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Dynamic Correlation Functions for the One-Dimensional
XY Z Model: New Exact Results

Gerhard Müller 1 and Robert E. Shrock 2

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA
2 Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11974, USA

It is found that there exist special circumstances for which a rigorous relation between the three dynamic
structure factors Sµµ(q, ω), µ = x, y, z, at T = 0 of the one-dimensional spin-s XY Z model in a uniform
magnetic field can be derived. This relation is used to infer new exact results for Sxx(q, ω) and Syy(q, ω) of
the s = 1

2
anisotropic XY model.

We study the circumstances under which the general spin-s XY Z ferromagnet in a uniform
magnetic field, specified by the Hamiltonian

H = −
N∑
l=1

[
JxS

x
l S

x
l+1 + JyS

y
l S

y
l+1 + JzS

z
l S

z
l+1 + hSzl

]
, (1)

for Jx, Jy, Jz ≥ 0, even N and periodic boundary conditions exhibits a ground state (GS) wave-
function of the simple product type (without loss of generality we also assume Jx ≥ Jy):

|G〉 =
N⊗
l=1

|Θ, l〉,

|Θ, l〉 = Ul(Θ)|s, l〉

=
s∑

m=−s
|m, l〉D(s)

ms(cos Θ/2, sin Θ/2)

=
s∑

m=−s

√
(2s)!

(s+m)!(s−m)!
(cos Θ/2)s+m(sin Θ/2)s−m|m, l〉. (2)

Here Ul(Θ) describes a unitary transformation representing a rotation of the spin direction at the
site l by an angle Θ away from the z-axis in the xz-plane, generated by the (2s + 1)-dimensional
irreducible representation of the group SU(2) with matrix elements D(s)

ms as given above. For Θ 6= 0
such a GS is characterized by the presence of spontaneous long-range order. The order parameter
is

M = 〈Θ, l|Sl|Θ, l〉 = (s sin Θ, 0, s cos Θ). (3)

There are evidently no correlated fluctuations in this state of maximum spin ordering.
The problem of finding special cases of the Hamiltonian H for which the GS wave function |G〉

has the form (2) is equivalent to finding the circumstances under which the Hamiltonian

H̃ = U−1HU, U =
N⊗
l=1

Ul(Θ), (4)

has a GS wave function of the form

|G̃〉 = U−1|G〉 =
N⊗
l=1

|s, l〉, (5)
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with all spins aligned parallel to the z-axis. The GS energy is invariant under this transformation:

〈G|H|G〉 = 〈G̃|H̃|G̃〉 = EG. (6)

The solution of this well-defined problem is that the XY Z model (1) does indeed have a GS
wavefunction of the form (2) with [1]

cos Θ =
√

(Jy − Jz)/(Jx − Jz), (7)

and energy
EG = −s2(Jx + Jy − Jz), (8)

provided the exchange constants satisfy the constraints [2]

Jx ≥ Jy ≥ Jz, (9)

and the strength of the magnetic field is

h = hN = 2s
√

(Jx − Jz)(Jy − Jz). (10)

The transformed Hamiltonian H̃ whose GS wave function is |G̃〉 reads:

H̃ =
N∑
l=1

{
Jy(Sxl S

x
l+1 + Syl S

y
l+1) + (Jx − Jy + Jz)Szl S

z
l+1 + 2s(Jy − Jz)Szl

+
√

(Jx − Jy)(Jy − Jz)
[
Szl S

x
l+1 + Sxl S

z
l+1 − s(Sxl + Sxl+1)

]}
. (11)

Note that the presence of a ferromagnetic GS does not guarantee that the ferromagnetic spin-
wave states are also eigenstates of H or H̃. The spin-wave excitations with respect to the ferro-
magnetic state |G̃〉, for example, are characterized by the wave functions

|q̃〉 = S−q |G̃〉, S−q = N−1/2
N∑
l=1

e−iqlS−l . (12)

The condition for these states to be eigenstates of H̃ is that the second term on the right-hand
side of the following equation vanishes:[

H̃, S−q
]
|G̃〉 = ωsw(q)|G̃〉+

1
2

√
(Jx − Jy)(Jy − Jz)(1 + e−iq)N−1/2

∑
l

e−iqlS−l S
−
l+1|G̃〉, (13)

where
ωsw(q) = 2s(Jx − Jy cos q) (14)

is the dispersion predicted by the linear spin-wave analysis. For general values of Jx, Jy, Jz and h
satisfying the constraints (9) and (10), this condition is only met for q = π, for general q only in
the classical limit s→∞.

Thus the second term in (13) or, equivalently, the last term in (11) is responsible for nontrivial
features in the T = 0 dynamic structure factors defined as

Sµν(q, ω) ≡
∑
R

e−iqR

∫ +∞

−∞
dt eiωt〈Sµl (t)Sνl+R〉, (15)

in spite of the very special structure of the GS wave function. However, the fact that |G̃〉 describes
a state with all spins aligned in the z-direction implies the following general structure for the
Sµν(q, ω) of H̃ at T = 0:

Sxx(q, ω)H̃ = Syy(q, ω)H̃ =
1
4
S+−(q, ω)H̃,

Szz(q, ω)H̃ = 4π2s2δ(q)δ(ω), (16)
Sµν(q, ω)H̃ = 0 for µ 6= ν,
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where S+−(q, ω) is the Fourier transform of 〈S+
l (t)S−l+R〉 and is, in general, nontrivial. This special

structure is translated by the unitary transformation (4) into a relation between the three diagonal
structure factors Sµν(q, ω)H of the XY Z model at T = 0 and h = hN . They are all expressible in
terms of a single function, S+−(q, ω)H̃, as follows:

Sxx(q, ω)H =
1
4
S+−(q, ω)H̃ cos2 Θ + 4π2s2 sin2 Θ δ(ω) δ(q),

Sy(q, ω)H =
1
4
S+−(q, ω)H̃, (17)

Szz(q, ω)H =
1
4
S+−(q, ω)H̃ sin2 Θ + 4π2s2 cos2 Θ δ(ω) δ(q).

There exists a particular case of the XY Z model (1) for which these relations directly lead to new
nontrivial exact results: the s = 1/2 anisotropic XY model

Hγ = −J
N∑
l=1

[
(1 + γ)Sxl S

x
l+1 + (1− γ)Syl S

y
l+1

]
− h

N∑
l=1

Szl . (18)

For this model, which maps onto a system of noninteracting fermions via the Jordan-Wigner
transformation [3], the dynamic correlation function 〈Szl (t)Szl+R〉 can be expressed as a fermion
density-density correlation function [4]. The corresponding T = 0 dynamic structure factor at
h = hN = J

√
1− γ2 was recently determined in closed form [5]:

Szz(q, ω) = π2 1− γ
1 + γ

δ(q)δ(ω)

+
γ2

1− γ2

[
4J2(1− γ2) cos2(q/2)− (ω − 2J)2

]1/2[
ω − 2J sin2(q/2)

]2 + J2γ2 sin2 q

×Θ
[
4J2(1− γ2) cos2(q/2)− (ω − 2J)2

]
. (19)

In contrast, the functions 〈Sxl (t)Sxl+R〉 and 〈S
y
l (t)Syl+R〉 are represented by infinite block Toeplitz

determinants in the fermion language, i.e. quantities involving infinite products of fermion operators
[6]. The spectrum of the corresponding T = 0 dynamic structure factors Sxx(q, ω) and Syy(q, ω)
thus represent not just two-fermion excitations as is the case for Szz(q, ω) but rather the excitation
of m-fermion states with m arbitrarily large. On the other hand, the newly found relations (17)
imply that for h = hN all three dynamic structure factors are zero for values of (q, ω) outside the
range of the two-particle spectrum, i.e. for |ω−2J | > 2JhN cos(q/2). They differ from one another
(apart from the δ-function at q = ω = 0) only by an overall γ-dependent factor [7].

These peculiar properties are far from evident in the formal expressions for Sxx(q, ω) and
Syy(q, ω) in the fermion representation. In fact, expressions (5.10) of ref. [6] which are stated
to represent the two-particle contributions to Sxx(q, ω) are incompatible with our exact result
unless one assumes that there are also contributions to these functions at h = hN from m-particle
excitations with m > 2. This would imply, however, that such contributions miraculously cancel
one another for all (q, ω) outside the range of the two-particle spectrum.

Acknowledgment: The research of R.E.S. was supported in part by the National Science
Foundation under the Grant PHY-81-91l0-AOl. We have used a modified cmpj.sty style file.
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