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AMER. ZOOL., 41:1248–1257 (2001)

Evolution of Upper Jaw Protrusion Mechanisms in Elasmobranchs1

CHERYL D. WILGA,2,* ROBERT E. HUETER,† PETER C. WAINWRIGHT,‡ AND

PHILIP J. MOTTA§
*Department of Biological Sciences, University of Rhode Island, 100 Flagg Rd.,

Kingston, Rhode Island 02881
†Center for Shark Research, Mote Marine Laboratory, 1600 Ken Thompson Parkway,

Sarasota, Florida 34236
‡Section of Evolution and Ecology, University of California, One Shields Ave., Davis, California 95616

§Department of Biology, University of South Florida, Tampa, Florida 33620

SYNOPSIS. Upper jaw protrusion is a prominent component of the feeding mech-
anism in most elasmobranchs and has received considerable attention over the
years. In this paper, we review what is known of muscle activity during prey
capture in elasmobranchs, particularly that of upper jaw protrusion, and evaluate
the extent to which functional modifications have evolved through changes in anat-
omy or patterns of muscle activity. To date, motor activity during feeding has been
documented in only four species of elasmobranchs, although they represent the
three major elasmobranch groups: Galea (typical sharks); Squalea (dogfish
sharks); and Batoidea (skates and rays). Our efforts show that while muscles in-
volved in cranial elevation and lower jaw depression and elevation show a con-
served pattern of motor activity and function across species, other muscles show
a more variable history. Our observations of elasmobranch upper jaw protrusion
mechanisms suggest a mosaic of character changes over the course of evolution
that involve anatomical changes in all cases and modifications of muscle activation
patterns in some cases. During the evolution of feeding mechanisms of elasmo-
branchs, there have been two structural changes incorporating a pre-existing mo-
tor pattern to yield an unmodified kinematic profile, the original preorbitalis and
the descendent preorbitalis. One additional instance of structural modification is
accompanied by an alteration in the motor pattern leading to a change in move-
ment pattern, the levator palatoquadrati.

INTRODUCTION

Understanding how musculoskeletal sys-
tems have been modified in the course of
animal history is a central theme in func-
tional morphology. Behaviors of interest to
functional morphologists, such as feeding,
can often be characterized by a common ki-
nematic pattern. Evolutionary changes in a
selected kinematic pattern may occur by
several pathways: as a result of anatomical
alterations in the structural elements that
perform them, by changes in the activation
pattern of muscles that operate the skeletal
system, or by changes at both of these lev-
els (Lauder, 1991; Reilly and Lauder, 1992;
Lauder and Shaffer, 1993; Smith, 1994b;

1 From the Symposium Motor Control of Vertebrate
Feeding: Function and Evolution presented at the An-
nual Meeting of the Society for Integrative and Com-
parative Biology, 3–7 January 2001, at Chicago, Illinois.

2 E-mail: cwilga@uri.edu

Wainwright and Turingan, 1997; Friel and
Wainwright, 1998, 1999; Wilga et al.,
2000). Functional studies on the head of
bony fishes and salamanders suggest that
differences in feeding behavior most fre-
quently result from modifications in the
musculoskeletal anatomy and that the gen-
eral sequence of motor activity tends to be
phylogenetically conserved (Shaffer and
Lauder, 1985a, b; Wainwright and Lauder,
1986; Sanderson, 1988; Wainwright, 1989;
Wainwright et al., 1989; Westneat and
Wainwright, 1989; Lauder and Shaffer,
1993; Friel and Wainwright, 1998; Smith,
1994a; Wilga et al., 2000). However, other
studies have shown that details of the motor
pattern, such as intensity and specific tim-
ing of muscle activity, may differ among
species and that these changes can be a cen-
tral component of behavioral evolution
(Liem, 1979, 1989; Lauder, 1983; Friel and
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1249EVOLUTION OF JAW PROTRUSION

Wainwright, 1998, 1999). Given these gen-
eralities from research on bony fishes and
some salamanders, we review recent studies
on the evolution of feeding systems in
Chondrichthyes, the sister group to all other
living gnathostome vertebrates.

Upper jaw protrusion in elasmobranchs
provides an ideal system for studying the
evolution and function of a musculoskeletal
system because it is an important element
of feeding behavior in most species (Motta
and Wilga, 2001) and because the anatomy
of the jaw musculature has a rich history.
Physical subdivision and structural alter-
ation have been implicated in the evolution
of the muscles involved in protruding the
upper jaw in elasmobranchs (Daniel, 1934;
Moss, 1972; Compagno, 1988; Shirai,
1996). Upper jaw protrusion in elasmo-
branchs occurs when the palatoquadrate
cartilage moves anteroventrally away from
the cranium as the jaws close on the prey.
Numerous functions for protrusion of the
upper jaw in sharks have been proposed:
more efficient biting and manipulation of
the prey; gouging of the upper jaw into
large prey; a versatile yet hydrodynamic
subterminal mouth; reorienting of the teeth
for increased grasping ability; nearly si-
multaneous closure of the upper and lower
jaws; greater speed of jaw closure (Spring-
er, 1961; Alexander, 1967; Moss, 1972,
1977; Tricas and McCosker, 1984; Frazzetta
and Prange, 1987; Frazzetta, 1994; Motta et
al., 1997; Wilga and Motta, 1998a, b, 2000;
Pretlow-Edmonds, 1999).

Although the mechanics of feeding and
upper jaw protrusion have been studied in
only a few elasmobranch species, several
different mechanisms have been described.
These differences have been attributed
(Moss, 1972, 1977; Motta and Wilga, 1995,
1999; Wilga and Motta, 1998a, b, 2000) to
differences among taxa in cranial develop-
ment and myology (Vetter, 1874, 1878;
Tiesing, 1895; Marion, 1905; Luther, 1909;
Allis 1917, 1923; Daniel, 1934; Edgeworth,
1935; Lightoller, 1939; Marinelli and Stren-
ger, 1959; Nobiling, 1977; Compagno,
1988) and have had a profound effect on
the mechanics of jaw protrusion in sharks.
In this paper, we review what is known of
muscle activity during feeding, particularly

that associated with upper jaw protrusion,
and evaluate the extent to which evolution-
ary modifications have come about through
changes in anatomy or patterns of muscle
activation.

GENERAL FEATURES OF SHARK FEEDING

Sharks employ a variety of mechanisms
for capturing prey: biting, ram feeding, and
suction feeding. During biting, sharks open
and close the jaws directly onto large prey,
usually gouging out a chunk of the prey in
the process, as typified in the white shark,
Carcharodon carcharias (Galea: Lamnifor-
mes) (Tricas and McCosker, 1984). Other
sharks use a ram mechanism in which the
jaws are opened widely as the shark over-
swims and engulfs the prey, such as ob-
served in bonnethead (Sphyrna tiburo),
swell (Cephaloscyllium ventriosum), black-
nose (Carcharhinus acronotus), blacktip
(Carcharhinus limbatus), lemon (Nega-
prion brevirostris), Caribbean reef sharks
(Carcharhinus perezi) (all Galea) (Frazzetta
and Prange, 1987; Motta et al., 1997; Fer-
ry-Graham, 1997, 1998; Wilga and Motta,
2000; Motta and Wilga, 2001). Still others
use suction to draw the prey into the mouth,
including nurse sharks (Ginglymostoma cir-
ratum), wobbegongs (Orectolobus macu-
lates), spiny dogfish (Squalus acanthias),
Atlantic guitarfish (Rhinobatos lentigino-
sus), leopard sharks (Triakis semifasciata),
horn sharks (Heterodontus francisci), and
even whale sharks (Rhincodon typus) (Wu,
1994; Clark and Nelson, 1997; Ferry-
Graham, 1998; Wilga and Motta, 1998a, b;
Pretlow-Edmonds, 1999; unpublished data,
P.J.M.; Robinson, 1999). Many elasmo-
branchs may use a combination of these be-
haviors, such as the spiny dogfish, S. acan-
thias, which uses all three mechanisms var-
iably to capture prey depending on prey
size (Wilga, 1997, 1998a). However, exist-
ing data on motor activity during feeding in
elasmobranchs are insufficient to evaluate
how the motor pattern is modified for use
in different capture mechanisms.

Detailed studies of cranial functional
morphology have recently been conducted
utilizing electromyography and high-speed
video on four elasmobranch species that
were sampled from major groups of Chon-
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1250 C. D. WILGA ET AL.

FIG. 1. Muscles involved in cranial and jaw move-
ments during feeding in elasmobranchs. Lateral views
of A) spiny dogfish, Squalus acanthias; B) Atlantic
guitarfish, Rhinobatos lentiginosus; C) bonnethead
shark, Sphyrna tiburo (also representative of lemon
sharks, Negaprion brevirostris) (after Wilga and Mot-
ta, 1998a, b, 2000). Gray arrows indicate muscle ac-
tivity during upper jaw protrusion and lower jaw ele-
vation. Note that the quadratomandibularis is also ac-
tive during upper jaw protrusion. CA, coracoarcualis;
CH, coracohyoideus; CM, coracomandibularis; CR,
cranium; EP, epaxialis; HY, hyoid apparatus; LH, le-
vator hyomandibularis; LP, levator palatoquadrati;
MD, mandible or lower jaw; PO, preorbitalis; POD,
dorsal preorbitalis; POL, lateral preorbitalis; POM,
medial preorbitalis; POV, ventral preorbitalis; PQ, pal-
atoquadrate or upper jaw; QM, quadratomandibularis
medial implant.

drichthyes: lemon sharks, Negaprion bre-
virostris (Galea: Carcharhiniformes); bon-
nethead sharks, Sphyrna tiburo (Galea: Car-
charhiniformes); spiny dogfish, Squalus
acanthias (Squalea: Squaliformes); and At-
lantic guitarfish, Rhinobatos lentiginosus
(Batoidea: Rhinobatoidei) (Motta et al.,
1997; Wilga and Motta, 1998a, b, 2000).
Schematic diagrams illustrating the mech-
anisms for head and jaw kinematics in these
species are shown in Figure 1. The muscles
involved with cranial elevation and both
lower jaw depression and elevation show a
similar motor pattern in the four species
during feeding, while there is greater diver-
sity in the motor control of muscles con-
trolling upper jaw protrusion and retraction.
The expansive phase of mouth opening is
characterized by activity in the coracom-
andibularis and epaxialis muscles that func-
tion to depress the lower jaw and elevate
the cranium respectively. In the compres-
sive phase, lower jaw elevation by the
quadratomandibularis muscle and upper
jaw protrusion by the preorbitalis muscle
adducts the jaws. Peak hyoid depression,
effected by the coracohyoideus and cora-
coarcualis muscles, is attained after peak
gape. The jaws are then returned to their
resting position in the recovery phase by
activation of the levator hyomandibularis
muscle. This anterior-to-posterior timing of
head and jaw movements during feeding is
thought to generate pressure changes di-
recting the flow of water into the mouth and
occurs widely in aquatic feeding vertebrates
(Tricas and McCosker, 1984; Lauder, 1985;
Bemis and Lauder, 1986; Frazzetta and
Prange, 1987; Reilly and Lauder, 1992; Fer-
ry-Graham, 1997; Lauder and Shaffer,
1993).

UPPER JAW PROTRUSION

Several mechanisms for protruding the
upper jaw have been described in elasmo-
branchs, though most species exhibit only
one or two mechanisms. When the details
of protrusion are mapped onto a phylogeny
it becomes clear that there have been sev-
eral structural modifications in the history
of elasmobranch jaw protrusion mecha-
nisms (e.g., Wilga et al., 2000). Our inves-
tigations suggest that action of the preor-

bitalis muscle represents the ancestral pro-
trusion mechanism (PO Fig. 1; Wilga and
Motta, 1998a, b, 2000), although this mus-
cle is subdivided in some lineages. In these
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1251EVOLUTION OF JAW PROTRUSION

latter groups the preorbitalis (ventral) re-
tains the function of protruding the upper
jaw, but the descendent muscle (dorsal
preorbitalis) undergoes a change in inser-
tion and retains the motor pattern and func-
tion of the undivided muscle. In contrast, a
shift in the origin of the levator palatoquad-
rati muscle has been accompanied by a
change in motor pattern and a change in
function in carcharhinids (Motta et al.,
1997; Wilga and Motta, 2000). Finally, the
quadratomandibularis muscle may effect
upper jaw protrusion by adducting the up-
per and lower jaws.

The ancestral protrusion mechanism

Basal sharks have a single undivided
preorbitalis muscle, homologous to the ven-
tral preorbitalis muscle, which extends from
the nasal capsule to the quadratomandibu-
laris muscle (Marion, 1905; Daniel, 1934;
Compagno, 1977, 1988; Shirai, 1996). This
muscle effects protrusion by pulling the
posterior region of the upper jaw anteriorly
causing the anterior region to slide ventrally
down a vertical groove in the cranium
(Motta et al., 1997; Wilga and Motta, 2000)
(PO and POV Fig. 1). This role of the
preorbitalis muscle in protruding the upper
jaw is indicated by motor activity recorded
simultaneously with video during feeding
in Squalus acanthias (single preorbitalis),
Negaprion brevirostris (ventral preorbital-
is), and Sphyrna tiburo (ventral preorbital-
is) (Motta et al., 1997; Wilga and Motta,
1998a, 2000). Character optimization sug-
gests that the single undivided preorbitalis
muscle is the ancestral protrusion mecha-
nism in elasmobranchs (Fig. 3, #1; Motta
et al., 1997; Wilga and Motta, 1998a, b,
2000). If so, then physical subdivision of
this muscle into dorsal and ventral divisions
did not alter the ancestral function and mo-
tor pattern. The ability to protrude the upper
jaw during feeding has been observed in
most elasmobranchs, including species be-
longing to such basal groups as hexanchids
(Wilga, 1997; Motta and Wilga, 2001). Re-
cent phylogenetic hypotheses place chla-
mydoselachiform, hexanchiform, and
squaliform sharks as basal elasmobranch
groups (Compagno, 1973, 1977; De Car-
valho, 1996; Shirai, 1996). These groups all

possess a single preorbitalis muscle that is
similar in morphology to the ventral divi-
sion in those with subdivided muscles, i.e.,
extending between the nasal capsule and
palatoquadrate.

In contrast to the ventral preorbitalis, the
lateral preorbitalis muscle, which is analo-
gous (homology has not been determined
yet) to the ventral preorbitalis of sharks, in
R. lentiginosus may function to elevate the
lower jaw (Figs. 1, 2). The lateral preorbi-
talis inserts directly onto the mandible from
the nasal region and contraction is believed
to elevate the relatively lighter lower jaw
rather than to depress the heavier cranium
(Wilga and Motta, 1998b). The lateral
preorbitalis is active during jaw closing in
R. lentiginosus, a phase in which upper jaw
protrusion and lower jaw elevation occur si-
multaneously (Fig. 2). However, it is un-
likely that the upper jaw is protruded by the
lateral preorbitalis since batoids lack an ar-
ticulation between the upper jaw and cra-
nium that would force the upper jaw to
move along the cranium as is seen in
sharks. Furthermore, batoids protrude the
upper jaw directly ventrally rather than an-
teroventrally as in sharks.

A novel protrusion mechanism

The preorbitalis muscle is physically sub-
divided in carcharhiniform sharks with the
ventral muscle retaining the original mor-
phology and function while the dorsal mus-
cle has a modified insertion (Moss, 1972;
Compagno, 1988) but retains the motor pat-
tern and function of protruding the upper
jaw (Fig. 3, black square). The dorsal preor-
bitalis extends from the quadratomandibu-
laris muscle and inserts onto the upper jaw
assisting protrusion by pulling the upper
jaw ventrally away from the cranium as the
ventral preorbitalis pulls the upper jaw an-
teriorly causing it to slide ventrally along a
groove in the cranium (Motta et al., 1997;
Wilga and Motta, 2000) (Fig. 1). Accord-
ingly, the dorsal preorbitalis muscle is ac-
tive during upper jaw protrusion in N. bre-
virostris and S. tiburo (Motta et al., 1997;
Wilga and Motta, 2000). The dorsal preor-
bitalis muscle represents a second mecha-
nism for protruding the upper jaw in car-
charhiniform sharks and is considered a de-
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1252 C. D. WILGA ET AL.

FIG. 2. Motor patterns during feeding in A) a spiny dogfish, Squalus acanthias suction feeding; B) an Atlantic
guitarfish, Rhinobatos lentiginosus suction feeding; and C), a bonnethead shark, Sphyrna tiburo ram feeding.
Lemon sharks Negaprion brevirostris are similar to C. Numbered dotted lines indicate 1) the start of the ex-
pansive phase (head elevation, lower jaw and hyoid depression), 2) the start of the compressive phase (lower
jaw elevation and upper jaw protrusion), 3) the start of the recovery phase (jaw retraction), and 4) complete jaw
closure respectively. Outline shows a representative sequences corresponding to the numbered dotted lines during
ram feeding in S. tiburo. Black bars indicate 200 msec. In N. brevirostris, the POD is active during upper jaw
protrusion similar to POV. (after Motta et al., 1997; Wilga and Motta, 1998a, b, 2000). Abbreviations as in
Figure 1. DH, depressor hyomandibularis, QMA, quadratomandibularis anterior implant, QMD, quadratoman-
dibularis, dorsal implant.

rived characteristic of the order (Moss,
1972; Compagno, 1988).

A modified protrusion mechanism

The ancestral carcharhiniform function
of the levator palatoquadrati muscle, esti-
mated by reconstructing trait history in the
light of phylogenetic hypotheses (Nakaya,
1975; Compagno, 1988; Shirai, 1996), is to
elevate the upper jaw. A dorsoventrally ori-
ented levator palatoquadrati, originating
from the postorbital region and inserting
onto the posterior palatoquadrate is the an-
cestral condition, an arrangement present in
batoids, squalean and lamniform sharks
(Marion, 1905; Luther, 1909; Edgeworth,
1935; Moss, 1972, 1977; Nakaya, 1975;
Compagno, 1988; Shirai, 1996) (Fig. 4, #1).
In two squalean elasmobranchs, S. acan-
thias and R. lentiginosus, motor activity in

the levator palatoquadrati occurs during re-
traction of the upper jaw but never during
protrusion of the upper jaw (Fig. 2) (Wilga
and Motta, 1998a, b). This indicates that
the levator palatoquadrati functions in ele-
vation of the upper jaw in elasmobranchs
with the ancestral morphology of this mus-
cle (Fig. 4, gray squares).

Carcharhinid sharks possess a third
mechanism for upper jaw protrusion that in-
volves modification of the levator palato-
quadrati muscle (Nakaya, 1975; Compagno,
1988). The origin of the levator palatoquad-
rati has shifted to the antorbital and supra-
orbital region of the cranium such that it is
now well anterior to the insertion on the
posterior end of the palatoquadrati and re-
sults in a more horizontal orientation of the
muscle, compared to the more vertical ori-
entation of the general condition (Fig. 1, A,
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1253EVOLUTION OF JAW PROTRUSION

FIG. 3. Elasmobranch cladogram after Shirai (1996) with morphology and motor activity of the ventral preor-
bitalis muscle mapped onto it according to Wiley et al. (1991). Black dots indicate the base of Galea, Squalea,
and Batoidea. Numbered boxes indicate morphological differences: 1, anteroposterior orientation, inserts on
quadratomandibularis in sharks, lower jaw in batoids; 2, dorsoventral orientation, inserts on lower jaw; 3, ad-
ditional dorsal division in anteroposterior orientation, inserts on quadratomandibularis; 4, muscle absent. Colored
boxes indicate function: gray, ventral preorbitalis active during upper jaw protrusion; black, dorsal preorbitalis
active during upper jaw protrusion. Since upper jaw protrusion and lower jaw elevation occur at the same time
during jaw closure, it is unknown which kinematic event the preorbitalis mediates in groups with morphology
2 and 4. Species with kinematic and electromyographic data used in this analysis are marked by an asterisk
indicating the group to which the species belongs and the number of species examined per group.

B vs. C) (Nakaya, 1975; Compagno, 1988;
Shirai, 1996). This progressive shift in ori-
entation of the levator palatoquadrati mus-
cle within sharks of the family carcharhin-
idae has altered the function (Nakaya, 1975;
Compagno, 1988; Wilga, 1997; Wilga and
Motta, 1998a, b). The levator palatoquad-
rati muscle is active during upper jaw pro-
trusion in the carcharhinid sharks N. bre-
virostris and S. tiburo (Fig. 2c; Fig. 4, black
square) (Motta et al., 1997; Wilga and Mot-
ta, 2000). The role of the levator palato-
quadrati muscle appears to be protrusion of
the upper jaw in some carcharhinid sharks
and elevation of the upper jaw in other elas-
mobranchs, strikingly different functions.
The levator palatoquadrati muscle has un-
dergone a morphological transformation
that results in an alteration in function. Ac-
cordingly, this transformation from the an-
cestral to the derived condition can be
traced among carcharhinid taxa (Nakaya,
1975). However, much work needs to be
done in order to determine at what morpho-

logical level this functional transformation
took place among carcharhiniform sharks.

The jaw adductor as a protrusion
mechanism

The quadratomandibularis extends be-
tween the palatoquadrate and mandible and
may assist in protruding the upper jaw in
all elasmobranchs. During development in
Scyllium and Heterodontus the preorbitalis
muscle separates from the anterior edge of
the presumptive quadratomandibularis and
extends anteriorly (Edgeworth, 1935). To-
gether these two muscles form a functional
unit called the adductor mandibulae com-
plex (Edgeworth, 1935; Lightoller, 1939).
Thus, protrusion of the upper jaw by the
preorbitalis muscle may be developmental-
ly and functionally linked to the quadrato-
mandibularis. Supporting this, adduction of
the jaws, upper jaw protrusion, and quad-
ratomandibularis and preorbitalis activity
occur during jaw closure in Squalus acan-
thias, N. brevirostris, R. lentiginosus and
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1254 C. D. WILGA ET AL.

FIG. 4. Elasmobranch cladogram after Shirai (1996) with morphology and motor pattern of the levator pala-
toquadrati muscle mapped onto it according to Wiley et al. (1991). Black dots indicate the base of Galea,
Squalea, and Batoidea. Numbered boxes indicate morphological differences: 1, dorsoventral orientation, post-
orbital cranium to posterior upper jaw; 2, anteroposterior orientation, postorbital cranium to anterior upper jaw;
3, anteroposterior orientation, antorbital cranium to posterior upper jaw. Colored boxes indicate function: gray,
muscle active during upper jaw retraction; black, muscle active during upper jaw protrusion. Species with
kinematic and electromyographic data used in this analysis are marked by an asterisk indicating the group in
which the species belongs and the number of species examined per group.

Sphyrna tiburo (Fig. 2) (Motta et al., 1997;
Wilga and Motta, 1998a, b, 2000). When
the quadratomandibularis muscle contracts,
it adducts the upper and lower jaws, and in
doing so pulls the upper jaw away from the
cranium towards the elevating lower jaw,
effectively protruding it (Fig. 1). This
mechanism would function most effectively
if the lower jaw was held fairly stationary
against a relatively large prey item while
the unobstructed upper jaw is protruded
(Moss, 1972).

Evolution of protrusion mechanisms

Mapping of morphological and function-
al characteristics onto an existing phyloge-
ny can help to shed light on how changes
in upper jaw protrusion may have evolved
(Figs. 3, 4). Our criteria for concluding
whether motor patterns are different is
based on major qualitative differences con-
cerning the synchrony of motor activity
with specific kinematic events. For exam-
ple, the onset of upper jaw protrusion and
upper jaw retraction are distinct in time and
so differences in motor activity and corre-

sponding kinematic event are easily detect-
ed.

A single undivided preorbitalis muscle or
ventral preorbitalis in taxa with a subdivid-
ed muscle is hypothesized to function as the
ancestral upper jaw protrusion mechanism
since it is possessed by all elasmobranch
taxa. The quadratomandibularis muscle
may have a greater role in assisting upper
jaw protrusion in those taxa possessing a
single preorbitalis, particularly in those
with a relatively small preorbitalis muscle,
such as Chlamydoselachus and hexanchi-
form sharks (Daniel, 1934; Smith, 1937).
Although major structural changes have
taken place in the preorbitalis muscle in
elasmobranchs, the motor pattern is similar
in the limited taxa that have been studied
thus far, and in some batoids it has taken
on the new function of lower jaw elevation.
A second mechanism for upper jaw protru-
sion evolved in carcharhiniform sharks, in-
volving the origin of a new muscle (dorsal
preorbitalis) through subdivision of the
preorbitalis muscle. The origin of this novel
muscle and mechanism occurs while retain-
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1255EVOLUTION OF JAW PROTRUSION

ing the original preorbitalis (ventral) and its
motor pattern. Some carcharhinid sharks
acquired yet another mechanism for upper
jaw protrusion through modification of the
attachments of an existing muscle, the le-
vator palatoquadrati, while retaining func-
tion in both preorbitalis mechanisms. It is
unknown at what phylogenetic position this
functional transformation took place within
carcharhiniform sharks. In the latter case
the structural change in morphology of the
levator palatoquadrati muscle was accom-
panied by a radical alteration in motor pat-
tern and function to that of jaw protrusion
in some carcharhinid sharks from that of
jaw elevation in other elasmobranchs (Mot-
ta et al., 1997; Wilga and Motta, 1998a, b,
2000).

Motor activity patterns during feeding in
bony fishes and salamanders tend to show
evolutionarily conserved patterns despite
considerable morphological divergence
(Sanderson, 1988; Wainwright et al., 1989;
Westneat and Wainwright, 1989; Smith,
1994a). The case of the preorbitalis muscles
in elasmobranchs supports this paradigm of
conserved muscle patterns accompanying
structural change. In contrast, the levator
palatoquadrati muscle shows the opposite
situation, in which structural change is ac-
companied by alteration of the ancestral
motor pattern and functional divergence.
The case of functional divergence in motor
activity as a result of muscle duplication
has been documented in a cyprinid fish
(Ballintijn et al., 1972), a varanid lizard
(Smith, 1982), and in several tetraodonti-
form fishes (Wainwright and Turingan,
1993; Friel and Wainwright, 1998, 1999).
Tetraodontiform fishes with increased ad-
ductor muscle subdivisions are capable of
functionally more complex jaw movements
during feeding by modifying activity in in-
dividual subdivisions, which may provide
finer control of the jaws (Friel and Wain-
wright, 1998, 1999). Similarly, sharks and
rays with two or three mechanisms for pro-
truding the jaw may may exhibit finer con-
trol and thus greater feeding success than
those with fewer mechanisms. Interestingly,
most known changes in upper jaw protru-
sion mechanisms have evolved in the car-
charhiniform radiation. Sharks in the order

Carcharhiniformes contain 55% of all shark
species and are the predominate group in
nearshore tropical and warm temperate wa-
ters (Compagno, 1988). In addition, the
family Carcharhinidae is one of the largest
families of sharks (Compagno, 1988).

In summary, results based on four elas-
mobranch species show that the cranial
muscles involved in lower jaw depression
and elevation show a common pattern of
motor activity during feeding. However, the
muscles involved in upper jaw protrusion
and retraction have had a more variable
evolutionary history. The evolution of up-
per jaw protrusion mechanisms identified in
elasmobranchs has involved modification of
three musculoskeletal systems with differ-
ent consequences for function and motor
pattern: 1) the original preorbitalis muscle
retains the ancestral function and motor ac-
tivity even after it has physically subdivid-
ed; 2) the descendent preorbitalis (dorsal)
muscle undergoes a change in insertion
while retaining motor activity and overall
function; and 3) a shift in origin of the le-
vator palatoquadrati muscle accompanied
by an alteration of motor activity and a
change in function. Thus, we have identi-
fied three innovations in the evolution of
the upper jaw protrusion system, two of
which involve retention of motor activity
and function, original preorbitalis and de-
scendent preorbitalis, as is common in feed-
ing mechanisms of bony fishes and sala-
manders (Shaffer and Lauder, 1985a, b;
Wainwright and Lauder, 1986; Sanderson,
1988; Wainwright, 1989; Westneat and
Wainwright, 1989; Lauder and Shaffer,
1993; Friel and Wainwright, 1998). In con-
trast, structural modification of the levator
palatoquadrati muscle has been accompa-
nied by an alteration in motor activity lead-
ing to a change in function. Such structural
modification of musculoskeletal systems,
leading to novel feeding mechanisms is
characteristic of major functional shifts ob-
served across broad phylogenetic taxa
(Liem, 1979; Lauder, 1983; Wainwright et
al., 1989), and has undoubtedly had major
consequences for the evolution of verte-
brate feeding mechanisms.
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