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TUTORIAL SESSION 
ONE-DIMENSIONAL MODEL SYSTEMS: THEORETICAL SURVEY* 

Jill C. Bonner 

Physics Department, University of Rhode Island 
Kingston, RI 02881 

ABSTRACT 

In the early 1960's, one dimensional model systems 
were regarded as amusing toys with the advantage of be
ing far more easily solvable than their "real" three
dimensional counterparts. Now essentially l-D (quasi-
1-0) magnets can be "tailor-made" in the laboratory. 
Even more popular is the field of organic conductors 
like TTF.TCNQ, which are naturally quasi-I-D. Currently 
solitons and related solutions of non-linear, dispersive 
l-D differential equations are ubiquitous in physics, 
including the area of l-D magnetism. These developments 
are discussed in the Introduction. The rest of this 
paper is concerned with model Hamiltonians, model com
parisons, critical singularities in l-D (quasi-I-D) sys
tems, accuracy of numerical techniques in comparison 
with exact solutions, brief accounts of dilute and dis
ordered l-D systems. and l-D spin dynamics. Finally. a 
comment is made on a variety of interesting isomorph
isms between 1-D magnets and phenomena in 'several other 
areas of physics, for example 2-D ferroelectrics, field
theoretic models. and realistic fluids. Comparison of 
theory and experiment has been the subject of several 
excellent reviews and is therefore not discussed here. 

INTRODUCTION 

The Ising model of cooperative magnetism was sug
gested by Lenz and solved in one-dimension (1-0) by 
Ising in 1925 [1]. The solution was essentially com
plete as a function of both temperature, T, and applied 
magnetic field, H. Later work has discussed in some de
tail the correlation functions [2]. In 1944, a very 
famous solution of the two-dimensional (2-D) Ising model 
by Onsager appeared [1]. The solution provided inform
ation on the thermal properties in zero-field only: A 
complete solution, including H I 0, is lacking to this 
day. Again, considerable additional work has been done 
on the correlation functions [3J. The 1-0 Ising model 
is interesting as a soluble, non-trivial N-body problem 
and widespread and ingenious exploitation of the 2-D 
Ising model solution has given tremendous impetus to 
the developing field of critical phenomena [3,4]. Un
fortunately, the Ising model has its limitations as a 
model for magnetic phenomena. It is a purely classical, 
as opposed to a quantum-mechanical, model, and is there
fore inadequate to describe both static and dynamic 
phenom~na. Good experimental examples of Ising model 
magnets are rare. 

In the early 1960's an important sequence of solu
tions of a variety of l-D magnetic insulator models ap
peared. Fisher was able to demonstrate a remarkably 
simple analytic solution for the classical (spin S = 00) 
linear chain in zero field. The solution yielded both 
thermal properties and correlation functions [5]. The 
1-0 xy model with spin S = 1/2 was solved analytically, 
independently by Lieb, Schultz and Mattis, with emphas
is on the correlation functions, and by Katsura. with 
emphasis on the thermal and magnetic properties [61. 
The Katsura solution included also exact results for 
the l-D transverse ISing model. An analytic solution 
for the S = 1/2 Heisenberg linear chain is not available 
even now, though important progress has been made over 
the past few years. Therefore, Bonner and Fisher [7] 
and, independently Griffiths, developed a technique of 
numerical extrapolation of exact results for a sequence 
of ~ Heisenberg chains of increasing N to the 
N = ~ limit. In this wayan extensive set of results 
for all Hand T and some results for the T = 0 correl
ation functions were obtained with accuracy comparable 
to experiment. Other important results for the S=1/2 
Heisenberg antiferromagnetic (AF) chain were an analy
tic calculation by des Cloizeaux and Pearson of the 
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lowest excited states (spin-wave triplets) and an an
alytic result for the zero-point susceptibility by 
Griffiths [8]. The relevance of these l-D solutions to 
real experimental systems was demonstrated for the first 
time by Griffiths (9) in conjunction with workers at the 
Kamerlingh Onnes Laboratorium. Leiden. Interest in 
1-0 magnets among experimentalists and theorists was 
stimulated by this result and, particularly. by an an
notated collection of reprinted papers On a variety of 
1-0 model systems, including lattice gases, dynamical 
disordered crystal lattices, many-fermion gases (elec
tron gases) as well as magnets. The collection appeared 
in book form, and remains today an important and influ
ential introduction to 1-0 theory [10]. 

In the early 1960's l-D model systems were inter
esting for a variety of reasons, most of which remain in 
force today. First of all, an essentially complete. 
exact or accurate numerical, solution could be ob
tained in one dimension, whereas the corresponding 3-D 
problem was hopelessly intractable. The enormous diffi
culty in 3-D naturally led to the development of a 
variety of approximate techniques for problems in many
body cooperative phenomena. These included mean-field 
theory, Bethe, Bethe-Peierls-Weiss and higher-order 
cluster approximations. the random phase approximation 
and higher-order Green's function calculations, and 
spin-wave theory. The 1-0 results provided a testing 
ground for such general approximate techniques, and it 
is remarkable how inaccurate they are for, say, the I-D 
Heisenberg antiferromagnet. The failure is not only 
quantitative but even qualitative. To be fair, there 
are reasons to argue that the inlllequacies of the above 
theories are most pronounced for low dimensionality 
and low spin value. Nevertheless, more caution than is 
often the case should perhaps be exercised in relation 
to the use of theories of the above type. Very recently 
the renormalization group (RG) approach in the position 
space formulation has been tested and evaluated on 1-0 
spin-1/2 ISing models and spin-l Ising modelS (showing 
Tc = 0 tricritical phenomena) (II]. Considerably 
greater difficulty is experienced in applying RG theory 
to quantum-mechanical systems (for example, the S = 1/2 
Heisenberg model or XY model) [12] than to classical 
systems (Ising model or S = 00 Heisenberg model). The 
Q.M. models are not only of interest in their own right, 
especially the 2-D cases [13J. but also as models of 
quark confinement [121. The study of l-D quantum systems 
might well aid the development of an effective RG ap
proach. 

In some magnetic crystals, I-D magnetic inter
action pathways occur naturally between metallic ions 
as a consequence of magnetic structure (e.g. copper 
tetramine sulfate, Cu(NH3)4S04H20,'CTS'· [14j); special 
alignment of orbifals (dy orbitals of Cu2+ in KCuF3 
[14}); or between ionic components of ma¥netic organic 
complexes (rr-orbital interactions in TTF PtS4C4(CF3)4' 
TTF BDT(Pt) [17J). Now it is possible to grow l-D 
magnets "to order" by organic spacer techniques. For 
example, CoC12·2H20 is a "poor" l-D magnet. If, how
ever, the H20 molecules are replaced by large organic 
pyridines to give CoC12'2NCSHS' the Cq2+ ion chains are 
pushed much further apart, and the I-D character is en
hanced [14]. Consequently, over the past few years 
there has been considerable activity in finding "good" 
experimental l-D magnets, and a wide assortment is now 
available. This situation is especially interesting to 
coordination chemists. Since the theo~ of super ex
change remains on a far from secure footing, chemists 
are tending to investigate empirically the variation of 
exchange constant with bond length and bond angle using 
families of l-D magnets, relying on the complete and 
accurate statistical mechanical knowledge not available 
in higher-O systems. One important source of uncertain
ty in the processing of the data is thus removed. 

An important area of current hot pursuit in l-D 
physics is the field of quasi-l-D organic conductors, 
semiconductors, and even insulators [15J. Materials 
like the famous TTF·TCNQ are called organic metals be
cause of their high conductivity at low temperature and 
its negative temperature coefficient. '"they are plenti-
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ful and naturally anisotropic, i.e. quasi-I-D, unlike 
the l-D magnets which often have to be specially 
"engineered" (14). Considerable interest, and also con
troversy, was stimulated by a prediction of Little that 
organic conductors might show "high temperature" super
conductivity at, say, 50 K. The discovery recently of 
superconductivity at 0.27 K in polysultur nitride (SN) , 
unique in having no metallic components, boosted activ~ 
ity in this area. The technological importance of a 
50 K superconductor, or even "good" organic conductors 
and photoconductors, is, of course, immense. Unfortun
ately, there is an inherent lattice instability in I-D 
systems, the famous Peierls transition [16J, which dis
torts the underlying lattice so as to induce a phase 
transition from "metallic" to insulating (semiconduct
ing) behavior as the temperature is lowered. Clearly, 
Peierls transitions are both interesting and technolo
gically undesirable, for they compete "'ith the putative 
superconducting transition and act to suppress it. 
Recently, the insulating analogue of the Peierls trans
ition has been discovered in some members of a class eof 
quasi-l-D metallo-organic complex compounds, bis
dithiolenes with TTF [171. In this transition, an in
sulator-insulator transition, a uniform l-D AF Heisen
berg chain with a single exchange constant J, undergoes 
a dimerization at the spin-Peierls transition tempera
ture to an alternating AF Heisenberg chain. That is, 
pairs of spins move respectively closer and further 
apart and the 1-D magnetic system has two alternating 
exchange constants Jl' J Z' "'ith J l > J 2 , say. Accord
ing to careful numerical calculations on the alternat
ing chain [181. a magnetic energy gap opens up between 
the singlet ground state and the lowest eXCited states 
(triplet excitons) for all Jl # J 2 , The existence 
of such a gap is crucial to spin-Peierls theory and 
also to the extensive field of exciton theory in physi
cal chemistry [19). Since the alternating linear chain 
Hamiltonian still possesses complete isotropic spin 
symmetry. doubts have been raised, based on classical 
(spin =) l-D systems and approximate techniques. about 
the existence of such a gap [ZO), but the numerical ev
idence for it is strong [18j. 

It appears that l-D physics is likely to exert 
its special fascination for some time to come. As fast 
as one area of interest attains a degree of maturi tYe' 
e.g. l-D magnetic insulators, a new area takes over, 
e.g .• the field of organic conductors and 1-0 metals 
[15]. Recently the soliton phenomenon has become very 
fashionable in all areas of physics, not just solid 
state phYSics. Solitons, kinks, and solitary travel
ling wave phenomena are special solutions of l-D differ
ential equations which have the characteristics of being 
both non-linear and dispersive. Solitons have the un
usual property that after they interact, they proceed 
on their way with shape and velocity essent'ially un
changed. Solitons have turned up in particle and field 
theories, water waves, plasmas, SQUID theory, charge 
and spin density waves in l-D conductors, and displac
ive ferroelectrics [21J. There is now r~ason to be
lieve that solitons are characteristic excitations in 
l-D continuum ferromagnets, both classical (S = ~) and 
quantum [2Z). Solitons may also be important in l-D 
antiferromagnets, in connection "'ith spin-Peierls and 
generalised Peierls transitions. 

Other areas of solid state physics where exact 
l-D solutions are appearing thick and fast include 
Fermi and Bose gas delta function models [23], the 
linear Hubbard model [241, a l-D plasma which crystal
lises as a Wigner solid [25], and the Lai-Sutherland 
model whiCh includes the Hubbard model and a dilute 
magnetic model as special cases [261. 

While the major emphasis of this review concerns 
l-D magnetic insulators, it should be noted that there 
has been considerable recent progress in solving 1-0 
electron gas models stimulated by interest in I-D or
ganic electrical conductors noted above. The electron 
gases include both continuum and lattice verSions, and 
theories can incorporate the effects of spin and back
ward scattering [27]. An important equivalence be
tween a I-D electron gas and a 2-D coulomb gas has been 
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noted [281. These solutions are informative about 
charge and spin density wave phenomena. 

Returning to l-D magnetic insulators, the model 
solutions of the early 1960's have been augmented by 
the following important recent developments. Blume and 
co-workers have extended the solution of the 5 = 00 

Heisenberg linear chain to include a non-zero magnetic 
field by numerically based transfer matrix techniques 
[291. The quantum, 5 = 1/2 Heisenberg model has been 
solved exactly in a continuum (as opposed to discrete 
lattice) version on the basis of techniques for solving 
the l-D many-fermion Tomonaga-Luttinger models [30). A 
solution for the 5 = 1 XY continuum model has also ap
peared [13a]. and essentially exact calculations on l-D 
Ising models for S > 1/2 have been developed [31]. An 
interesting sequence of 1-D Un-vector" models has been 
solved (in zero field) bye Stanley [321. The number of 
spin-components is denoted by n : n = 1 is the spin liZ 
Ising model, n ~ 2 is the claSSical (spin 00) XY model, 
n = 3 is the classical Heisenberg model and, finally 
n = ~ gives the Berlin-Kac spherical model. ExtenSion 
can be made to include biquadratic as well as bilinear 
spin interactions [33). The numerical ~trapolation ap
proach of Bonner and Fisher has been applied to a vari
ety of l-D models where the possibility of exact solu
tions seems remote. Examples are the 1-0 Hubbard model 
(34) (an extension to the alternating version would be 
of interest), the Heisenberg ladder model suggested to 
describe copper nitrate (1S1, and Heisenberg-tYpe models 
for S ~ 1/2, including Single-ion anisotropy [36J. 

To complete the Introduction. it seems appropri
ate to review the present status of exact, analytic re
sults for the spin 1/2 Ising-Heisenberg-XY linear chain. 
The mathematical analysis requir~d for this l-D model 
is definitely more complicated than that required to 
solve the 2-D Ising model. Since the 2-D Ising solu
tion has been so fruitful in the development of the 
modern theories of critical phenomena, it would seem 
profitable to pursue the l-D model solution in equiva
lent detail. Early analytic work beginning in the 
1930's has been reviewed by Thompson [2). A break
through by yang and yang about 1966 [37) resulted in a 
detailed solution as a function of anisotropy and mag
netic field for T ~ 0 only. However, this was suffic
ient to determine the character of the interesting cri
tical Singularities. The finite temperature properties 
presented a greater problem. Progress has been made by 
Johnson and McCoy [38], and independently by Takahashi 
[39], on the basis of a formulation due to Gaudin [40). 
An important paper by Johnson, Krinsky and McCoy deals 
with the elementary excitations of the general XYZ 
model [4lJ. Nevertheless, information is still most 
notably lacking for the cases of the Heisenberg ferro
and antiferromagnet, and the Ising-Heisenberg ferromag
net for t{ = O. 

MAGNETIC MODEL SOLUTIONS 

The effective spin Hamiltonian on which attention 
is primarily focussed in this revie", is 

H (1) 

~e have bilinear spin coupling, assume nearest-neighbor 
spin interactions only, and the effective exchange con
stant is J modified for the spin couplings in different 
directions by factors a, band c. The Ising model is 
obtained by putting b = c = 0: (In general by letting 
any two of a, b, c equal zero). The XY ~del is ob
tained by putting a = 0: (I'n general by letting anyone 
of a, b, c equal zero). If a = b = c, we have complete 
rotational symmetry in spin space and obtain the Heisen
berg model which may, of course, be written in ve~ 
form 

N ..... 
H = -2Ji~lSi·Si+l· 

If J >0, the spins may lower their energy by aligning 
parallel and we have a Heisenberg ferromagnet. If J<O, 
the antipara1le1 spin alignment is favored and we have 
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an antiferromagnet. If a, band c are not equal spin 
anisotropy prevails. If a > b = c, we have uniaxial 
(easy axis) anisotropy. On the other hand, if a < b=e, 
planar (easy plane) anisotropy results. The magnitude 
and type of anisotropy in the effective spin Hamilton
ian results from crystal field effects, as noted, for 
example, by de Jongh [14]. The effects of an applied 
magnetic field ~an+he represented by the addition of a 
Zeeman term -gaH·isi to the Hamiltonian (1). Crystal 

field effects may be accounted for by a term 6EiS~)2. 
Finally, the spin value may range over 1/2 ~ S ~ ~. 

The static properties commonly measured by ex-
perimentalists are the initial (zero-field) suscepti
bility, X, the specific heat at constant field, CH, and 
the magnetization isotherms as a function of applied 
field, MT vs. H. Theoretical information, which is 
essentially complete for the major magnetic models 
Ising, Heisenberg and XY, is now available for compari
son with experiment as a function both of model type 
and spin value. In addition, the effects of magnetic 
dimensionality are no~ reasonably well understood, 
qualitatively and quantitatively. These three major 
factors, dimensionality, spi~ and model variatio~~ill 
be reviewed briefly,for their value in identifying the 
magnetic model underlying experimental results on (pre
ferably more than) one of the static properties. 

Concerning magnetic dimensionality, the character
istics of (quasi-) l-D magnets are relatively low, 
broad maxima in the magnetic specific heat, and also in 
the AF and perpendicular susceptibilities. These maxi
ma do not correspond to cooperative long-range-order 
(LRO) transitions, since for short-range (e.g., nearest
neighbor) forces Tc = 0 for ideal I-D systems, and Tc 
is relatively small for "good" I-D experimental systems. 
The broad maxima therefore correspond to short-range
order (SRO). More specific details arp available in 
previous articles and reviews. [2,14,42,43]. However,we 
note that the best method of determining magnetic dim
ensionality, pioneered by Shirane at Brookhaven, is 
quasi-elastic neutron scattering. Scattering in reci
procal space shows dramatic dimensionality effects, 
occuring at points for 3-D systems, lines for 2-D sys
tems and planes for l-D systems. 

Information on spin variation is relatively recent. 
In general, the magnetic thermodynamic properties show 
a steady progressive variation in, say, the height and 
position of the rounded maximum as S varies from 1/2 to 
~. Results for the Ising parallel susceptibility are 
available [31], and for the Heisenberg susceptibility, 
which owing to spin-flop effects has a perpendicular 
character [7,44]. (The susceptibility parallel to the 
field direction vanishes as T + 0 for uniaxially aniso
tropic AF~. Susceptibilities measured in a direction 
perpendicular to the easy axis show a non-zero value, 
Xo ' as T + 0.) Work of BIBte [36] gives information on 
the spin variation of CH, and Blate has in addition es
timated the T = 0 magnetization isotherms [4~. The 
spin variation is not very striking, except in one im
portant respect. The S = ~ curves all show non-physical 
features at low temperatures. For example, the classi
cal Heisenberg specific heat rises monotonically to a 
non-zero value as T + 0, instead of vanishing in accord
ance with the third law of thermodynamics, as do the 
curves for S < ~. 

Finally the model dependence of the S = 1/2 mag
nets will be discussed. In Fig. 1 we see the perpendi
cular susceptibility for the Ising model, and X for the 
XY model and Heisenberg AF. All three curves show quali
tatively similar features. Fig. 2 shows. the zero-field 
specific heats. Note that the Ising and XY model spec
ific heats are independent of the sign of J. (This is 
also true of the S = ~ Heisenberg model, not shown.) The 
S = 1/2 Heisenberg model, however, shows pronounced dif
ferences between F and AF. Fig. 3 displays the T = 0 
magnetization curves, MT vs H, for various models, and 
model dependent differences become significant. For the 
Ising model, the curve is a step function. For the Heis
enberg AF, the curve starts out linearly (with slope=xo) 
and saturates quadratically with field [7]. The critical 
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T 

Fig. 1. Perpendicular 
susceptibilities of 
various S = 1/2 
I-D magnets. The X 
scale has been 
normalized. 

M.------,-------,-------,-------, 

Fig. 2. Zero-field specific heats of various S 1/2 
I-D magnets. 

Fig. 3. T = 0 magnetization curves vs. applied 
magnetic field for various S = 1/2 magnets. 

field is twice the Ising value. The XY curve is similar 
in shape to the Heisenberg model, but the critical field 
is the same as that for the Ising model. By contrast we 
show an interesting curve for the Ising chain in a trans
verse field. Saturation is only attained for H + oo~ 
a critical field is present as an inflection point, 
such that the field derivative (the zero-point suscepti
bility) diverges logarithmically on each side. This is 
the same critical behavior as the zero-field specific 
heat of the 2-D regular Ising model, and illustrates a 
general result. This result strongly suggests that the 
critical Singularities in a D-dimensional model for T=O, 
H # 0 should be the same as those for a (D + 1)- dimen
sional model for H = 0, T " 0 [4(;]. More detailed dis
cussions of model dependences are available [7,14,43]. 

One point of difference between the I-D Ising mod
el, and both XY and Heisenberg models, is the behavior 
of the correlation length seT). This quantity is a 
measure of the degree of correlation (i.e. degree of 
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spin alignment) of spins along the chain. ~ diverges 
as T ~ 0, corresponding to a Tc = 0 critical point. How
ev.er, for the Ising model ~ diverges exponentially fast 
(corresponding to relatively more rapid growth of corre
lation), and more slowly as T- l for the S = 00 XY and 
Heisenberg chains[53]. Quasi-elastic neutron scattering 
has provided experimental demonstration of the behavior 
of ~(T) [47]. The nature of the divergence of ~(T) for 
the s=1/2 Heisenberg chain is not, as yet, known exactly. 

CRITICAL SINGULARITIES IN l-D MODELS 

It is commonly said that 3-D systems show Tc > 0 
phase transitions whereas 1-0 systems show no phase 
transitions (and, by implication, are therefore less in
teresting). It should be noted that higher-O systems 
may have Tc depressed by the presence of competin~ 
interactions. In fact, exactly solvable models do exist 
with no phase transition (even at T = 0) in zero field. 
Transitions occur only in non-zero magnetic fields [48]. 
Most 1-0 systems with short-range forces show interest
ing critical singularities situated at Tc = O. However, 
even for 1-0 models, if the magnetic interactions become 
sufficiently long-ranged, then Tc > O. (In the limit of 
infinitely weak, infinite range interactions, (equivalent 
neighbor model), the critical behavior is mean-field
like). An important paper of Joyce [49, 50] gives ana
lytic solutions for the long-range spherical model in 
both l-D and higher D. In 1-D, 2-D and 3-D, three dis
tinct regimes appear. For interaction range less than 
a special value, the critical behavior has the nearest
neighbor character. For interaction range greater than 
a second, larger, special value, the critical behavior 
is mean-field-like. For intermediate range values, the 
critical exponents vary continuously between short-range 
and long-range limits. Similar behavior has been ob
served in numerical studies on the l-D long-rang~ Ising 
model [51] and in renormalization group treatments of 
the 3-D long-range Ising model [52]. 

It might be noted that for Tc = 0 critical systems, 
hyperscaling relations may be formulated which are some
what different from the usual relations, because factors 
of T and T2 in the basic definitions of thermodynamic 
properties give rise to confluent singularities at the 
Ic = 0 critical point [53]. 

ACCURACY OF NUMERICAL TECHNIQUES 

Since analytic treatments are not always possible, 
even in l-D, it is interesting to evaluate the accuracy 
of numerical extrapolation methods described in the in
troduction. Fig. 4 is a comparison of numerical estim
ates of the zero-field CH for intermediate anisotropy 
b = c = a/2, based on rings of up to 10 spins [43], 
with numerical solutions of coupled non-linear integral 
equations resulting from an analytic treatment of 

--JOHNSON 
----- BONNER 

I 
'-'---___ -'-I ____ L ___ ~ __ _:I 

0.5 T 1.0 1.5 2.0 

Fig. 4. Comparison of zero-field specific heats 
resulting from theoretical work and numerical ex
trapolations, for the anisotropic S = 1/2 chain. 

1302 J. Appl. Phys., Vol. 49, No.3, March 1978 

0.3 

eH 

0.2 

0.1 

o 

ISING· HEISENBER6 
FERRO 

Fig. 5. Numerical extrapolations of Blate for the 
S=1/2 anisotropic linear ferromagnet. 

Wn 0.5 
, BAXTER 
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Fig. 6. Comparison of numerical extrapolations with 
exact analytic work for the T = 0 LRO of the l-D 

.anisotropic antiferromagnet. Other pair correlation 
function ( wn(Y) ~ <SoSn> ) extrapolations are 
shown also. For b = c, the uniaxial anisotropy 
parameter is defined to be y =b/a. 

Johnson [38b]. Uncertainty is present in both methods. 
increasing as T~. The agreement, however,is generallY 
satisfactory, discrepancies being comparable with ex
perimental error. More recent calculations of Blate 
[54] for the anisotropic ferromagnet for free-ended 
chains of up to 12 spins are given in Fig. 5 and illus
trate the convergence of the finite systems to the ex
trapolated N ~ 00 limit. The Blate extrapolation agrees 
with more refined recent calculations of Johnson [54] 
down to the lowest temperatures. 

Two important recent analytic results for the Heis
enberg l-D AF are not generally well-known. The AF spec
ific heat vanishes linearly with I as T ~ 0, with a co
efficient numerically estimated to be 0.35 [7], and now 

exactly known to be 1/3 [39]. The long-range order 
parameter (LRO) for the ISing-Heisenberg AF was estim
ated numerically to vanish only at tho" Heise.lberg limit. 
This prediction is confirmed by an exact result due to 
Baxter [55], and discrepancies between extrapolation and 
analytic result as a function of uniaxial anisotropy are 
reasonably small (~ 5 - 10% at most), as Shown in Fig. 6. 

QUASI-l-D SYSTEMS 

In "real" l-D systems, weak inter-chain interactions 
ultimately result in a 3-D cooperative ordering anomaly, 
situated at a lower temperature than the characteristic 
l-D rounded maximum in a "good" example. The only avail
able exact result illustrating this phenomenon is the 
well-known work of Onsager [1,14] for an Ising 2-D net 
with unequal "horizontal" and "vertical" exchange con
stants. Many approximate theories have attempted to 
locate Tc for a specific model and ratio of inter-chain 
to intra-chain coupling constants, but quantitative a-
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greement among different approaches is not good [56J. A 
phenomenon recently observed experimentally in a series 
of quasi-l-D AF's, where the phase transition initially 
increases in T with increasing applied field, in contra
diction to the predictions of mean-field theory, can be 
interpreted in connection with work of Kosterlitz, Nelson 
and Fisher [57J. Essentially, as soon as H > 0, the 
quasi-l-D Heisenberg AF behaves as a quasi-l-D XY model. 
Since XY ordering temperatures are relatively higher than 
Heisenberg ordering temperatures, the increase is quali
tatively explained. 

DISORDERED AND DILUTE l-D MAGNETS 

One-dimensional topology, or, equivalently, the low 
I-D coordination number, emphasize strongly the effects 
of impurity and disorder in I-D relative to higher D, 
where interaction pathways around the impurity are avail
able. This feature, plus the much greater ease of solv
ability in I-D, have made I-D systems a happy hunting 
ground for researchers in the highly popular and growing 

at the well-known double-sine (spin-wave) dispersion fre
quencies, numerical and approximate calculations [71,72] 
for the spin-1/2 Heisenberg AF indicate a "tail" of spec
tral weight above the des C"loizeaux and Pearson triplet 
spin-wave states. The situation is sketched in Fig. 7. 
Numerical [7lJ and analytical [41J studies indicate that 
the des Cloizeaux-Pearson states form the lower boundary 
of a two-parameter continuum (shOwn shaded) compriSing 
degenerate singlet and triplet states. Numerical studies 
indicate that only the triplet states carry spectral 
weight, and also that non-negligible weight occurs at 
the !££ of the double continuum. If this theoretical 
prediction is confirmed by more refined neutron scatter
ing experiments [73], then a further important difference 
between quantum (S = 1/2) and classical (5 = 00) linear 
chains appears. This difference in the low temperature 
spin dynamics is sketched in Fig. 7b. 

l-D MAGNETS, 2-D FERROELECTRICS 
AND OTHER CORRESPONDENCES 

area of dilute and disordered systems. The volume of in- An important relation exists between the I-D arche-
teresting articles is already too vast for any realistic typical XYZ model and a class of 2-D hydrogen-bonded 
attempt at review in this short paper. The subject ap- ferro- and antiferroe1ectrics, which has proved fruit-
pears ripe for review on its own: unfortunately no such fu1 in the theory of cooperative phenomena. The isomor-
review is presently available, to the author's knowledge. phism occurs because the transfer matrix for the 2-D 
Brief mention might be made of a comprehensive series of problem commutes with the Hamiltonian matrix for a I-D 
papers on I-D solvable magnets with a distribution of ex- system. Hence the correlation functions in the two prob
change constants [58]; approximate treatments of quasi- 1ems are related, and spin anisotropy in the I-D magnet 
1-D systems with impurities [59); exact solutions for corresponds to temperature in the 2-D ferroelectrics. 
randomlY dilute Ising chains and the XY chain with a Specifically, the 2-D Rys antiferroelectric model corres-
random applied field [60); exact calculations for random ponds to the Ising-Heisenberg AF, the 2-D Slater KDP 
and impure classical Heisenberg chains [61J; and Monte ferroelectric corresponds to the Ising-Heisenberg ferro-
Carlo studies on Ising spin glasses [62]. Work of magnet, and the ice problem is isomorphous to a I-D 
Richards has represented a significant contribution to ferromagnet with anisotropy intermediate between Heis-
a correspondingly large body of experimental work [63). enberg and XY. Extensive further detail is provided in 

SPIN DYNAMICS OF QUASI-I-D SYSTEMS 

Theoretical study of dynamical properties is con
Siderably more difficult than studies on static proper
ties. Much work has been done, but the subject generally 
is on a relatively insecure footing owing to a lack of 
exact solutions for testing approximate theories. Ac
cordingly, there has been considerable activity in I-D, 
which has been extensively reviewed in articles by 
Richards [64], Hone and Richards [64J and Steiner, Vil
lain and Windsor (65J. Considerable attention has been 
paid to the classical Heisenberg chain because of its 
relative ease of solubility [66J. 

Infinite temperature correlations have been studied 
by numerical approximation techniques based on work of 
Bonner and Fisher (7J and Baker [67] for Heisenberg and 
XY chains [68]. A conjecture on the Gaussian time-de
pendence of the XY auto-correlation function [68] has 
recently been confirmed by exact work. A particularly 
complete treatment of the T = 0 dynamical spin correla
tions of the XY chain is now available [70]. At low 
temperatures, the spin dynamics of I-D Heisenberg AF's 
is interesting. By contrast with the classical Heisen
berg chain, where all spectral weight is concentrated 

Fig. 7a. Two-parameter 
continuum excitations of 
the l-D Heisenberg anti
ferromagnet. 

k = k I 
T-O 

E 

Fig. 7b. Schematic pre
diction of spectral 
weight for the S = 1/2 
quantum chain (shaded) 
compared with classical 
result. 
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reviews by L1eb and Wu [74), Nagle [50) and Nagle and 
Bonner [75]. 

To conclude this review let us survey fur-
ther interesting transcriptions between I-D magnets and 
other physical phenomena. A well-known correspondence 
between magnets and lattice gases (fluids) is utilized 
in exact calculations for a I-D continuum cluster inter
action fluid [76]. This transcription has also been used 
to transform a I-D Ising AF with a Baker-Kac ferro
magnetic tail [77] into continuum fluids [78] and lat
tice gases with extended repulsive hard cores (78), which 
show both a liquid-vapor phase line ending in a critical 
point and a solid-liquid phase line. In general, l-D 
magnetic systems with competing long range interactions 
show multicritical behavior [77, 79]. The behavior of 
dilute magnetic alloys near the percolation threshold 
has been related to essentially I-D properties of self
avoiding walks [80J and exact solutions for I-D site per
colation problems show breakdown of universality [80]. 
Excitations of the I-D XYZ spin 1/2 model are equivalent 
to those of the field-theoretic (one space and one time 
dimension) Thirring model with suitable relations 
between coupling constants [22aJ. 
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