#### University of Rhode Island

#### DigitalCommons@URI

Senior Honors Projects

Honors Program at the University of Rhode Island

5-2009

#### Assessing the Feasibility of Wind Power Production for the University of Rhode Island's Bay Campus

Kenneth A. Critz University of Rhode Island

Follow this and additional works at: https://digitalcommons.uri.edu/srhonorsprog



Part of the Engineering Commons

#### **Recommended Citation**

Critz, Kenneth A., "Assessing the Feasibility of Wind Power Production for the University of Rhode Island's Bay Campus" (2009). Senior Honors Projects. Paper 147.

https://digitalcommons.uri.edu/srhonorsprog/147

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

# Feasibility of Wind Power Production at the URI Bay Campus

Presented By: Kenneth Critz

Advising Professor: Dr. Malcolm Spaulding

Ocean Engineering

## Overview

- Site Description and Selection
  - Land use, topography, and adequate space
- Characterize Demand on the Bay Campus
  - Yearly trends (2003-2008), and monthly trends
- Available Wind Data and Scaling
  - Pt. Judith (2005-2007), and WIS 79 model data(1980-1999)
- GE 1.5MW WTG
- Characterize Wind Power Production Potential
  - Annual production, monthly production, directionality
- Standards and Regulatory Environment
  - RI standards and international standards
  - Special use permitting, net-metering, environmental regulation
- Summary of Major Results
- Summary of Cost and Return

## Lower Narragansett Bay and Points of Interest



## Site Description and Selection



## Possible Locations for 65m Hub



## Possible Locations for 80m Hub



### Characterization of Demand

- 5 years of electricity data (2003 2008)
- Annual Power Usage
  - 4.88 e6 kWhrs (2003) 5.97 e6 kWhrs (2008)
  - Increases annually
- Total Annual Cost of Electricity
  - \$491k (2003) \$773k (2008)
  - Cost per kWhr and usage increases
- Monthly Variations in Power Usage
  - Greatest from December to March
  - Least in May and June

#### Annual Electricity Usage



#### Annual Electricity Cost



#### 5 Year Average Monthly Usage



## Selection of Wind Data and Scaling

- Limited Available Wind Data
  - AWS Truewinds (2006)
    - Mean Annual Wind Speed at 80m for all of RI and coastal ocean
  - Pt. Judith Lighthouse
    - 3 years of hourly mean wind speed at 22.5m elevation (2005-2007)
  - Army Corp WIS Station 79
    - 20 years of hourly mean wind speed at 10m elevation (1980-1999)
- Scale WIS Wind Speed Time History to Represent Site
- Assume Scale Factor Constant for All Wind Speeds
  - Method used by ATM (2007) for Portsmouth Assessment
- Scale WIS Station 79 Data to Site
  - Scale Factor is the ratio of AWS mean annual wind speeds
  - Verify assumption with Pt. Judith wind data
    - Calculate mean annual wind speed of WIS and Pt. Judith data
    - Scale Factor from data is within 3% of AWS Scale Factor

#### Mean Annual Wind Speed at 80m derived from AWS TrueWinds



### GE 1.5 MW Turbine

- Power Production Estimates Based on the GE 1.5sle Turbine



- Turbine swept area is 4657 m<sup>2</sup>
- Cut-in Speed = 4 m/s
- Cut-out Speed = 25 m/s
- Rated Speed = 14 m/s

~GE 1.5MW Turbine Product Brochure

## Annual Power Production at Bay Campus

Annual Power from Scaled WIS Station 79 Data Set @ 80m where  $\alpha = 0.143$  and  $SF_{AWS} = 0.756$ 

| Mean Wind               | Standard  | Power     | Wind      | Turbine  | Extracted |
|-------------------------|-----------|-----------|-----------|----------|-----------|
| Speed, U <sub>ave</sub> | Deviation | Density   | Energy    | Energy   | resource  |
| (m/s)                   | (m/s)     | $(W/m^2)$ | (kWhrs)   | (kWhrs)  |           |
| 6.80                    | 3.05      | 371.2     | 15.143 e6 | 4.217 e6 | 27.8 %    |

Varying  $\alpha$  and Hub Height w/  $SF_{AWS} = 0.756$ 

| kWhrs <sub>turb</sub> | α=0.143 (Stable atm) | α=0.19 (AWS)  |
|-----------------------|----------------------|---------------|
| H = 65m               | 3.97 e6 kWhrs        | 4.70 e6 kWhrs |
| H = 80m               | 4.22 e6 kWhrs        | 5.04 e6 kWhrs |

Varying Scale Factors @ 80m w/  $\alpha$  = 0.143

| SF   | U <sub>ave</sub> (m/s) | Data Set Energy (kWhrs) |
|------|------------------------|-------------------------|
| 0.72 | 6.403                  | 3.936 e6                |
| 0.74 | 6.581                  | 4.181 e6                |
| 0.76 | 6.759                  | 4.431 e6                |

#### 1.5 MW GE Directional Power Production





## **Estimated Monthly Power Production**

Monthly Power



## Monthly Mean Wind Speeds and Power Production

- Hub Height = 80m, SF = 0.756, and  $\alpha$ =0.143

| Month | Mean Wind Speed  U <sub>ave</sub> (m/s) | Standard<br>Dev. (m/s) | Power<br>Density<br>(W/m²) | Available<br>Resource in Swept<br>Area (kWhrs) | Data Set<br>Turbine Power<br>(kWhrs) | Extracted<br>Resource<br>(%) |
|-------|-----------------------------------------|------------------------|----------------------------|------------------------------------------------|--------------------------------------|------------------------------|
| Jan   | 9.23                                    | 3.62                   | 59.40                      | 2.42 e6                                        | 6.19 e5                              | 25.5                         |
| Feb   | 8.75                                    | 3.61                   | 47.91                      | 1.95 e6                                        | 5.18 e5                              | 26.5                         |
| Mar   | 7.95                                    | 3.64                   | 42.83                      | 1.75 e6                                        | 4.8 e5                               | 27.5                         |
| Apr   | 6.44                                    | 3.25                   | 24.47                      | 1.00 e6                                        | 3.05 e5                              | 30.6                         |
| May   | 5.12                                    | 2.70                   | 13.22                      | 5.39 e5                                        | 1.82 e5                              | 33.8                         |
| Jun   | 4.75                                    | 2.33                   | 9.48                       | 3.87 e5                                        | 1.3 e5                               | 33.6                         |
| Jul   | 4.44                                    | 2.08                   | 7.76                       | 3.16 e5                                        | 0.97 e5                              | 30.8                         |
| Aug   | 4.82                                    | 2.32                   | 10.27                      | 4.19 e5                                        | 1.34 e5                              | 32                           |
| Sep   | 5.85                                    | 2.75                   | 17.25                      | 7.04 e5                                        | 2.28 e5                              | 32.4                         |
| Oct   | 7.10                                    | 3.13                   | 29.88                      | 1.22 e6                                        | 3.78 e5                              | 31                           |
| Nov   | 8.69                                    | 3.46                   | 48.73                      | 1.99 e6                                        | 5.42 e5                              | 27.3                         |
| Dec   | 9.16                                    | 3.71                   | 60.01                      | 2.45 e6                                        | 6.04 e5                              | 24.7                         |

## Standards and Regulatory Environment

- AWEA suggests IEC international standard
  - Compatibility with foreign market for turbine selection
- Rhode Island Standard Building Codes
  - International Building Code 2006 (SBC-3)
  - National Electric Code (NEC) (SBC-5)
- Special Use Permits
  - A permit must be filed with the town of Narragansett
  - Subjective criteria is reviewed by the zoning board
    - Access, Safety, Noise, Health, Compatibility with surrounding environment, etc...
- Net-Metering Legislation
  - Actively being changed yearly to best suit project development
  - Recently municipalities given consideration
  - State facilities likely to soon be granted consideration
    - South County Wind Energy Forum (URI Energy Center)
- Environmental Assessment and Permitting through DEM

## Summary of Major Results

- Comparison of Portsmouth Project to Bay Campus Project

|                 | Mean Annual<br>Wind Speed<br>(m/s) | Annual Power Demand (kWhrs/year) | Power Produced by Turbine (kWhrs/year) | % Energy<br>Used on<br>Site |
|-----------------|------------------------------------|----------------------------------|----------------------------------------|-----------------------------|
| Portsmouth High | 6.74                               | 954,000                          | 3,719,000                              | 25%                         |
| Bay Campus      | 6.80                               | 5,960,000                        | 4,220,000                              | 100%                        |

- Percentage of campus energy generated
  - 70 84 % campus usage produced by wind turbine for 2008
- Greatest power generated at max. demand from November – March
  - Demand and Production ≈ 500k-600k (kWhrs)
- Expected useful life of turbine is 20 years

#### Monthly Energy Comparison



## Summary of Cost and Return

- Potential Annual Electricity Savings
  - Behind meter savings from electricity
    - 4.22 e6 kWhrs \* 0.13 \$/kWhr ≈ \$550,000 per year
  - Expected grid sale price
    - 4.22 e6 kWhrs \* 0.0776 \$/kWhr ≈ \$325,000 per year
- Approximate Capital Cost
  - Portsmouth High 1.5 MW installment
    - Estimated at \$3.23 Million (ATM 2007)
    - \$2.9 Million actual cost
- Estimated Operation and Maintenance Costs
  - O&M ≈ \$68k per year (ATM 2007)
- Clean Renewable Energy Bonds (CREB)
  - Tax credit bond that is equivalent to interest free loan
  - Portsmouth Financed in this manner
  - Qualified projects have pay-back period approximately 12 years
- Bay Campus Break-Even Point
  - Behind meter pay back period
    - Approximately 6 7 years
  - In front of the meter
    - Approximately 12 years

## Questions?

## Extra Slides

## Land Use and Description



## Possible Area and Topography



## Local Topography and Obstructions



#### Monthly Power Consumption



#### Electricity Cost / kWhr



## Assessing Appropriate Scaling Factor

|            | Data U <sub>ave</sub> @ 10m | Data U <sub>ave</sub> @ 80m | AWS U <sub>ave @</sub> 80 m |
|------------|-----------------------------|-----------------------------|-----------------------------|
| WIS        | 6.73                        | 8.89                        | 9                           |
| PT Judith  | 5.7                         | 7.54                        | 7.85                        |
| Bay Campus |                             |                             | 6.802                       |

- SF from WIS data to Pt. Judith data is 0.848 and 0.872 from AWS Data
  - Factors are within approximately 3%
  - 3 Years of data is not sufficient to suggest AWS not appropriate
- Scaling Factor for wind speeds @ 80m transformed to Site from AWS
  - Suggested  $SF_{AWS} = 0.756$

## Estimated Annual Power Production Potential

- Mean Annual Wind Speed and Standard Deviation
- Mean Annual Power Density
  - Available Resource
- Power Production of GE 1.5MW turbine
  - % resource extracted
- Variations of Alpha Coefficient and Hub Heights
  - Conservative stable atmosphere α=0.143, AWS estimate α≈0.19
- Sensitivity to Scaling Factors
- Directional Variations
  - Turbine Output Power

## Frequency of Direction for 20 Years (1980-1999) of WIS79 Data



#### Mean Annual Wind Energy Density (kWhrs) @ 80m for 20 years of wis data



## Monthly and Seasonal Variations in the Wind Resource

- Hub Height = 80m, SF = 0.756, and  $\alpha$ =0.143
  - Monthly Mean Wind Speeds
  - Standard Deviation
  - Monthly Mean Energy Density
- Directional and Seasonal Variations

Winter: Dec-Feb,

Spring: Mar-May,

Summer: Jun-Jul,

Fall: Aug-Nov

Turbine Output Power

#### Frequency of Directions for 20 years (1980-1999) of WIS79









#### Annual Wind Energy Density (kWhrs) @ 80m during the winter months



#### Annual Wind Energy Density (kWhrs) @ 80m during the summer months



#### Annual Wind Energy Density (kWhrs) @ 80m during the spring months



#### Annual Wind Energy Density (kWhrs) @ 80m during the fall months



#### **Directional and Seasonal Variations**

Directional Power (MWhrs) produced by GE 1.5 MW turbine @ 80m during the spring months annually

Directional Power (MWhrs) produced by GE 1.5 MW turbine @ 80m during the winter months annually





Directional Power (MWhrs) produced by GE 1.5 MW turbine @ 80m during the fall months annually

Directional Power (MWhrs) produced by GE 1.5 MW turbine @ 80m during the summer months annually



