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Excitations and Critical Behavior in Generalized
Heisenberg Spin Chains

Jill C. Bonner, 1 Gerhard Müller, 1 and John B. Parkinson 2

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA
2 Department of Applied Mathematics, UMIST, Manchester M601QD, United Kingdom

1. Introduction

Heisenberg spin chains which represent the simplest realistic models for magnetic insulators
were thought to be well understood and generically similar for any spin-value s. This is expressed
in the spin-wave approach to Heisenberg spin chains [1]. Consequently surprise and some degree
of controversy resulted from recent work of Haldane [2,3], who proposed a dramatically different
picture. Consider the spin-s XXZ Hamiltonian with anisotropy parameter ∆:

H = J

N∑
l=1

{
Sx

l S
x
l+1 + Sy

l S
y
l+1 + ∆Sz

l S
z
l+1

}
. (1)

For half-integer s, the region 0 ≤ ∆ < 1 is a gapless phase with power-law decay of the two-spin
correlation functions, terminating in an essential singularity at ∆ = 1. For ∆ > 1, the ground state
consists of two degenerate singlet states associated with long-range order and a gap to an excitation
continuum. For integer s, on the other hand, the gapless phase associated with planar anisotropy
extends only over a range 0 ≤ ∆ ≤ ∆1 (∆1 < 1) and the phase with gap and ordered ground state
extends over ∆ ≥ ∆2 (∆2 > 1). A new phase (called hereafter the Haldane phase) appears in the
region ∆1 < ∆ < ∆2 encompassing the Heisenberg point at ∆ = 1. The Haldane phase ground
state is a non-ordered singlet with exponentially decaying spin correlation functions, and there is
a gap to an excitation continuum, which has its maximum value at ∆ = 1. The spin-dependent
gap at ∆ = 1 is given by ∆E/J ∼ s2 exp(−πs).

Generalized Heisenberg spin chains are not exactly solvable (Bethe Ansatz integrable) for s >
1/2, except in very special situations. Hence Haldane’s conjecture has, perforce, been investigated
with a variety of numerical techniques, including scaled-gap and finite-size scaling calculations,
finite-chain extrapolations, variational approaches and various correlation function calculations
[4]. Obtaining reliable numerical results turns out to be quite difficult and great care must be
taken. For example, while the first numerical, finite-size scaling calculation on spin-1 XXZ chains
[5) revealed the predicted Haldane phenomena, it was subsequently demonstrated that a "pseudo-
Haldane picture" is obtained also for the spin-1/2 XXZ model [6] in contradiction to exact analytic
results. However, it is now the consensus of a large body of numerical work that the Haldane picture
is, nevertheless, correct, and experimental support for this conclusion is starting to appear [7].

On the basis of a comprehensive numerical study and survey we have concluded that the
various classes of excitations predicted by Haldane for the spin-1 model are all present and behave
as conjectured [8]. However, we observe additional interesting features, in particular, classes of
excitations which have the potential for modifying somewhat the basic Haldane picture, as we will
discuss.

The addition to the basic Heisenberg Hamiltonian of exchange anisotropy, single-ion anisotropy,
biquadratic exchange, or a magnetic field, generates a rich and complicated phase diagram for
chains with s > 1/2 [4]. Unusual spectral features in generalized spin-1 chains will be discussed in
the context of nonintegrability effects and quantum chaos [9,10].
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2. Spin-1 Heisenberg Antiferromagnetic Chain

Since the predicted singlet-triplet Haldane gap is a maximum at the isotropic Heisenberg point,
∆ = 1.0, numerical attention has focussed on this limit. While several numerical techniques have
been devised to study this problem [8], the most direct approach is to examine the behavior of the
Haldane gap for a sequence of finite systems of increasing size and examine the trend as N →∞.
Fig. 1 shows finite-N gaps for up to N = 20 spins with s = 1/2 as a function of 1/N . The gaps
extrapolate convincingly to a value very close to zero, in agreement with the exact result that this
system should be gapless in the limit N → ∞. Exact results up to N = 14 for the s = 1 case,
on the other hand, show concave upwards curvature, consistent with a nonzero gap in the limit
N → ∞. However, since earlier studies [6] have pointed to the importance of obtaining data for
very long chains to be sure of observing a reliable large N trend, a quantum Monte Carlo approach
was developed to obtain data out to N = 32 spins [11]. The Monte Carlo data continue the concave
upward trend of the exact finite-N data and predict a limiting singlet-triplet gap of magnitude

∆E/J ∼ 0.41. (2)

This gap occurs at the Brillouin zone boundary, since the excited triplet is at k = π and the
ground state is always a k = 0 state. The Haldane conjecture implies that a gap of equal magnitude
should occur at the zone center. In Fig. 1, the finite-N triplet gaps for the k = 2π/N mode are
shown, for N ≤ 14. The convergence is quite regular, and the extrapolated limit is in reasonable
agreement with Eq. (2).

Figure 1. Various excited modes for the s = 1 antiferromagnetic Heisenberg chain as discussed
in the text.

There does, however, appear to be one remarkable feature associated with the spectral exci-
tations in the Heisenberg limit and vicinity. Numerical studies have revealed a crossover in the
character of the spectral excitations as a function of field [12]. At high fields, the low-lying dis-
persion spectra are qualitatively similar to those for s = 1/2, i.e. have quantum character. At
low fields, on the other hand, the dispersion spectra display notable classical character, with one
complication. An additional set of modes occurs which appears unrelated to the classical spectra.
When extrapolated as a function of 1/N , these anomalous modes project below all other excita-
tions with the same value of Sz

T . For this reason these states have been termed”supersoft” modes
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[12]. In particular the Sz
T = 1 mode lies at k = π/N , and its excitation energy is included in

Fig. 1. Extrapolating below all other excited states it appears to extrapolate below the triplet at
k = π which has been used to determine the Haldane gap! The curvature is consistently concave
downwards and increases with increasing N , making it unlikely that the curve could develop an
inflection point for larger N and tend to the value (2).

Detailed information on the T = 0 phase behavior of quantum spin chains may be inferred from
the integrated intensity

I(k) =
+∞∑

R=−∞
eikR〈~Sl · ~Sl+R〉. (3)

At zero temperature, I(k) is a property of the ground state solely, and yet also contains information
on the excited states, at wave number k. It can be shown [8] that in the presence of a gap ∆E
between the ground state and the lower edge of the excitation continuum, the integrated intensity
must satisfy the following inequality:

I(k) ≤ 2|EG|(1− cos k)/3∆E, (4)

where EG is the ground-state energy per spin. For the Heisenberg spin-1 chain calculations of Blöte
and Nightingale [11] give EG/J ∼ −1.4015. Together with (3) this yields the following lower bound
for the inverse integrated intensity: I−1(π) ≥ 0.219. A plot of 1/I(π) versus 1/N is consistent with
this bound in the limit N → ∞, but a plot of the inverse intensity 1/I(π − 2π/N), which is
dominated by the Sz

T = 1 supersoft mode, fails appreciably to satisfy this criterion and is not
consistent with an energy gap (2).

Hence present numerical evidence out to N−16 spins is consistent with the presence of a special
class of excitations not predicted by Haldane. These isolated excitations probably have insufficient
thermodynamic weight to affect the thermal properties, but since there exist N/2 such modes
(corresponding to Sz

T = 1, 2, . . . , N/2), they should be experimentally observable in the T = 0
magnetization isotherm at low magnetic fields. In particular, the T = 0 magnetization isotherm
should become zero at a much lower field than that corresponding to the Haldane gap (2).

3. Spin-1 XXZ Model

Of all the excitation phenomena predicted by Haldane to occur for the s = 1 XXZ model,
the one which is most difficult to confirm numerically has been the behavior in the vicinity of
the critical point ∆2 [13]. In fact, doubt has even been expressed concerning the validity of this
particular aspect of the conjecture. Haldane predicts that the transition at ∆ = ∆2 should be in the
universality class of the spin-1/2 transverse Ising model. It has already been established [4,8] that
at ∆2 ∼ 1.18− 1.20, the Haldane gap disappears and an excited Sz

T = 0 state becomes degenerate
with the Sz

T = 0 ground state for ∆ > ∆2. The mapping to the transverse Ising model implies
the existence in the limit N →∞ of an infinite continuum of scaling states quasi-degenerate with
the ground state (states) at, and only at, ∆ = ∆2. The development of this scaling continuum is
not very apparent in the spectra for small finite systems. A search for the scaling states implied
by the Haldane conjecture revealed a class of high-lying Sz

T = 0 excitations at k = 0. Plotted
as a function of ∆, these excitations are shown in Fig. 2. A minimum develops in the vicinity
of ∆ ∼ 1.1 − 1.2 which intensifies with increasing N . Fitting a polynomial through data in the
vicinity of the minimum and plotting the excitation gap at the polynomial minimum versus 1/N
yields an extrapolated value well below the lower edge of the triplet (Sz

T = 1) continuum, and
even consistent with a value zero. We conclude these are the Haldane scaling states at ∆2. This
conclusion is reinforced by a detailed study of corresponding excitations for the spin-1/2 transverse
Ising model near the critical field. The transverse Ising model picture shows a striking resemblance
to Fig. 2.

A surprising feature of the Haldane prediction [3] is that the zz-correlation function decays as
a power law, |〈Sz

l S
z
l+R〉| ∼ R−1/4, whereas the correlation function 〈Sx

l S
x
l+R〉 decays exponentially

for R→∞. This unusual prediction implies that the fluctuations are critical in the longitudinal (z)
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Figure 2. Sz
T = 0 “scaling” states for N = 4, 6, 8, 10 and 12 (denoted by ◦). The excitation

denoted by � is the extrapolated limit of the upper component of the ∆ ≥ ∆2 ground state.

direction but not in the transverse (x) direction. Such a situation has not been observed previously.
Hence we examined also the Sz

T = 1 excitations at k = 0 as a function of ∆, and again observed
the development of minima with increasing N in the vicinity of ∆2. These minima also display
a potential for extrapolating to zero, analogous to the Sz

T = 0 minima, and in contrast to k = 0
excitations in the same class corresponding to Sz

T = 2, etc. If gapless Sz
T = 1 excitations occur

at ∆ = ∆2, the transverse xx-correlations will also display power-law decay, in disagreement with
Haldane’s specific predictions for the behavior of the two-spin correlation functions [2].

4. Nonintegrability Aspects of the Spectra

The above numerical studies of the spin-1 XXZ model, including the Heisenberg point, show that
the Haldane prediction represents a remarkably successful mapping. All classes of states predicted
by Haldane appear to be present and behave generally as predicted. It appears, however, that
we have discovered additional classes of states whose presence have the potential of playing an
important role in the extended T = 0 phase diagram. The |Sz

T | = 1 “scaling” states at ∆ ∼ ∆2

are perhaps less surprising since anaIogous states occur for the transverse Ising model near the
critical field. The "supersoft" modes at ∆ = 1, on the other hand, are a remarkable feature
not encountered previously in any integrable model. Here we discuss in more detail the possible
occurrence in generalized s ≥ 1 Heisenberg spin chains of spectral features which are characteristic
of nonintegrable models.

Consider the spin-1 Heisenberg antiferromagnetic chain generalized by addition of biquadratic
exchange:

H/J =
N∑

l=1

~Sl · ~Sl+1 − β
N∑

l=1

(
~Sl · ~Sl+1

)2
. (5)
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Special limits of this bilinear-biquadratic exchange Hamiltonian are:
β = 0 Heisenberg model (nonintegrable)
β = 1 “Russian” model [14] (integrable)
β =∞ pure biquadratic (nonintegrable)

Figure 3. A plot of the values of β−1 at which the lowest excited state in the range 0 ≤ β−1 ≤ 1
changes from a singlet to triplet versus N−1. The rough extrapolated limit of the crossing points
is consistent with the value unity, implying that the singlet is ultimately the dominant excited
state in this range.

Hamiltonian (8) at the special point β = 1 is an example of an s > 1/2 model which is Bethe
Ansatz integrable and gapless [14,15]. Hence it is of interest to investigate the parameter range
0 ≤ β ≤ ∞ to determine the extent of the gapless region. A prediction of Affleck [16] is that only the
point β = 1 is gapless and that a gap opens on either side of the Russian point as ∆E ∼ |1− β|l.
Numerical studies including scaled-gap [17] and other finite-size scaling calculations [18,19] are
consistent with Affleck in predicting the opening of a singlet-triplet gap at β = 1, but differ in
predicting that the gap opens up more slowly than linearly. Furthermore, numerical calculations
revealed a very curious phenomenon in the Russian-biquadratic regime (0 ≤ 1/β ≤ 1) [18]. This
phenomenon is illustrated in Fig. 3. Close to the biquadratic limit, the first excited state is no
longer the triplet at k = π for sufficiently large N , but instead becomes a singlet at π. A crossover
effect occurs in this regime, illustrated in Fig. 3, which implies that as N →∞, the lowest excited
state is a singlet over the whole regime. Traditional finite-size scaling approaches which assume,
as an act of faith, that the dominant excited states for small finite N remain the dominant states
as as N →∞, can be seriously misled by a situation such as the above. Just as in the case of the
supersoft modes, a new class of important modes appears at sufficiently large N . This triplet-to-
singlet crossover phenomenon does not occur for integrable systems (e.g. the spin-1/2 XXZ model),
and is presumably a spectral nonintegrability effect.

Acknowledgment: We acknowledge contributions by J. Oitmaa. Support has been provided
by the US NSF grant DMR 86-03036 and the Research Corporation. We have used a modified
cmpj.sty style file.
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