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We have performed a variety of numerical studies on the general bilinear-biquadratic spin-l 
Hamiltonian H / J = ~{"~ 1 [Sj . Sj I 1 - fJ( Si 'Si+ 1 ) 2], over the range 0<:/3< 00. The model is 
Bethe Ansatz integrable at the special point f3 = 1, where the spectrum is gapless, but is 
otherwise believed to be nonintegrable. Affleck has predicted that an excitation gap opens up 
linearly in the vicinity of f3 = 1. Our studies involving spectral excitations (dispersion spectra), 
scaled-gap, and finite-size scaling calculations are not consistent with the Affleck prediction. 
The situation appears complex, with novel crossover effects occurring in both regimes, f3 < 1 
and.B> 1, complicating the analysis. 

A new way to investigate the critical properties of quan
tum spin chains of arbitrary spin s has been proposed by 
Affleck, \,2 following on ideas of Haldane. 3 Affleck has pro
posed a number of mappings between various types of spin 
chain and two-dimensional (2D) continuum field theories, 
namely nonlinear (T models and related Wess-Zumino mod
els. He extends the classification of critical theories in 2D by 
constraints of conformal in variance on systems with contin
uous symmetries. Conformal invariance in these Wess-Zu
min a models allows computation of the anomalous dimen
sion of operators from which the critical exponents of the 
quantum spin chains are obtained. Numerical verification 
(or otherwise) of the various Affleck mappings by a detailed 
study of the particular spin chains is both timely and impor
tant. 

The properties of quantum spin chains of higher spin are 
of interest from a different point of view. Stimulated by a 
prediction of Haldane3

, a variety of studies has appeared on 
the spin -1 Heisenberg antiferromagnet (AFM) generalized 
by the addition of XXZ spin anisotropy and also single-ion 
anisotropy. The resulting apparent rich and complicated 
phase diagram has come as a surprise, since the Heisenberg 
spin chains may be reasonably regarded as the simplest mag
netic systems, previously thought to be generically similar 
for all s< Haldane predicts that the class of integer-spin AFM 
XXZ spin chains shows radically different Tc = 0 critical 
behavior from the class of half-integer-spin chains which 
should resemble the exactly solved spin-l /2 XXZ model. We 
are interested in pursuing a rather different point of view: 
XXZ spin chains for s > 1/2 are believed to be non integrable, 
and hence the integrable spin-1/2 chain is special. We are 
therefore, investigating possible nonintegrability effects in 
quantum chains of higher spin.4 

This paper reports investigations of the excitation spec
tra and energy gaps of the generallD spin-l bilinear-biqua
dratic exchange Hamiltonian 

H N N 
-= I Si<Si+l -.B"'i (S;'8j + 1 )2, (1) 
J {--I j~l 

f3,>0, by analytic studies and by numerical calculations up to 
N = 12 spins. This Hamiltonian is believed to be nonintegra
ble except at the special point (3 = 1. Hamiltonian (1) for 
f3 = 1 in fact is the spin-l version of an integrable class of 
models with general spin-s and SU (2) symmetry.5,6 They all 
show a qualitative resemblance to the spin-lI2 member of 
the family, which is the familiar spin-l12 Heisenberg AFM 
chain. Special limits of the model are therefore 

( 1 ) !3 = 1: integrable "Russian,,7 model; 
(2) f3 = 0: nonintegrable Heisenberg model; 
(3) f3 = 00: nonintegrable pure biquadratic model. 

The model is gapless with continuous symmetry at the Rus
sian point!3 = 1, whereas the Haldane prediction, support
ed by numerical results, is that a gap is present in the Heisen
berg limit, f3 = 0. 8 The question ofinterest is therefore where 
the gap disappears, and the value of the critical exponent 
governing the disappearance of the gap. Affleck predicts 
that the system is gap less only at f3 = 1, and that an excita
tion gap opens up linearly in the vicinity of this point, I i.e., 

~E/J-ll-f3I· (2) 

Studies have recently been performed on this system.9- 11 The 
focus of Ref. 10 has been a survey of the two regimes, f3 < I 
and f3 > 1, in terms of the excitation spectra as a function of 
the wave-vector k and S~, and also scaled-gap studies of the 
finite N singlet-triplet excitation gap. The focus of Ref. 11 
has been a detailed finite-size scaling study of Hamiltonian 
( 1) aimed principally at finding the gap exponent, and the 
conclusions are qualitatively in agreement with Affleck, but 
quantitatively the singlet-triplet gap opens up more slowly 
than predicted, behaving to a close approximation as 

(3) 

The slow opening of the gap as found in Ref. 11 is consistent 
with the results of Ref. 10, where scaled-gap calculations 
predict that the gap might vanish in the f3 < 1 regime for 
f3,>O.6, i.e., if a gap exists for 0.6 <f3 < 1 it is very small. The 
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FIG. 1. Scaled-gap plots for the range 0<./3< I, indicating sllccessive cross
ing points/3 ~N.N - 2) located by the arrows. A rough plot of the /3 ;N.N- 2l vs 

(N -_. 1) -1 shown as the inset indicates a limiting value /3c S 0.6. The sys

tem has a gap for 0</3 </3 c. 

scaled-gap calculations, shown in Fig. 1, are supported by a 
study of dispersion spectra in a field, since a crossover in the 
lowest-lying excitations from gap to gapless character may 
be expected to correlate with crossover effects in the entire 
spectrum. A study of the lowest-lying excitations of the spin-
1 Heisenberg AFM as a function of the wave-vector k and 
magnetic field has revealed an interesting crossover effect. 12 

It appears that half the dispersion spectra, corresponding to 
large S} values (high fields) show a qualitative resemblance 
to the entire set of dispersion curves for the spin-l /2 Heisen
berg AFM. In particular, a soft mode tracks across the Bril
louin zone as the magnetic field varies between ~ 1/2 fl., 
and H, where fl., is the saturation critical value. This regime 
corresponds to S~. = N,N - 1, ... ,N /2. The other half of the 
dispersion spectra corresponds to S ~ = N /2, N /2 - 1, ... ,0 
(low fields). No tracking soft mode appears, and the curves 
show a striking resemblance to classical dispersion spectra in 
a field. 

Correspondingly, an analytic and numerical study has 
been performed of the field-dependent dispersion spectra for 
N finite as well as N __ 00 for the Russian Hamiltonian. 13 

Again the excitations divide into two sets, but the two sets 
are now specified by dispersion curves with S '.'r even on the 
one hand, and S:;' odd on the other. The S ~ odd excitation 
set shows more finite-size distortion for finite N, but analytic 
considerations determine that the two sets become degener
ate in the thermodynamic limit 13 Hence it is dear that the 
field-dependent excitation patterns are strikingly different in 
the two limits, and a crossover must occur in the region 
0<13< 1. Analytic considerations lead us to term the S~ 
even/odd excitation pattern characteristic of the f3 = 1 limit 
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the "two-string" picture, 13 and we denote the high S}/low 
S~ excitation pattern characteristic ofthep = 0 limit as the 
"one-string" or "single-deviation" picture. The question is 
whether the crossover is sharp or spread over a range of p. 
Analytic considerations based on the always integrable two
spin deviation problem 14 suggest a sharp crossover at /3 
= 1/3. This would be a reasonable expectation if Hamilto

nian (1) were integrable. In fact, we find numerically that 
there appears to be a f3 region, whose extent increases with 
increasing N, where the excitations are "confused" over 
which picture best describes them. This region extends over 
at least the range 1/3 </3>0.6 and probably over the range 
1/3 </3 < 1. This "smeared" crossover region is consistent 
with ideas on nonintegrability and quantum chaos.4

•'s 

We have found complexities associated also with the 
regime /3 > 1. Scaled-gap calculations 10 and a finite-size scal
ing analysis II both indicate that a singlet-triplet excitation 
gap opens up for /3 < 1. However, it was subsequently ob
senled 10 that for N> 8 at the biquadratic limit the lowest 
excited state was no longer the triplet state at k = 1T' (with 
singlet ground state at k = 0) but a second singlet at rr. Sub
sequent studies in the range f3 > 1 show that the singlet at 1T 

crosses below the triplet at rr to become the dominant low
lying excited state at/3 -1_0.097 for N = 8,{3 -I ~O.231 for 
N = 10, and /3 -1 -0.334 for ]V = 12 as illustrated in Fig. 2. 
A plot cfthese values versus IV -1, shown as Fig. 3, is almost 
linear, extrapolating to /3 -\ -0.85 as N - 00, a value which 
could well bep = I. Evidently an interesting, and heretofore 
unobserved, crossover phenomenon in the context of finite
size scaling analysis, is present. Furthermore, direct extrapo
lationsversusN 1 of the following excitation gaps: (a) sing-

o 
(BIQUADRATIC) 

1.0 
(RUSSIANl 

FIG. 2. Comparative plot of singlet and triplet excitations as a function of 
/3 I. For N = 6, the triplets always lie lower. For N> 6, the excitations 
cross at a /3 - 1 value which increases with N. 
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FIG. 3. A plot ofthe values of f3 - I at which the lowest excited state in the 
rangeO..;;/3 ·-1 <;; 1 changes from singlet to triplet vsN -'. The rough extrapo
lated value is consistent with the value unity, implying that the singlet is 
IIltimately the dominant excited state in this range. 

let at?T, (b) triplet at 1T, (c) quintet at k = 0, and (d) singlet 
at k = 0 over the /3 range between Russian and biquadratic, 
predict either no gap in this range (singlet at ?T) or a very 
small gap of il.E / J < 0.1 [compare with the value IlE / 

4434 J. Appl. Phys., Vol. 61, No.8, 15 April 1987 

J - 0.41 (Ref. 16) for the Haldane gap]. These results sug
gest the regime 1 <,/3 <, 00 could be gapless, in contrast to the 
predictions of finite-size scaling and Affleck. I This anoma
lous situation is undergoing further investigation. 
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