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Heisenberg Antiferromagnetic Chains:
Quantum-Classical Crossover

Jill C. Bonner, 1 Gerhard Müller, 1 M. P. Nightingale, 1 H. W. J. Blöte, 2 and J. B.
Parkinson 3

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA
2 Technical University of Delft, Delft, The Netherlands
3 UMIST, P.O. Box 88, Manchester M60 1QD, UK

An unusual crossover mechanism has been discovered by numerical investigation of the dispersion spectrum
of Heisenberg antiferromagnetic chains with various spin values in a magnetic field. This result is reflected in
novel behavior of static properties such as the integrated intensity. A study of various excitation gaps using
finite chain calculations extended by quantum Monte Carlo studies indicates unusual behaviour in the T = 0
magnetization isotherms.

1. Quantum-classical crossover

We have undertaken a comprehensive numerical investigation of Heisenberg anti ferromagnetic
(HBAFM) chains extending in size up to the following values of chain length N and spin-value S,
(20, 1/2) (14, 1) (10, 3/2) and (8, 2). Our motivation has been twofold: (1) Classical and quantum
(spin-1/2) dispersion spectra in an applied magnetic field show striking differences. Perhaps the
most striking is the presence of a soft mode which "tracks" across the Brillouin zone in the spin-1/2
case, a feature absent in the classical case. Hence the crossover from quantum to classical behavior
is of great interest. (2) Haldane has made the surprising prediction [1] that integer-spin HBAFM’s
at T = 0 show notably different phase behavior from half-integer-spin HBAFM’s. This would
indicate, inter alia, that our understanding of the simplest magnetic systems is incomplete. Our
finite chain calculations rely on the Lanczos technique to obtain the two lowest-lying eigenvalues
for all allowed values of Sz

T and wave-vector q. The investigation for all values of Sz
T is equivalent

to investigation in a magnetic field extending from H = 0 to the antiferromagnetic critical field Hc

[2]. Two distinct regimes have been identified from the dispersion spectra for S ≥ 1, one quantum
in character as for S = 1/2 and the other showing “classical behavior” [2]. As illustrated in fig. 1,
the relative extent of, say, the quantum regime varies with S, vanishing as 1/2S in the classical
limit.

The quantum and classical features are not only apparent in the dispersion spectra, but in the
bulk thermodynamic properties such as the T = 0 magnetization isotherms as a function of field
[2,3] and in other static quantities such as the real-space correlation functions and their Fourier
transforms, the integrated intensities [2.3]. The integrated intensities for N = 14, S = 1 for the
various allowed q-values compared with the classical expression

Izz(q) =
S

2

{
1−

(
H

Hc

)2
}[

1− cos q

1 +
(
1− 2(H/Hc)2

)
cos q

]1/2

, (1)

evaluated at equivalent q-values are shown in fig. 2. The corresponding finite-chain plot for S = 1/2
displays prominent cusps at the soft-mode q-values for the entire magnetization (or field) range. In
the spin-1 plot, weak cusps are observed only in the magnetization range Msat ≥ M ≥ Msat(1 −
1/2S), which corresponds to the quantum regime of fig. 1. No cusps are visible in the remaining

1



Heisenberg Antiferromagnetic Chains: Quantum-Classical Crossover

range Msat(1−1/2S) > M ≥ 0, in qualitative accordance with the corresponding classical (spin-∞)
intensity curves.

Figure 1. Quantum-classical crossover (schematic).

Figure 2. Quantum and classical features in the integrated intensity.

2. The Haldane prediction

Singlet-triplet energy gap excitation calculations for S = 1 are consistent with previous numeri-
cal work [3,4] in indicating a non-zero excitation gap in the thermodynamic limit. Such a gap, which
does not occur for the exactly solvable S = 1/2 system, is consistent with Haldane’s predictions
[1-4]. However, since the N -value large enough to indicate the correct asymptotic limiting behavior
is in question [5], a Monte Carlo approach has been developed for S = 1, N up to 32 [3,6]. The
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Monte Carlo calculations agree with the exact finite-chain data out to N = 14, and continue the
exponential trend to a non-zero gap [6]. All indications are that the asymptotic N region has been
reached for the singlet-triplet "primary" excitation gap. In finite HBAFM’s, the ground state (E0))
is always a singlet and the first excited state a triplet (E1). Other low-lying excited states include a
quintet (E2), a septet (E3), and other singlets. It has been verified that these other excitations also
give rise to non-zero gaps in the thermodynamic limit [2]. These “higher gap” excitations are also
important for the low-field behavior of the T = 0 magnetization isotherm, which is well known to
be a step function [2,7]. As illustrated in the inset to fig. 3, the location of the vertical portions of
the steps is directly related to the higher excitations. Specifically, the first step distance is given by
H1 = E1−E0, the second step by H2 = E2−E1, the third step by H3 = E3−E2, etc. In fig. 3, we
show the step ratios H2/H1 and H3/H1 plotted for S = 1/2, 1 and 3/2 for various N values. The
exact solution in the case of spin-1/2 indicates that the T = 0 isotherm in the limit → ∞ should
be a straight line passing through the origin [7,8]. For finite spin-1/2 chains, this would imply, from
simple geometric considerations, that H2/H1 → 3, H3/H1 → 5, and so on, in the thermodynamic
limit. In fig. 3, H2/H1 and H3/H1 are plotted versus 1/N , and a clear straight-line trend to the
limiting values 3 and 5, respectively, is apparent even for the smallest systems.

Figure 3. Magnetization step ratios for various spin values.

It is most interesting that the case of spin-1 presents a complete contrast. Instead of rising, the
step ratios H2/H1 and H3/H1 display a non-linear trend downwards. This is perhaps the most
striking numerical evidence yet presented that spin-1/2 and spin-1 chains behave very differently,
as predicted by Haldane [1]. The prediction is made [6] that E2−E1 ∼ 2(E1−E0), equivalent to a
limiting value unity for the step ratio H2/H1. The actual Monte Carlo data points in fig. 3 indicate
a trend to a value less than unity, perhaps even to zero. However, when uncertainty estimates are
applied to the Monte Carlo data, a trend to unity is not excluded. In view of the fact that an
N → ∞ value of zero would have unusual implications, further extension and refinement of the
Monte Carlo technique is underway.
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Finally we consider the case of spin-3/2. According to the predictions of Haldane [1], spin-3/2
should behave asymptotically in a manner similar to spin-1/2. This is not evident from the data
extending to N = 10 shown in fig. 3. No sign of an upward trend so apparent in the case of spin-
1/2 is observed, the data showing a slight tendency to decrease more reminiscent of spin-1. Two
possibilities arise. One is that the true asymptotic behavior only sets in for much longer chains in
the case of spin-3/2 than for spin-1 and spin-1/2. The other is that spin-1/2 is an exactly solvable
(integrable) case, differing in this respect from HBAFM’s with S ≥ 1 which therefore resemble each
other rather than spin-1/2. Monte Carlo studies of the interesting case of spin-3/2 are therefore
contemplated.

Acknowledgment: Support is acknowledged from the US N.S.F., grant numbers DMRS4-
061S6 and DMRSO-lOSI9, from NATO, from a Research Corporation grant, and from the SERC
(UK) grant number GRID 4157. We have used a modified cmpj.sty style file.
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