacific. Q10 is the temperature coefficient that  
quantifies the factorial change in metabolic rate with 10°C change in temperature.  
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Chuneola  
spinifera 

Physosomata  n 
Western 
Subarctic 
Pacific 

150  1  1.52  0.19  1.5  0.21  0.3  0.34  0.38  0.53 
Ikeda 
2012 

Cranocaplalus 
scleroticus 

Physocephalata  y  ETNP  50*  16  0.0335 
Table 
2 

Table 
2 

Table 
2 

Table 
2 

8.86  3.79  5.59  this study 

Cyllopus lucasii  Physocephalata  n 
Weddell 
Sea 

Antarctica 
0  16  0.126  9.84  0.5  5.86  8.29  19.01  11.33  16.02 

Donnelly 
2004 

Cyllopus lucasii  Physocephalata  n 

Scotia/      
Weddell 
Sea 

Antarctica 

0  5  0.197  6.65  0.5  4.43  6.27  12.85  8.56  12.1 
Torres et 
al 1994 

Hyperia galba  Physocephalata  n 
Southern 
California 

25  6  0.055  4.86  10  2.35  3.33  4.86  2.35  3.33 
Childress, 

1975 

Hyperiella 
antarctica 

Physocephalata  n 
Weddell 
Sea 

Antarctica 
0  1  0.0672  2.99  0.5  1.52  2.15  5.78  2.94  4.16 

Donnelly 
2004 
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Hyperiella dilatica  Physocephalata  n 
Ross Sea 
Antarctica 

0  19  0.0102 
Table 
2 

10  3.75  5.3  11.8  3.75  5.53  this study 

Hyperoche 
medusarum 

Physocephalata  n 
Weddell 
Sea 

Antarctica 
0  1  0.0621  7.46  0.5  3.72  5.27  14.41  7.19  10.17 

Donnelly 
2004 

Lanceola loveni  Physosomata  n 
Western 
Subarctic 
Pacific 

500  4  0.0628  0.38  2  0.19  0.27  0.65  0.33  0.46 
Ikeda 
2012 

megalanceoloides 
remipes 

Physosomata  n 
Weddell 
Sea 

Antarctica 
150  1  0.4189  1.88  0.5  1.51  2.13  3.62  2.91  4.12 

Donnelly 
2004 

megalanceoloides 
stephensemi 

Physosomata  n 
Weddell 
Sea 

Antarctica 
150  1  4.9971  0.36  0.5  0.53  0.75  0.69  1.03  1.46 

Donnelly 
2004 

Oxychephalus 
clausi 

physocephalata  y  Coral Sea 
0‐25 
* 

1  0.0641  18.52  27.5  9.32  13.18  5.51  2.77  3.92 
Ikeda and 
McKinnon 

2012 

Paraphronima  Physosomata  y 
California 
coast 

50 *  13  0.0667  1.08  5  0.55  0.77  1.52  0.77  1.14  this study 

Phronima 
sedentaria 

Physocephalata  y 
North 
Atlantic 

0‐
25* 

4  0.278  3.46  10  2.51  3.55  3.46     4.98 
Elder and 
Seibel in 
Prep 

Phronima 
sedentaria 

Physocephalata  y 
Gulf of 

California 
0‐
25* 

49  0.274  2.99  20  2.16  3.06  1.67     2.7 
Elder and 
Seibel in 
Prep 

Phronima 
sedentaria 

Physocephalata  y  ETNP 
0‐
25* 

39  0.288  3.65  20  2.67  3.78  1.99     2.65 
Elder and 
Seibel in 
Prep 

Phronimella 
elongata 

Physocephalata  y  ETNP 
0‐
25* 

5  0.021  2.5  10  0.95  1.35  2.5  0.95  1.4  this study 
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Primno abyssalis  Physocephalata  n 
South 

Japan Sea 
100^  7  0.0746  2.9  0.5  1.52  2.14  5.6  2.93  4.14 

Ikeda 
Hirakawa 
1998 

Primno abyssalis  Physocephalata  n 
Western 
Subarctic 
Pacific 

100^  17  0.0287  8.35  5  3.44  4.86  11.81  4.86  6.87 
yamada 
and Ikeda 
2005 

Primno macropa  Physocephalata  n 
Weddell 
Sea 

Antarctica 
0  1  0.0653  11.88  0.5  6  8.49  22.94  11.6  16.4 

Donnelly 
2004 

Primno macropa  Physocephalata  n 

Scotia/ 

0  6  0.0129  6.61  0.5  2.23  3.15  12.77  4.3  6.09 
Torres et 
al 1994 

Weddell 
Sea 

Antarctica 

Scina borealis  Physosomata  n 
Western 
Subarctic 
Pacific 

200*  1  0.0809  0.87  2  0.46  0.65  1.51  0.81  1.14 
ikeda 
2012 

Streetsia physocephalata y 
California 
coast 

25* 7 0.055 3.14 5 1.52  2.15  4.45  2.16  3.18  this study 

Themisto 
abyssorum 

Physocephalata  n 
North 
Atlantic 

25*  8  0.0715  6.58  10  3.4  4.81  6.58  3.4  5.02  this study 

Themisto 
gaudichaudii 

Physocephalata  n 

Scotia/ 

0  2  0.314  2.41  0.5  1.8  2.55  4.66  3.49  4.93 
Torres et 
al 1994 

Weddell 
Sea 

Antarctica 

Themisto 
Japonica 

Physocephalata  n 
South 

Japan Sea 
25  8  0.0179  5.08  0.5  1.86  2.63  9.81  3.59  5.08 

Ikeda 
Hirakawa 
1998 

Themisto 
japonica 

Physocephalata  n 
Western 
Subarctic 
Pacific 

25  47  0.0135  8.3  5  2.83  4  11.74  4  5.66 
yamada 
and Ikeda 
2003 
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Themisto libellula  Physocephalata  n 
Barents 
sea 

30~  11  0.0169  6.67  ‐0.1  2.41  3.4  12.89  4.65  6.57 
Ikeda and 
Skjoldal 
1989 

Themisto pacifica  Physocephalata  n 
Western 
Subarctic 
Pacific 

25  22  0.0051  10.35  5  2.77  3.92  14.64  3.92  5.54 
yamada 
and Ikeda 
2003 

Vibilia sp. 1  Physocephalata  n  ETNP  0*  13  0.016 
Table 
2 

Table 
2 

Table 
2 

Table 
2 

7.62  2.71  4  this study 

Vibilia sp. 2  Physocephalata  n  ETNP  0*  30  0.0064 
Table 
2 

Table 
2 

Table 
2 

Table 
2 

8.47  2.4  3.53  this study 

Vibilia stebbingi  Physocephalata  n 
Weddell 
Sea 

Antarctica 
0  17  0.0485  15.05  0.5  7.06  9.99  29.07  13.64  19.3 

Donnelly 
2004 

Vibilia stebbingi  Physocephalata  n 

Scotia/ 
Weddell 
Sea 

Antarctica 

0  2  0.117  6.61  0.5  3.87  5.47  12.77  7.47  10.56 
Torres et 
al 1994 

Table 3: Hyperiid amphipod data collected from the literature and this study normalized to a common temperature (10°C) and body 
mass (0.25g).  11 of the 33 species are original to this study (see table 2).  Clade is based on molecular phyolgenetic analysis from 
Hurt et al. 2013.  MDO is minimum depth of occurrence, which is provided in the reference study, or other sources as noted. * 
distribution from Shulenberger 1977, + distribution from Vinogradov et al. 1996, ~ distribution from Coyle and Pinchuk 2005.  When 
specific distribution values were not available for that species, the MDO is based on known distribution of other species in the same 
genus based on the cited reference. Q10 is the temperature coefficient that  quantifies the factorial change in metabolic rate with 10°C 
change in temperature. Q10 from table 2 was used, or literature values when available, otherwise a Q10 of 2 was assumed. A scaling 
coefficient of -.25 was assumed, except for the scaling of  the genus Phronima, for those rates the regression equations from  were 
used: MO2=3.92M(-0.263) in the North Atlantic, MO2=1.907M(-0.25) in the Gulf of California and MO2=2.45M(-0.208) in the Eastern 
Tropical North Pacific (Elder and Seibel in Prep).  
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Table 4: 

Species 
Collection 
location 

MDO 
(m) 

n 
Mean 
wet 

Mass (g) 

Mean 
MO2 

umol g‐1 
hr‐1 

Temp °C 
MO2 

corrected 
to 10°C 

a for 
scaling 

scaled to 
.25g 

ref 

Abyssochromeni 
plebs 

Ross Sea 
Antarctica  0  36  0.1680  Table 2  Table 2  3.03  1.94  2.75  This study 

Cyphocaris 
challengeri 

western 
subarctic pacific  30~  38  0.0288  3.79  5  5.36  2.21  3.12 

Yamada and ieka 
2003 

Cyphocaris faueri 
Scotia/Weddell 
Sea antarctica  40  8  1.2430  2.46  0.5  4.75  5.02  7.10  Torres et al 1994 

Cyphocaris richardi 
Scotia/Weddell 
Sea antarctica  100  5  0.5050  4.15  0.5  8.02  6.76  9.56  Torres et al 1994 

Cyphocaris sp. 
western 

subarctic pacific  nd  1  0.0583  2.83  3  4.60  2.26  3.19  Ikeda 2012 

Epimeriid  
Ross Sea 
Antarctica  0  22  0.0410  Table 2  Table 2  7.12  3.20  4.53  This study 

Euandania 
gigantea 

Scotia/Weddell 
Sea antarctica  1000  1  5.8130  0.67  0.5  1.29  2.01  2.84  Torres et al 1994 

Eusirus antarticus 
Scotia/Weddell 
Sea antarctica  0  26  0.0470  6.12  0.5  11.82  5.50  7.79  Torres et al 1994 

Eusirus microps 
Scotia/Weddell 
Sea antarctica  0  1  0.6990  3.71  0.5  7.17  6.55  9.27  Torres et al 1994 

Eusirus 
propeperdentatus 

Scotia/Weddell 
Sea antarctica  0  2  0.0730  3.67  0.5  7.09  3.69  5.21  Torres et al 1994 

Paracallisoma 
coecus 

Southern 
California  500  1  0.2030  1.97  5.5  2.69  1.81  2.55  Childress, 1975 

Parandania boeki 
Scotia/Weddell 
Sea antarctica  500  6  0.4650  1.83  0.5  3.54  2.92  4.13  Torres et al 1994 

Table 4. Gammarid amphipod data collected from the literature and orignial to this study. 2 of the 12 species are original to this study 
(see Table 2). Abbreviations are as in Table 3. ~ distribution from Coyle and Pinchuk 2005 .  
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Figure 1. Amphipods from this study. A: Streetsie sp., B: Themisto abyssorum, C: 
Phronimella elongata, D. Paraphronima, E. Cranocaplalu scleroticuss, F. Vibilia 
sp.1, G. Absysochromeni plebs, H. Phronima sedentaria .Table 2 has further details on 
collection location etc. All photos by L. Elder. 
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Figure 2. MO2 for hyperiid amphipods from this study by weight on a log scale. All 
rates were adjusted to 10C using calculated Q10s or assuming a Q10 of 2 where 
necessary (see table 2). Regression equations for individual species are as follows: 
Hyperiella black upside down triangles, MO2=0.0936M-0.93, r2=0.12, Themisto, open 
square, MO2=0.144M-1.38, r2=0.54, Vibilia sp. 2 gray open circle, MO2=2.911M-0.199, 
r2=0.001, Phronima sedentaria, black triangle, MO2=1.28M-0.21, r2=0.14, Phronimella 
plus sign, MO2=0.122M-0.67, r2=0.83, Paraphronima, x, MO2=0.429M-0.42, r2=0.27, 
Vibilia sp. 1, open diamond, MO2=0.13M-0.75, r2=0.76, Streetsia sp., gray square, 
MO2=0.639M-0.64,r2=0.1, Cranocaplalus scleroticus, black square, MO2=5.24M-

0.1,r2=0.15. The regression equation for all hyperiid amphipods from this study was 
significant. Iit is: MO2=1.1074M-0.38, r2=0.54. 
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Figure 3: MO2 for pelagic hyperiid amphipods compared to minimum depth of 
occurrence (MDO) plotted on a semi log scale.  MO2 was scaled to a common weight 
of  0.25g and a common temperature of 10°C.  Each point is the mean for one species 
of amphipod (see table 3 for raw data). There is a significant decline in MO2 with 
increasing depth of MDO (F(1,31)=7.84;p<0.0087).  The gray line is for pelagic 
crustaceans from Childress (1975), the regression equation for that line is  
MO2=23.02MDO-0.59.   The black regression line is for hyperiid amphipods in this 
study, regression equation: MO2=7.22MDO-0.29, r20.28. Top and bottom dotted lines 
are the 95% confidence limits(cl) for  the hyperiid amphipod regression. The 
regression equation for the lower cl is MO2=5.649MDO-0.31.  The regression equation 
for the upper cl is MO2=8.901MDO-0.31. 
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Figure 4: Pelagic hyperiid amphipod mean scaled metabolic rate (MO2) in µmol 02 g-1 
hr-1 by minimum depth of occurrence (MDO) for species living at 150m and below 
versus species living above 100m. Specimens with a MDO of 150m or deeper had a 
significantly lower MO2 than species with a shallow MDO: 
ANOVA:F(1,31)=7.46,p<.0087.  The mean rate for shallow specimens was 7.27±0.85 
µmol 02 g-1 hr-1, n=28. The mean MO2 for deep specimens was 1.54±0.67 µmol 02 g-1 
hr-1, n=5. 



  

127 
 

0.1

1

10

100

0.001 0.01 0.1 1 10

M
O

2
 u

m
o

l g
-1

 h
r-1

Mass (g)
 

Figure 5: Mean MO2 values of hyperiid amphipods in µmol O2 g-1 hr-1 comparing 
Physocephalata that are non transparent (closed black circles) or transparent (open 
black circles) and Physosomata that are non transparent (closed gray diamonds) or 
transparent (open gray diamond, one species).  All MO2s are corrected to 10°C, and 
reported on a log scale. Specimens are from both this study and literature (Table 3). 
Transparent amphipods had a significantly lower MO2 than non-transparent species in 
the clade Physocephalata (ANOVA: F(1,26)=13.16; p<0.0012).  Non-transparent 
Physocephalata had a sample size of 20, and the mean MO2 was 12.00±1.38 µmol O2 
g-1 hr-1. The transparent amphipods had a sample size of 8 and a mean MO2 of 
3.74±0.88 µmol O2 g

-1 hr-1.  Physosomata had a significantly lower metabolic rate 
(mean 1.38±0.48 µmol O2 g

-1 hr-1, n=6) than all Physocephalata (mean 7.29±0.83, 
n=27) (ANOVA: f(1,31)=10.14, p<0.0033).     
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Figure 6. Metabolic rate of different species of the genus Themisto normalized to 10°C 
and scaled to 0.25g, on a linear scale.  Species are listed in Table 3. The linear 
regression is not significant Mo2=5.63-0.048x, R2=.09.  MO2 is not significantly 
different between specimens from cold water regions (less than 1C) and specimens 
from regions with temperature of 5C or higher (t-test: t(4)=-1.84;P<0.1617).  
Therefore, there is no metabolic cold adaptation in the genus Themisto. Table 3 has 
environmental temperatures and location for each species.  
 
 



  

129 
 

0.1

1

10

100

0.001 0.01 0.1 1

M
o

2
 u

m
o

l o
2 

g
-1

 h
r-1

Mass (g)
 

Figure 7. Comparison of metabolic rates for Antarctic gammarid amphipods with 
published regression equation from Seibel and Drazen (2007, MO2=1.9031m-0.27). All 
rates are adjusted to 10°C, as is the regression equation, which is. derived from  a 
thorough review of benthic amphipods.  Antarctic gammarids fall across this 
regression when adjusted to 10°C. Filled squares are Epimeriid sp, open circles are 
Abyssochromeni plebs.  
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