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ABSTRACT 
 
 Carbon dioxide (CO2) is both an unavoidable waste product of aerobic 

carbohydrate metabolism and a fuel source for autotrophic and chemoautotrophic 

organisms. At biological pH, CO2 rapidly reacts with interstitial and intracellular water 

to form carbonic acid (H2CO3), that then dissociates into protons (H+) and bicarbonate 

(HCO3
-). While CO2 and H+ readily diffuse across biological membranes, the majority 

of the CO2 in living tissues is in the membrane-impermeable form HCO3
-. The enzyme 

carbonic anhydrase (CA) catalyzes the reversible hydration of CO2 with water to 

maintain an instantaneous equilibrium between these chemical species. CA is not only 

central to the transport and excretion of CO2 in animals (or uptake in autotrophic 

organisms), but is also indirectly involved in important physiological processes, such 

as osmoregulation and acid-base balance. The multiple functions of CA are a result of 

multiple isoforms that are localized to specific subcellular compartments/fractions. 

Furthermore, the level of CA activity in an organism can be induced to change in 

response to conditions in the ambient environment, and may also reflect the metabolic 

rate of the organism. This enzyme has been studied in cell and tissue types from 

numerous organisms, but has never been systematically characterized in squids. This 

dissertation examined CA activity in gill and mantle muscle among several 

cephalopod species in terms of aerobic mass-specific metabolic rates (MR), 

evolutionary relationships, and environmental conditions. It also compared the 

protein-specific activity of CA in the respiratory tissue reported in the literature for a 

broad array of invertebrates. 

  
 



 

 The CA activity in gill and mantle muscle tissue from three squid species was 

measured to examine whether differences in activity may be related to phylogenetic 

relationships or environmental adaptations. The three squid species, Dosidicus gigas, 

Lolliguncula brevis, and Doryteuthis pealeii have similar MR but endure different 

physiological demands due to their respective environmental conditions. The largest 

member of family Ommastrephidae, Dosidicus gigas, undergoes diel vertical 

migrations into a well-defined oxygen minimum zone in the eastern Pacific. The brief 

squid, Lolliguncula brevis, is the only squid species that inhabits the wide-ranging 

abiotic conditions of estuarine waters. This species is in the same family as 

Doryteuthis pealeii, yet the latter requires narrower environmental parameters. For all 

three species the total CA activity was greater in gill tissue than in mantle muscle, but 

the activity in each tissue was statistically the same between these species. The 

distribution of CA isozymes within the subcellular compartments, however, was more 

similar between D. gigas and L. brevis, species that chronically endure variable 

conditions, than between more closely related L. brevis and D. pealeii. Reflecting the 

similar MR of these three species, total CA activity in gill scaled independent of both 

mass and MR, however there was a significant relationship in mantle muscle. The 

findings suggest that while total CA activity is reflective of whole organism, 

environmental conditions seem to affect the subcellular distribution of this enzyme. 

Additionally, it appears that the primary function of CA in cephalopod gills is towards 

the removal of the large amounts of CO2 produced in these muscular, highly active 

animals. 

  
 



 

 Broadening the comparison of CA activity among cephalopods, I examined the 

CA activity in gill and muscle tissue from cephalopod species at different depths to 1) 

further test the visual interaction hypothesis and 2) examine the relationship between 

CA activity and metabolic rate. The visual interactions hypothesis states that the 

decreasing metabolic rates with increasing depth distribution among visually-orienting 

oceanic species is due to relaxed selection for strong locomotory capacity because the 

diminished light levels result in less frequent predator-prey interactions. The CA 

activity in gills and gill mass each declined significantly with increasing depth. The 

protein concentration in both gill and mantle muscle also showed a significant decline 

with depth distribution. The CA activity in both gill and mantle muscle exhibited a 

strong, direct correlation with metabolic rates among cephalopods. These findings are 

in agreement with other studies that have tested the visual interactions hypothesis.  

Additionally, the activity of CA is clearly correlated with aerobic mass-specific 

metabolic rate among cephalopods. 

 To examine factors that affect CA activity once the influences of animal mass 

and metabolic rates are removed, I compared the protein-specific activity of CA in the 

respiratory tissues of 67 invertebrate species across four phyla. The data was obtained 

from published values of specific CA activity that met specific inclusion criteria. The 

specific CA activity values for all species sampled was analyzed in terms of 

taxonomic group, type of respiratory tissue, habitat, symbiotic relationships, and type 

of homogenate used in the assay. A subset of the data was utilized to examine residual 

correlations between specific CA activity and estimates of animal mass and metabolic 

rates. The weighted mean masses and metabolic rates within each family were 

  
 



 

  
 

calculated from values obtained through a second literature search. Using this 

truncated dataset only bivalves exhibited a correlation between specific CA activity 

and metabolic rate. The results suggest that, once difference in mass and MR are 

accounted for, the physiological demands placed on an organism to survive in a given 

habitat seem to be the driving factor underlying CA activity. 

 This work is the first to systematically analyze CA activity in cephalopods, and 

contributes to the growing body of knowledge about CA activity in invertebrate 

respiratory and muscle tissues. This research also broadens scientific understanding of 

the relationships between CA activity and whole animal metabolic rates, the impacts 

of an organism's environment, and differences among various invertebrate taxa.
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PREFACE 

 This dissertation is presented in manuscript format in accordance with the 

guidelines set forth by the Graduate School of the University of Rhode Island. Each 

chapter is written to stand alone as a separate research question while simultaneously 

contributing to the greater body of knowledge about cephalopod physiology and 

function of carbonic anhydrase in animals. Chapter 1 is in preparation for submission 

to Comparative Biochemistry and Physiology, Part B. Chapters 2 and 3 are currently 

in preparation for submission to Marine Biology. 
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Summary 

 The enzyme carbonic anhydrase (CA) rapidly catalyzes the interconversion of 

CO2 to H+ and HCO3
- and is central to the systemic transport and excretion of CO2. 

This reaction is also important in key physiological processes, such as acid-base 

balance and osmoregulation. Environmental changes (e.g. salinity) can induce changes 

in CA activity in gill tissue, and there is some evidence that CA activity is linked to 

metabolic rate. We measured CA activity in the gills and mantle muscle from 

Dosidicus gigas (Ommastrephidae), and two members of Loliginidae, Lolliguncula 

brevis and Doryteuthis pealeii. These squids exhibit similar mass-specific metabolic 

rates (MR), but have different size ranges and endure varied environmental conditions. 

We examined CA activity (total and within the subcellular fractions) in relation to 

aerobic metabolic demand, evolutionary relationships, and environmental factors. 

Total CA activity in gill tissue was around 8000 μmol CO2·g
-1·min-1 for all species and 

was significantly greater than in mantle muscle. Within the subcellular fractions, over 

75% of the CA activity in gill tissue from each species was attributable to cytoplasm 

and mitochondria combined. However, the subcellular distribution of CA activity was 

more similar in D. gigas and L. brevis, the two species that experience wide-ranging 

environmental parameters, than between the Loliginids. Total CA activity in gill tissue 

scaled independent of both animal mass and MR, whereas a significant scaling 

relationship was found between muscle CA activity and mass and MR. Among 

subcellular fractions, a significant scaling relationship was only detected in the 

cytosolic fraction, and occurred in both gill and muscle tissue. At first glance total CA 

activity appears to be related to metabolic rates in these species. However, examining 
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CA in the subcellular compartments reveals that the distribution of CA in a tissue may 

be more related to environmental conditions than aerobic metabolic demands or 

phylogeny.  

 

 

 

Key words: carbonic anhydrase, carbon dioxide, cephalopods, Dosidicus gigas, 

Doryteuthis pealeii, Lolliguncula brevis 
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Introduction 

 Carbon dioxide (CO2) is an unavoidable waste product of aerobic carbohydrate 

metabolism, and its production is directly proportional to metabolic rate. CO2 is highly 

soluble in water and spontaneously reacts with water in the cell cytoplasm and 

extracellular fluid of all living systems (reviewed for vertebrates by Walsh and Henry, 

1991; Geers and Gros, 2000). This reaction forms carbonic acid that then dissociates 

into protons (H+) and  bicarbonate (HCO3
-) (reaction 1, below). The rate constants for 

the forward and reverse reactions are different, with the hydration reaction being about 

3 orders of magnitude faster than the dehydration reaction (Edsall, 1968).  The pK of 

the CO2 system is 6.1 (DeJours, 1981), so that at physiological pH (7.4 - 8.0 for 

terrestrial and aquatic species, respectively), over 95% of the total CO2 is in the form 

which can make CO2 elimination potentially problematic for metabolically active 

animals. The enzyme carbonic anhydrase (CA) rapidly catalyzes the reversible 

hydration of CO2 to HCO3
- + H+ (reaction 2) at rates several orders of magnitude 

faster than the uncatalyzed reaction (e.g. Khalifah and Silverman, 1991). Originally 

discovered in mammalian erythrocytes (Meldrum and Roughton 1933a,b) the role of 

CA in CO2 transport and excretion has been well studied (Forster et al., 1980; Klocke, 

1980; reviewed in Geers and Gros, 2000). The importance of erythrocyte CA is 

primarily in catalyzing the slow dehydration of HCO3
- in the pulmonary capillaries, 

of HCO3
-. While CO2 is readily diffusible across biological membranes, HCO3

- is not, 

                     CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3-               (1) 

 

                                CO2 + H2O  ↔  H+ + HCO3-                      (2) 
CA 
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where the residence time of blood is very short (0.75 s); this ensures that there will be 

a large enough PCO2 gradient across the lung (or gill) to drive CO2 excretion. When 

erythrocyte CA is inhibited, CO2 excretion is reduced, resulting in hypercapnia and 

acidosis in both terrestrial and aquatic species (e.g. Maren, 1967; Seibel and Walsh, 

2001, 2003).  

 CA is also an important enzyme in several other key physiological processes. 

For example, the gills of aquatic organisms function in respiratory gas exchange, salt 

transport, and acid-base balance and CA can function in all three processes. The 

multiple functions of CA are a result of multiple isoforms that are localized to specific 

subcellular compartments/fractions within the gill.  A membrane-associated CAIV is 

believed to function in the dehydration of extracellular HCO3
- and thus facilitate CO2 

branchial excretion (Henry, 1987; 1988a,b; Henry et al., 2003), and as such plays a 

similar role to CAIV in mammalian lungs (Klocke, 1980).  Cytoplasmic CA (CAc) is 

believed to function in the intracellular hydration of respiratory CO2 to H+ and HCO3
-, 

which are then used as counterions for general cation and anion transport, 

respectively, in the gills of both crustaceans and molluscs (Henry and Cameron, 1983; 

Henry and Saintsing, 1983; Henry, 1984, 2001; Henry et al., 2003).  Because ion 

transport (specifically Na+/H+ and Cl-/HCO3
- exchange) has been linked to acid-base 

regulation (reviewed by Wheatly and Henry, 1992; Henry and Wheatly, 1992), 

cytoplasmic CA has been strongly implicated in this process as well. A mitochondrial 

isoform (CAV) has been documented for both lower vertebrate and invertebrate gills 

(Henry, 1988; Henry et al, 1988), but its function has not been systematically studied.     
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One of the defining characteristics of branchial CA in euryhaline species is that 

enzyme activity is influenced by environmental salinity (Henry and Cameron, 

1982a,b). In the blue crab, Callinectes sapidus, CA activity was significantly increased 

in the posterior gills during acclimation to low salinity (8 ‰) (Henry and Cameron, 

1982a), and this was found to be almost entirely due to increases in the cytoplasmic 

isoform (Henry, 1988). Furthermore, the increases in CA activity occur exclusively in 

the posterior gills in euryhaline crustaceans and correspond to the separation of 

respiratory vs. osmoregulatory function in anterior vs posterior gills (Henry and 

Cameron, 1982b; D'Orazio and Holliday, 1985; Castilho, et al., 2001; Serrano et al., 

2007). The induction of CA activity in response to low environmental salinity is the 

best-documented case of this enzyme being affected by environmental factors in 

animals. In plants, especially algae such as Chlamydomonas (e.g., Coleman and 

Grossman, 1984), large increases in CA activity occur in response to low 

environmental CO2, suggesting that factors affecting metabolism may also alter CA 

activity. Similarly, some evidence suggests that CA activity may be reflective of 

metabolic demand in animals (Henry and Saintsing, 1983; Kochevar and Childress, 

1996; Seibel and Walsh, 2001, 2003), but whether environmental factors (e.g. 

hypoxia), which alter metabolism, also affect levels of CA activity has not been 

systematically investigated.   

Although CA has been investigated in several mollusks (Henry and Staintsing, 

1983; Kochevar and Childress, 1996; Baillie and Yellowlees, 1998; David et al., 2005; 

Yu et al., 2006), including the cuttlefish Sepia officinalis (Addink, 1971; Donaubauer 

and Schipp, 1978; Shipp et al., 1979), its distribution, characterization, and 
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physiological roles in squids have never been assessed. This is surprising since squids 

remain model organisms for many anatomical, visual, neurological, and physiological 

studies (Sweeny et al., 2007; Castillo et al., 2011; Rosa and Seibel, 2008). Squids are 

widely distributed in the marine environment and are variable in size and metabolic 

rates (MR) (Hendrix et al., 1981; Nesis, 1983; Hanlon and Messenger, 1996; Seibel et 

al., 1997). Once temperature and body mass are accounted for, some species in the 

families Ommastrephidae and Loliginidae (two families characterized as highly-

muscular, active swimmers) exhibit the highest aerobic MRs among organisms 

(Seibel, 2007). Although members of these families exhibit similar MR, some species 

(e.g., Dosidicus gigas and Lolliguncula brevis) are each adapted to widely varying 

oxygen levels and salinities that would exert chronic stress and constraints on the 

physiological processes in which CA is involved. 

The Humboldt squid, Dosidicus gigas, is the largest Ommastrephid, attaining 

sizes of >1m mantle length (ML) and masses up to 50 kg (Nesis, 1983, Markaida et 

al., 2004). Its horizontal distribution extends throughout the eastern tropical Pacific 

from ~ 45° S – 40° N and westward along the equator to 140° W (Nesis, 1983; 

Nigmatullin et al., 2001). This range overlaps an extensive, and well-established, 

oxygen minimum layer (OML) that exists 200-1000 m in depth in the eastern tropical 

Pacific (Fiedler and Talley, 2006; Fabry et al., 2008). Adult D. gigas undergo diel 

vertical migrations during which they are found within the warm, well-oxygenated 

surface waters at night (0 – 200 m, ~ 30°C) and within the OML (< 0.1 µM O2 • L
-1, 

300 – 1000 m, < 10°C) for prolonged periods during the day (Gilly et al., 2006). Thus, 

both the horizontal and vertical distributions of D. gigas coincide with the OML 
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(Nigmatullin et al., 2001; Gilly et al., 2006; Rosa and Seibel, 2008,). Some of the 

compensatory strategies enabling D. gigas to endure prolonged residence in the OMZ 

are beginning to be elucidated. Recent findings suggest that a combination of 

metabolic suppression and strong oxygen affinity by hemocyanin play prominent roles 

(Rosa and Seibel, 2008, 2010; Seibel, 2013). 

The brief squid, Lolliguncula brevis (Loliginidae) also tolerates broad ranges 

of salinity, temperature, and oxygen concentration (Hendrix et al., 1981; Vecchione, 

1991; Bartol et al., 2002). Within the Chesapeake Bay, L. brevis has been routinely 

found in wide-ranging bottom temperatures (8 – 30 °C), O2 concentrations (59.4 – 

456.54 µM O2 • L
-1), and salinities (18 – 35 ppt) from spring until late fall (Bartol et 

al., 2002). This species is the only squid species found in estuarine waters (Hendrix et 

al., 1981; Vecchione, 1991; Bartol et al., 2002). However, the adaptations that enable 

L. brevis to thrive in broad thermal, haline, and oxygen conditions remain unclear.  

In contrast to the previous two species, the conditions experienced by the long-

fin squid, Doryteuthis pealeii (Loliginidae), are comparatively narrower, and its 

distribution appears to be more temperature dependent (Dawe et al., 2007). This 

species migrates seasonally from inshore waters in the summer (13-20°C, surface - 

200m) (Broaziak and Hendrickson, 1999) to offshore from Georges Bank to Cape 

Hatteras in winter (9-12°C, 100-200m) (Roper and Young, 1975; Roper et al., 1984). 

D. pealeii is distributed in comparatively stenohaline, stenothermal, and well-

oxygenated conditions in that are generally representative of most Loliginids. 

The physiological adaptations that enable D. gigas and L. brevis to endure 

'extreme' environmental conditions suggests different osmoregulatory and acid-base 
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balance demands on these species compared to those experienced by D. pealeii. The 

central role of CA in CO2 excretion and osmoregulation made it a logical choice to 

examine among these squids with similar MR but distinct environmental adaptations. 

The goal of this study was to determine the extent to which CA activity is related to 

aerobic metabolic demand, evolutionary relationships, ambient environmental factors, 

or a combination of these factors. This study measured differences in total CA activity 

between mantle muscle and gill tissues (the predominant sites of CO2 production and 

excretion, respectively) in the three squid species described above. We also 

characterized CA activity among intracellular pools (mitochondrial, microsomal, and 

cytoplasmic) in gill and mantle muscle. We examined fractional CA activity along the 

length of D. pealeii gills to test the hypothesis that activity differs between anterior 

and posterior gill lamellae based on putative differences in physiological function 

(respiratory vs. osmoregulatory) (Shipp et al., 1979). Lastly, we examined scaling 

relationships between CA activity and animal mass and metabolic rates. 

 

Methods 

Animal collection 

 Doryteuthis pealeii were caught in Narragansett Bay, RI between April – June 

and in September of 2008 and May – June, 2009 via either otter trawl aboard the 

Captain Bert (URI) or fished using Japanese style jigs off Goat Island Bridge 

Newport, RI. Additional D. pealeii were caught aboard Project Oceanology vessels 

(UConn, Avery Point campus) using an otter trawl near New London, CT from May – 
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June, 2009. Squid were either dissected immediately or held in coolers or troughs with 

continuously flowing seawater until dissection.  

Lolliguncula brevis were caught via otter trawl in Nickawampus Creek and/or 

Main Channel creek near Virginia Institute of Marine Science Eastern Shore 

Laboratory, Wachapreague, VA in September 2008 and November 2009. Squid were 

maintained in aerated coolers until dissection. The seawater in the coolers was 

frequently refreshed en route to VIMS’ lab.  

Dosidicus gigas were fished at night using jigs in waters over Guaymas Basin 

in the Sea of Cortez, Mexico, aboard the R/V New Horizon from May-June 2009 and 

again in 2010. Each specimen was dissected immediately upon landing and tissue 

samples were flash frozen in liquid nitrogen before being stored at -80°C until use. 

For all specimens, whole animal mass, mantle length, and mantle thickness, 

and gender (when possible) were obtained from each specimen prior to tissue 

sampling.  

 

Tissue collection 

The mantle cavity was accessed by a sagittal incision along the length of the 

ventral mantle surface. The entire gill distal from the branchial heart in L. brevis and 

the anterior 1-2cm of gill from D. gigas were excised. In the case of D. pealeii 2-3 

sections of gill tissue were excised, depending upon the length of the gill. These 

sections were categorized as: anterior gill (the first 1 cm from the anterior tip), 

posterior gill (the first 1 cm distal from the branchial heart), and middle gill (± 0.5 cm 

from the center of the gill). Thin, rectangular slices of mantle tissue approximately 
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3mm x 10-15mm were excised from the anterior edge of the mantle in all species. 

Blood samples were also obtained from either the branchial heart or head sinus using a 

27 gauge needle. All samples were immediately placed into cryo-vials and frozen in 

liquid nitrogen before being stored at -80 °C until use.  

 

CA assays 

 Carbonic anhydrase activity was determined in both whole tissue homogenate 

and sub-cellular fractions using the ΔpH method (Henry, 1991a). Frozen tissues were 

homogenized on ice using glass homogenizers (Kotex, Fisher Scientific) diluted in 3-

19 volumes of assay buffer (in mM: 125 mannitol, 75 sucrose, 10 Tris-base, pH = 7.4) 

depending on the mass and tissue type, with mantle typically requiring greater 

dilution. Prior to centrifugation, an aliquot of crude homogenate was removed to 

measure total CA activity. The remaining homogenate underwent differential 

centrifugation to separate intracellular compartments (modified from Henry, 1991b). 

Crude homogenate was centrifuged 270 x g for 15 min at 4 °C to pellet unbroken 

cells, nuclei, and large cell fragments (p1). The supernatant was then spun at 7,500 x g 

for 20 min at 4 °C to pellet mitochondria (p2). Approximately 300-500 μl of the 

remaining supernatant was diluted 5-50x in assay buffer centrifuged at 100,000 x g for 

90 min at 10 °C to pellet microsomes (p3) and leave the cytoplasm (s3) in the final 

supernatant. Pellets were resuspended in 4-29 volumes of assay buffer and placed on 

ice until use. After measuring initial activity, the p1 and p2 suspensions from gill 

sections of D. pealeii were each centrifuged as before. Supernatants were saved and 
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pellets were resuspended in 4-9 volumes of assay buffer. Both supernatants and pellets 

of each fraction were assayed and the percent of initial activity calculated.  

 Samples were assayed in a water-jacketed reaction chamber (Radnoti Glass, 

Monrovia, CA) at 4 °C that contained 4 ml assay buffer under constant stirring. The 

buffering capacity of the assay buffer was determined by the addition of 80 µl of 0.1 

M HCl and deemed acceptable if the average ∆mV of three assays conducted over two 

minutes was 30-40mV. Representative plots of gill and muscle assays, and the effect 

of 100μM acetazolamide (Az), described as follows are shown in Fig. 1. The 

uncatalyzed reaction was initiated by the addition of 80 µl CO2-saturated DI (CO2-DI). 

The ∆pH was measured using a Red Rod pH electrode (Radiometer Analytical) 

connected to an Orion 720A+ (Fisher Scientific) meter. The meter relayed the pH and 

mV data to a laptop computer every five sec over a two minute period. Catalyzed 

reactions were performed in triplicate with the addition of 2.5-10 µl of sample. The 

average variation between the triplicates was less than 10%. Between assays, the pH 

electrode was rinsed with deionized water (DI) and stored at 4 °C in an adjacent 

water-jacketed reaction well containing assay buffer.  

 The rates of the catalyzed and uncatalyzed reactions were determined from the 

initial slope of the reaction; the rate of the uncatalyzed reaction was subtracted from 

the mean of the three catalyzed rates. The buffering capacity and proton content of 

0.1M HCl were then used in the calculation to convert this net rate (mV/min) to the 

rate of CA in terms of CO2 converted per minute per gram tissue.  

 Carbonic anhydrase activity in the mitochondrial, microsomal, and 

cytoplasmic fractions was also titrated with serial concentrations (0.625-25 nM final  
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Figure 1.  Representative plots of the CA assay in (A) gill and (B) muscle tissues 
from D. gigas. The arrows denote the approximate points at which CO2-saturated 
DI water was injected to initiate each reaction. Note the difference in scale on the 
y-axis resulting in the appearance that the uncatalyzed and acetazolamide (Az) 
reactions are steeper in (B). Symbols represent the mean catalyzed (x), uncatalyzed 
(●), and assays containing both tissue and 100 μM (25 nM final concentration) of 
the CA inhibitor, Az (◊). 

 



 

concentration) of Az. The data were plotted according to the formula described be 

Easson and Stedman (1937): 

    Io/i = Ki/(1 - i) + Eo  

where Io is the inhibitor concentration, i is the fractional inhibition at a given Io, Ki is 

the inhibition constant, and Eo is the total concentration of enzyme. These plots allow 

estimates of inhibition constants and enzyme concentrations for each fraction. 

Inhibition assays were performed in duplicate for 2-5 subcellular fractions from each 

species.  

 

Statistics 

Analysis of variance (ANOVA; α = 0.05) was used to compare total CA 

activity between gill and muscle tissue within each species, and for each tissue 

between species. An ANOVA was also used to test for differences in CA activity 

between intracellular fractions of a given tissue within each species. A two-way 

ANOVA was used to test for effects of species and activity in intracellular fractions. 

Where significance was detected, Tukey-Kramer HSD was used for pair-wise 

comparisons. All analyses used JMP software version 10 (SAS Institute, Carey, NC).  

 

Results 

 The overall mean body masses for squids used in CA assays are shown in 

Table 1. The mean body mass of species used to examine gill CA activity spanned 

nearly two orders of magnitude. There was approximately a 43-fold difference in body 

mass between L. brevis and D. gigas sampled for CA measurements in mantle muscle 
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(Table 1). The effect of seasonal and catch year on CA activity for each species were 

tested and were not significantly different (data not shown).  

Table 1. Morphometrics of squids used in the CA measurements and estimated 
temperature range at which specimens were caught. Values are means ± SEM. 

Gill  Mantle Muscle  
Temperature 

range (°C)  
Mean 
mantle       

length (cm) 
 

Mean mass 
(g) 

 
Mean mantle   
length (cm) 

 
Mean mass 

(g) 
 

  
22.40 ± 1.17  300.0 ± 31.6  22.63 ± 1.48  300.0 ± 40.8  29 D. gigas 
10.92 ± 1.17  41.72 ± 7.77  13.32 ± 2.02  45.04 ± 6.59  20 D. pealeii 
3.30 ± 0.28  3.1 ± 0.7  3.96 ± 0.74  7.07 ± 3.91  15 - 25 

 
L. brevis 

Total CA activity  

 Total CA activity (crude homogenate) in gills (approximately 8000 μmol 

CO2·min-1·g-1 for all three species) was significantly greater (p < 0.0001) than in 

muscle (200 μmol CO2·min-1·g-1 in D. pealeii and D. gigas, and 700 μmol CO2·min-1·g-

1 in L. brevis) respective to each species (Fig. 2). Total muscle CA activity in each 
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Figure 2. Mean total CA activity in gill (white) and mantle muscle (black) from three 
different squids. For each species, gill CA activity was significantly greater than mantle 
muscle (p < 0.0001). However, for each tissue there was no difference in CA activity 
between each species. CA activity was plotted on a log scale for improved visualization 
of muscle activity. Error bars appear absent due to y-axis scaling. Values are means ± 
SEM. 
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species represented only 2.5%, 2.3%, and 8.6% of the activity measured in gill for D. 

gigas, D. pealeii, and L. brevis, respectively. There was no significant difference, 

however, in the total CA activity of either tissue when compared among the three 

species (Fig. 2). There was also no activity found in hemolymph of any species (data 

not shown). 

 

Intracellular fractional CA activity within and between species 

 Although the total CA activity among the gills was similar in all three squid 

species, the intracellular distribution of CA revealed notable differences between 

them. Among the intracellular fractions, the vast majority of CA activity was found in 

the cytoplasm (s3) and mitochondria (p2), with much less in the cell debris (p1) and 

microsomes (p3). The p2 fraction in gill of D. gigas had a significantly greater activity 

than any other fraction in that species (P = 0.0121; Fig. 3). This fraction was also 

approximately double the activity in the p2 fraction from D. pealeii or L. brevis (p = 

0.0001 and 0.0027, respectively; Fig. 3). However, the percent of the total CA activity 

in the intracellular fractions in D. gigas and L. brevis were very similar to each other, 

and distinct from the profile of D. pealeii (Fig. 4). In both D. gigas and D. pealeii the 

activity in the s3 fraction was significantly greater than either the p3 or p1 fraction (P 

< 0.0001 for both comparisons; Fig. 3). Within the gills of D. pealeii the activity in the 

s3 fraction was 2-4 times the activity of that fraction from D. gigas and L. brevis, 

which was a significant amount (P < 0.0001). The mitochondrial and cytoplasmic 

fractions were not different from each other in L. brevis, but both showed greater 

activity than the microsomal fraction. 
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Crude Homogenate 
D. gigas: 8683.65 ± 403.1 (5) 
L. brevis: 8438.93 ± 822.9 (9) 
D. pealeii: 8294.06 ± 716.6 (15) 

 In both D. gigas and L. brevis CA activity in the p2 fraction alone comprised 

45% of the total activity (Fig. 4). Combined, the p2 and s3 fractional activity in the 

gills of each species was approximately 80% of the CA activity (Fig. 4). The CA 

activity in the s3 fraction of D. pealeii comprised 63% of the total gill activity (Fig. 4). 

In all species the activities in the p1 and p3 fractions were statistically the same, and 

occupied roughly the same percentage of total activity. This suggests that there is little 

Figure 3. Schematic depicting the separation of gill tissues into subcellular components 
by differential centrifugation. The total CA activity (mean ± SEM (n)) for each species, 
reported as μmol CO2 · ml-1 · min-1. Activities in bold indicate significantly different 
values between species with in a fraction. Letters denote differences between fractions 
within a species. Values to the right of the arrows columns are centrifugation force, 
duration, and temperature. Abbreviations are P = pellet, S = supernatant. Schematic 
modified from Henry et al., 1987. 

P2 (mitochondria) 
D. gigas: 4883.01 ± 383.5 (5) a 
L. brevis: 2612.82 ± 563.6 (9) a 
D. pealeii: 2231.79 ± 178.6 (13)

S1 (cytoplasm, microsomes, 
mitochondria) 

P1 (cell debris) 
D. gigas: 1474.35 ± 171.5 (5) 
L. brevis: 997.84 ± 190.0 (9) b 
D. pealeii: 1216.11 ± 95.5 (13) 

S2 (cytoplasm, microsomes) 

P3 (microsomes) 

270x g, 15 min, 4 °C 

7500x g, 20 min, 4 °C 

100,000x g, 90 min, 10 °C 

S3 (cytoplasm) 
D. gigas: 3711.58 ± 186.3 (5) b 
L. brevis: 1907.08 ± 311.2 (7) a 
D. pealeii: 7018.15 ± 554.3 (8) a 

D. gigas: 801.54 ± 281.4 (4) 
L. brevis: 429.68 ± 160.0 (6) b 
D. pealeii: 696.86 ± 121.7 (8) 



 

CA bound to cell or organelle membranes. This was also observed in gills of S. 

officinalis (Schipp et al., 1979). 
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    The intracellular fraction in the muscle exhibited low CA activity in all three 

species. There were no significant differences in the CA activity of a given fraction 

between the species (Fig 5). The only significant differences among intracellular 

fractions in muscle were detected in the s3 fractions of L. brevis and D. pealeii (p ≤ 

0.0302 for all comparisons). Any CA mediated interconversion of CO2 that occurs 

within the muscle cell is likely small, suggesting that a potentially large portion of the 

CO2 effluxes via passive diffusion. This may be a contributing factor to the larger than 

expected difference in arteriole and venous pH observed by Pӧrtner (1994), who 

postulated that cutaneous respiration in squids may be responsible for a substantial 

amount of their O2 uptake (and CO2 release). 

Figure 4. Intracellular fractional CA activity as a percent of the total activity in gill 
from three squid species. Values are percent of the cumulative activity of all 
fractions. Note the similarities in the relative contribution of mitochondrial and 
cytoplasm fractions in D. gigas and L. brevis.  
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P2 (mitochondria) 
D. gigas: 43.17 (1) 
L. brevis: 176.38 ± 38.1 (5) 
D. pealeii: 149.0 ± 45.7 (5)

Crude Homogenate 
D. gigas: 216.8 ± 42.8 (4) 
L. brevis: 728.85 ± 127.9 (5) 
D. pealeii: 317.76 ± 128.3 (5) 

P1 (cell debris) 
D. gigas: 41.28 ± 11.0 (3) 
L. brevis: 222.94 ± 114.1 (2) 
D. pealeii: 106.49 ± 31.1 (6) 

S2 (cytoplasm, microsomes) 

270x g, 15 min, 4 °C 

7500x g, 20 min, 4 °C 

100,000x g, 90 min, 10 °C 

S1 (cytoplasm, microsomes, 
mitochondria) 

S3 (cytoplasm) 
D. gigas: 127.13 ± 40.8 (3) 
L. brevis: 431.15 ± 72.4 (5) 
D. pealeii: 393.67 ± 177.4 (5) 

P3 (microsomes) 
D. gigas: 158.81 ± 73.9 (3) 
L. brevis: 141.21 ± 82.3 (3) 
D. pealeii: 102.76 ± 34.6 (4) 

Figure 5. Schematic depicting the separation of mantle muscle tissues into 
subcellular components by differential centrifugation. The total CA activity (mean ± 
SEM (n)) for each species, reported as μmol CO2 · ml-1 · min-1 x dilution factor in 
ml.  

 

CA activity distribution along the length of gills in D. pealeii 

 Trends in each gill segment (anterior, middle, and posterior) of D. pealeii gills 

(Table 2) were generally reflective of the CA profile from whole gill (Fig. 4). Within 

each segment, the s3 fraction was significantly greater than any other intracellular 

compartments (p < 0.0001 in all comparisons; Table 2). The p2 fraction was 
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significantly greater than the p3 fraction in the mid-gill segment (P = 0.0276), and 

both the p3 and p1 fractions in the posterior gill segment (P = 0.0028 and 0.005, 

respectively). When each fraction was compared between the segments, the CA 

activity of the p2 fraction in the middle and posterior gill were significantly greater 

than the same fraction in the anterior gill segment (P < 0.0001). This may be 

indicative of a shift in mitochondrial densities along the gill length.  

 The effect of washing p1 and p2 pellets on CA activities among gill segments 

in D. pealeii is shown in Table 3. The results show that in the p1 fraction of each 

segment, little activity was retained in the pellet after a second centrifugation. In other 

words, the majority of observed CA activity was liberated to the supernatant after 

washing. This indicates that there was possibly a substantial amount of CA trapped in 

the first centrifugation and values in Fig. 3 p1 may be overestimates. Conversely, the 

majority of the activity in the p2 fraction was retained in the pellet after washing. This 

indicates that the CA activity observed in this fraction is largely due to mitochondrial-

bound CA (presumably CAV). 

 

Inhibition curves.  

 The plots of the inhibitor titrations are presented in Fig 6 and the inhibition 

constants (Ki) and estimates of free enzyme concentrations (Eo) are shown in Table 4. 

All fractions measured showed high affinities for Az in all three species. In D. gigas, 

the Ki was similar among the fractions. The Ki for Az was about 4 times less in the 

mitochondrial fraction of L. brevis than in the other two species, and also in the
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Table 3. The effect of washing on CA activity from initial pellets of cell debris and mitochondrial fractions (from Table 2). Values are 
means ± SEM. 
   Initial activity  Pellet activity  Supernatant activity  % of initial activity 
   n  μmol CO2·min-1· g-1  n  μmol CO2·min-1· g-1  n  μmol CO2·min-1· g-1  Washed Pellet  Supernatant 

cell 
debris  7  942.80 ± 183.5  4 268.63 ± 61.5  4  802.84 ± 72.7  28.49 85.15 gill-ant 
mitochon  6  1140.59 ± 218.1  4 1541.70 ± 237.1  4  754.05 ± 132.6  135.17 66.11 

                  
cell 
debris  7  1398.21 ± 105.7  5 644.72 ± 90.7  5  1484.73 ± 288.3  46.11 106.19 gill-mid 
mitochon  6  2624.38 ± 185.8  4 1706.84 ± 258.3  4  642.04 ± 208.4  65.04 24.46 

                  
cell 
debris  10  1279.95 ± 161.8  4 607.92 ± 61.2  4  1367.65 ± 136.8  47.50 106.85 gill-

post 
mitochon  10  2650.96 ± 165.1  4 2802.48 ± 222.3  4  1191.76 ± 111.4  105.72 44.96 

Table 2. Distribution of CA activity in gill and mantle tissue from segments of D. pealeii gill. Values are means ± SEM. 
  Anterior gill  Mid-gill  Posterior gill 

  n  μmol CO2·min-1· g-1   n  μmol CO2·min-1· g-1   n  μmol CO2·min-1· g-1  
Crude homogenate  4  6064.92 ± 1047.1   6  8909.91 ± 423.9   5  9338.35 ± 1756.0  
Cell debris  7  942.8 ± 183.5 b  7  1398.21 ± 105.7 b,c  10  1279.95 ± 161.8 b 
Mitochondria  6  1140.59 ± 218.1 b  6  2624.38 ± 185.8 b,†  10  2650.96 ± 165.1 b,† 
Microsomes  5  564.95 ± 168.2 b  5  578.56 ± 135.0 c  5  867.93 ± 235.0 b 
Cytoplasm  5  5623.13 ± 804.8 a  5  7037.16 ± 1016.9 a  5  8394.15 ± 764.7 a 

letters a,b,c indicate significant differences from pair-wise comparisons of activity between intracellular fractions within a tissue of an individual segments 
† denotes significant differences from pair-wise comparisons of activity between gill segments 
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 cytoplasmic fraction from L. brevis. Both the mitochondrial and cytoplasmic fractions 

in D. pealeii exhibited about 4 times greater affinity than the microsomal fraction. The 

affinity in the microsomal fraction of L. brevis could not be determined. The amount 
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Figure 6. Double reciprocal inhibitor titration plots of CA activity from D. gigas (A), 
L. brevis (B), and D. pealeii (C). The fractions in each plot are represented as: 
mitochondrial (p2, ♦, solid line), microsomal fraction (p3, ■, semi-dashed line), and 
cytoplasm (s3, □, dashed line). Data points for each fraction are a mean of 2-5 
specimens for each fraction assayed in duplicate.  
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of free enzyme (Eo) was similar among all three species in the mitochondrial fraction.  

The Eo was also similar between the cytoplasm in D. gigas and D. pealeii, and each 

species exhibited approximately 15 times greater free enzyme in this fraction than L. 

brevis.  

 

Scaling of CA with mass and metabolism 

 The scaling of CA activity in crude gill and muscle homogenates as a function 

of animal mass (Fig. 7A and B) and of mass-specific metabolic rates (Fig. 7C and D) 

was examined. Scaling relationships are typically calculated using the formula 

Table 4. Inhibition constants (Ki) and enzyme concentrations (Eo) for CA from 
subcellular fractions 
  D. gigas  L. brevis  D. pealeii 
Fraction  Ki (nM) Eo (nM)  Ki (nM) Eo (nM)  Ki (nM) Eo (nM) 
mitochondria (p2)  0.91 5.34  3.89 5.59  1.21 7.12 
microsome (p3)  1.15 2.39  ------ ------  0.35 13.46 
cytoplasm (s3)  0.69 9.82  1.03 0.62  1.22 9.13 

Y = aXb 

 where a is a normalization constant, b is the scaling coefficient, and X is the 

independent variable. The metabolic rates for individual specimen were calculated 

using scaling parameters from Seibel, 2007 for each squid's respective family. The 

slope of the regression line for CA activity in gill as a function of either mass or mass-

specific MR was significantly different from zero in both comparisons. Thus the total 

CA activity in gill tissue appears to be independent of both squid mass and aerobic  
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mass-specific metabolic rate. Mantle muscle CA activity versus mass, however, 

exhibited a significant (P = 0.0003) and fairly strong correlation (r2= 0.74, Fig. 7B). 
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Figure 7. Carbonic anhydrase activity from crude homogenate as a function of squid 
mass (A and B) and estimate metabolic rate (C and D). Open symbols represent CA 
activity in gill tissue and filled symbols for that in mantle muscle tissue. CA activity in 
the gills was independent of body mass (A) and whole animal metabolic rate (C) (P = 
0.677 and 0.648, respectively). B) There was a significant correlation between squid 
mass and muscle CA activity (P = 0.0003, r2 = 0.74) with a slope (-0.28) close to that 
of the widely-observed scaling exponent of -0.25, but steeper than that observed for 
these squid species (Seibel, 2007). D) Reflective of (B), the relationship between 
mass-specific MR and CA activity was also significant (P = 0.0003, r2 = 0.75) with 
smaller squids with higher metabolic rates exhibiting greater CA activity. Symbols for 
species are: L. brevis (◊,♦), D. pealeii (□,■), and D. gigas (○,●).  
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The slope of this comparison was -0.28 (Table 5), which is very close to the mass-

specific aerobic metabolic rate scaling exponent of -0.25 broadly observed among 

organisms (Kleiber, 1932). There was also a significant positive slope when CA 

activity in muscle tissue was compared to mass-specific metabolic rate that showed a 

fairly strong correlation (r2 = 0.75; Fig. 7D).    

 The relationship between CA activity and body mass and mass-specific MR 

among the subcellular fractions was also examined. Table 5 presents the normalization 

constants, scaling coefficients, and P-values of the slopes among the fractions for both 

gill and muscle tissue. Except for the cytoplamic fraction, no other subcellular 

fractions showed a significant relationship to body mass or MR in either tissue (Table 

5). The CA activity in the cytoplasmic fraction (s3) as a function of both mass and MR 

between the species was significant in gill and muscle tissue (Table 5, Fig. 8). There is 

an apparent change in the proportion of cytoplasmic CA activity between the tissues in 

relation to increasing animal mass and MR. Although the cytoplasmic activity in gills 

was significantly greater in D. pealeii (Fig 3), the larger species (D. gigas), with a 

comparatively lower metabolic rate, has a greater proportion of gill:muscle CA 

activity (103.1 compared to 17.8). 

     

Discussion 

 This study was the first to systematically measure and compare CA activity in 

squids. We examined the total and intracellular activity of CA in gill and mantle 
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Table 5. Carbonic anhydrase subcellular activity (μmol CO2·g
-1·min-1) as a function of squid mass (M) and metabolic rate 

(Mo2) in gill and muscle tissue 
   CA = aMb  CA = aMo2

b (umol O2/g/h) 

Tissue/fraction  n a b r2 
P-value 
(slope)  N a b r2 

P-value 
(slope) 

Gill              
Crude homogenate  24 8.96 0.015 0.01 0.68  24 9.33 -0.18 0.01 0.65 
Cell debris (p1)  32 6.776 0.067 0.06 0.17  32 8.416 -0.78 0.07 0.15 
Mitochondria (p2)  30 7.546 0.072 0.04 0.28  30 9.481 -0.93 0.05 0.22 
Microsome (p3)  20 5.752 0.132 0.07 0.27  20 8.82 -1.45 0.06 0.28 
Cytoplasm (s3)  27 7.529 0.234 0.33 0.0017  27 12.693 -2.41 0.28 0.0045 

              
Muscle              

Crude homogenate  12 6.927 -0.28 0.74 0.0003  12 0.03 3.28 0.75 0.0003 
Cell debris (p1)  11 5.44 -0.27 0.29 0.09  11 -1.08 3.09 0.31 0.0758 
Mitochondria (p2)  11 5.139 -0.108 0.06 0.4524  11 2.253 1.38 0.08 0.3981 
Microsome (p3)  10 4.386 0.075 0.04 0.5821  10 6.142 -0.83 0.04 0.574 
Cytoplasm (s3)  11 6.389 -0.258 0.4 0.0361  11 0.269 2.9 0.41 0.0326 
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tissues and along the length of the gills in D. pealeii, and how CA activity scales with 

body mass and metabolic rate. The three squids selected for this study all have 

similarly high routine metabolic rates, and D. pealeii and L. brevis are both coastal 

squids within the same family. However, D. gigas and L. brevis are each adapted to 

potentially physiologically stressful environments while D. pealeii is not. Considering 

these features, we also attempted to discern to what extent CA activity is indicative of 

aerobic metabolic rate, environmental adaptation, or evolutionary relationship. The 

main findings were that 1) total CA activity in gills was far greater, (15-45x), than in 

mantle muscle; 2) CA activity was largely in the cytoplasm and mitochondria in the 

gills of these three species, while muscle CA was uniformly very low in all fractions; 

3) the CA activity within each intracellular pool as a percent of the total activity (i.e. 

CA profile) was similar between D. gigas and L. brevis; 4) total CA activity in gill 

was independent of animal mass and mass-specific MR, but exhibited a fairly strong 

correlation in mantle muscle; and 5) activity in the s3 fractions in both gill and muscle 

was significantly correlated to both mass and metabolic rates among the three species.  

 Total and fractional CA activity in mantle muscle was significantly lower than 

the activity in gill tissue in these squids. Because these are negatively buoyant animals 

that must continuously swim to maintain position in the water columns, muscle tissue 

likely generates the bulk of the CO2 produced. It is possible that with such little CA 

activity in the mantle muscle, the bulk of CO2 produced diffuses into the blood vessels 

where it acidifies the hemolymph. Some CO2 may also diffuse out of the animal and 

into the surrounding water, which has previously been proposed (Pörtner, 1994). The 
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Figure 8. CA activity in the cytoplasmic fraction in gill (solid line) and mantle muscle (dashed line) in 
relation to squid mass (A) and mass-specific MR (B). A) Diverging CA activity between the tissues in 
relation to squid mass. Both the increase in gill cytoplasm CA activity with increasing mass and decrease 
in mantle muscle activity were significant (P = 0.0017 and 0.0364, respectively). Gill CA from other 
fractions showed no significant relationship (Fig. 3), and crude homogenate seems independent of body 
mass in these species. Cytoplasmic CA as a function of body mass exhibited a similar slope (-0.26) to 
that of crude homogenate and squid mass. B) Mirroring the trend with mass, the relationships between 
cytoplasmic CA activity in the cytoplasm of gills and mantle muscle were each also significant (P = 
0.0045 and 0.0326, respectively). Symbols for species are the same as in figure 7.  
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mean muscle CA activity in L. brevis was nearly 10% of the total gill activity, and ~3x 

greater than muscle CA activity in D. pealeii and D. gigas. However, the mantle is 

considerably thinner than the two other species (pers. obs.), indicating a greater 

surface area to volume ratio that would facilitate CO2 diffusion. Proportionally more 

CA in L. brevis mantle muscle may aid this species' adaptation to its euryhaline 

environment by acting as a secondary osmoregulatory organ. This is not unlike the 

proposed role of squid mantle as a respiratory organ, which is hypothesized to supply 

as much as 90% of the oxygen demand via cutaneous respiration (Pörtner, 1994). 

Although there some evidence that surface area to volume ratios increase during squid 

ontogeny (O'Dor and Hoar, 2000), the larger D. gigas and D. pealeii likely have lower 

surface area:volume. This may lessen the diffusion of CO2 across the mantle and 

increase the amount diffusing into the blood. The proportionally greater gill:muscle 

ratio for CA activity with increasing mass may be due to an increased demand on  the 

gills to maintain the CO2 gradient out of the system. The considerable amount of 

cytoplasmic CA activity exhibited in all three species lends some support to this. 

  In addition to being the primary respiratory organs, gills also serve as an 

important pH and osmoregulatory organs in many aquatic organisms (Wright et al. 

1989; Boucher-Rodoni and Mangold, 1994; Henry, 1996). The cytoplasmic CA could 

supply counter-ions to aid osmoregulation (H+ and HCO3
- for Na+ and Cl-) similar to 

that observed in fishes (Conley and Mallatt, 1987; Henry et al., 1988; Wright et al., 

1989) (Fig 9). The excretion of HCO3
- from the gill via ion exchangers would prevent 

intracellular accumulation, curtail the CA reaction from running towards dehydration, 

and further facilitate the gradient of gaseous CO2 out of the blood. CA activities from 
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the microsomal fractions of D. pealeii gill segments were low, suggesting that there is 

little membrane-bound CA. A similar distribution was found by Shipp et al., (1979) in 

S. officinalis gill. Using microscopic techniques, they found minimal CA in the basal 

lamella or microvilli in the outer (respiratory) section. The techniques used in our 

study did not allow us to determine if the microsomal CA was apical or baso-lateral. 

However, some of the membrane bound CA in these squids likely has access to 

dehydrate HCO3
- in the blood. Substantial microsomal CA activity, such as that seen 

in the C. granulata (Lopez-Mananes, 2000), may not been needed in squids because 

low venous pH may be sufficient to drive the reaction towards CO2 formation 

(Portner, 1994).  

 Squids are ammoniatelic organisms, with protein as the primary fuel source, 

and the gills are a main organ for ammonia excretion (Lee, 1994; Boucher-Rodoni and 

Mangold, 1994). CA has been shown to aid ammonia excretion in fish (Wright et al., 

1989; Wilke 1997). However, their proposed mechanism involves CAs attached to the 

apical membranes that hydrate CO2 in the boundary layer to provide the H+ for 

NH3/NH4
+ conversion. The nominal membrane-bound CA found in squid gills might 

function similarly, depending on its location. Unfortunately, the method we employed 

could not determine precisely where membrane-bound CA, if present, was located. 

Cytochemical analysis in S. officinalis places most of the CA primarily in the concave, 

mitochondrial-rich inner gill lamellae (Schipp et al., 1979; Boucher-Rodoni and 

Mangold, 1994). The mitochondrial CA in D. gigas may contribute protons for 

intracellular NH3/NH4
+ conversion prior to excretion (Boucher-Rodoni and Mangold, 

1994) (Fig 9). This could be especially necessary as D. gigas repays its oxygen debt 
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upon returning to the surface and excretes ammonia accrued while at depth. The 

mitochondrial CA activity measured in L. brevis may function similarly. However, L.  

Figure 9. Schematic representation of distribution of intracellular CA isozymes and 
multiple physiological roles in CO2 and ammonia excretion and ion-exchange. (NH4/K

+ 
+ Na+ ATPase mechanism was redrawn from Boucher-Rodoni and Mangold, 1994). 
Arrow weight for CO2 indicates amount of molecular or gaseous CO2 
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brevis does not undergo diel vertical migrations. So excursions into low oxygen are 

likely not as prolonged or hypoxic as those experienced by D. gigas. Activity in this 

species may be more related to aiding ion-balance due to excursions into hyposaline 

waters rather than ammonia excretion.  
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CA profile and environmental adaptation.   

 The percent contribution of CA activity among the intracellular fractions (CA 

profile) was more similar between D. gigas and L. brevis (Fig. 4). This could be 

interpreted as a result of adaptation to their respective environmental demands on 

physiological processes since D. pealeii and L. brevis are more closely related 

phylogenetically than either are to D. gigas. If the distribution of CA isozymes was 

representative of evolutionary relationships, then the CA profile between the 

Loliginids would be expected to more closely resemble each other. Genetic studies on 

CA in squids or investigations into CA isozyme activity using other members in these 

families should be done to make this connection clearer.  

 

Conclusions: 

 This was the first study to characterize CA in squids. The total CA activity in 

gill tissue was over an order of magnitude greater than in mantle muscle for each of 

the three species: Dosidicus gigas, Lolliguncula brevis, and Doryteuthis pealeii. There 

was no difference in the total activity of either tissue among the species. This could be 

due to the similar aerobic metabolic rates between these species, however CA activity 

scaled independent of both body mass and mass-specific metabolic rate. Examination 

of CA activity in intracellular fractions from the gills revealed that the vast majority of 

CA activity lies in the cytoplasm and mitochondria, with very little in the membranous 

fractions (cell-debris and microsomes). The CA profiles were more similar between D. 

gigas and L. brevis, suggesting that environmental adaptations may influence the 

intracellular distribution of CA in squids more than phylogenetic relationships. 
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Overall, these results highlight the importance of considering the contribution 

isozymes to respiratory and metabolic processes that involve carbonic anhydrase.  
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Summary 

 Cephalopods are a highly diverse group in terms of habitat distribution, size 

range, and metabolic rates. Some active, epipelagic species exhibit the highest 

metabolic rates among animals, once temperature and body mass are accounted for, 

while meso- and bathypelagic species have very low metabolic rates. A strong decline 

in mass-specific metabolic rate (MR) with increasing habitat depth has been well 

documented among pelagic fish and crustaceans. To explain this phenomenon 

Childress and Mickel (1985) proposed the visual interactions hypothesis, which states 

that decreasing light levels with increasing depth reduces predator-prey interactions, 

relaxing selection pressure for strong locomotory ability. This trend is even more 

pronounced among cephalopod MR and in the oxidative and glycolytic enzymes in 

this group. Here we further test the visual interactions hypothesis by examining 

activity of the enzyme carbonic anhydrase (CA) in gills and mantle muscle 

cephalopods in relation to MR and habitat depth. CA rapidly catalyzes the 

hydration/dehydration of CO2, and is thus important to CO2 transport and excretion in 

animals. The activity of CA is influenced by environmental conditions and may also 

be related to animal MR. Eleven species of cephalopods (9 families) encompassing a 

mass range over 4 orders of magnitude were fished from coastal waters off southern 

New England, the coast of California, and in the Sea of Cortez. Protein concentration 

and total CA activity was measured in mantle muscle and gill tissues, the chief sites of 

CO2 production and excretion, and analyzed as a function of MR and habitat depth. 

CA activity was also compared along the length of gills in Doryteuthis pealeii and 

Mastigoteuthis magna. There was a significant increase in CA activity between each 
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gill segment in M. magna and differences between the two species. Total protein 

concentration in gill tissue decreased with increasing habitat depth over 500-fold. 

Total CA activity in each tissue showed a direct relationship with MR among species. 

An inverse relationship with habitat depth was observed, but was only significant in 

gill tissue. The gills were larger in relation to body mass in the shallower, active 

squids than from meso- and bathypelagic species. Our results further support the 

visual interactions hypothesis and show that CA activity is reflective of MR in 

cephalopods. It also suggests that deep-sea cephalopods may have limited capacity for 

acid-base regulation, and therefore may be more sensitive to ocean acidification.   

 

 

 

 Key words: carbonic anhydrase, cephalopods, metabolic rate, ocean acidification, 

oxygen minimum zones 
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Introduction 

 The enzyme carbonic anhydrase (CA) is primarily involved in the systemic 

transport and excretion of CO2 in animals (e.g. Maren, 1967). This enzyme rapidly 

catalyzes the interconversion of CO2 and water to bicarbonate (HCO3
-) and protons 

(H+). These substrates and products are also important in key homeostatic processes 

such as acid-base balance, ion transport, and osmoregulation (Dodgson, 1991; Henry 

and Swenson, 2000; Henry, 2001; Grosell et al., 2007). Thus, CA is also important in 

intermediary processes and its activity may reflect the metabolic rate (CO2 production) 

of an organism (Henry and Saintsing, 1983; Kochevar and Childress, 1996; Seibel and 

Walsh, 2003). On the other hand, changes in CA activity or gene expression also 

respond to ambient environmental conditions, such as salinity (Henry and Cameron, 

1982a,b; Grosell et al, 2007), hypoxia (David et al, 2005), and hypercapnia (Georgalis 

et al, 2006). In invertebrates, the enzyme is concentrated in the gills, the primary site 

of CO2 excretion and iono- and osmoregulation as opposed to sites of CO2 production 

(i.e. muscle) (Henry and Cameron, 1982; Henry and Staintsing, 1983; Nyack et al., in 

prep). Activities are widely reported in gas exchange tissue and appear to be highest in 

species with high mass-specific metabolic rates (MR), and those living in 

environments with varying salinities, O2, and pH levels (Seibel and Walsh, 2003). 

However, the interspecific correlations between CA activity and either MR or 

environment have never been systematically tested. This is due, in part, to a focus on 

animals living near shore and on those most easily obtained.  

 Animals adapted to the deep-sea typically have lower buffering capacities and 

fewer ion transport proteins due to their lower metabolic rates (Gibbs and Somero, 
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1990; Siebel et al., 1997; Seibel and Walsh, 2003). Among some surface-dwelling 

squids total CA activity in gill tissue was shown to be independent of size or 

metabolism (Nyack et al., in prep).  However, muscle tissue CA activity was inversely 

related to size and directly related to MR. The lack of such a relationship in gill tissue 

may reflect a primary role other than CO2 excretion in loliginid and ommastrephid 

squids. In both families, however, MR is nearly isometrically related to body mass, 

and all species exhibit relatively high MR. Thus, the lack of a relationship may be an 

artifact of the relative similarity of MR among the species tested. Larger variations in 

MR among cephalopods are observed when examining pelagic species living across a 

depth range. 

 Coleoid cephalopods (octopods and squids) are active, predatory mollusks that 

are widely distributed throughout the marine environment (Roper and Young, 1975; 

Roper et al., 1984; Vecchione, 1991; Nesis, 2003). However, their predatory habits, 

and the required locomotory capacity, vary widely between taxa and environments. 

Most notable, the decreasing light gradient with increasing depth has resulted in 

diverging lifestyles, locomotory mechanisms, and metabolic capacities. The reported 

MR among cephalopods appears to bracket the range of such rates among animals. 

Once temperature and body mass are accounted for, cephalopods exhibit both the 

greatest (e.g. Doryteuthis pealeii and Dosidicus gigas) and the lowest (Vampyroteuthis 

infernalis) MR among animals (Seibel et al., 1997; Seibel, 2007). Metabolic rates also 

correspond to the behaviors and habitat depth of a given species. For example, both D. 

gigas and D. pealeii are very active at the surface while hunting prey and utilize jet 

propulsion to capture food while simultaneously avoiding being preyed upon (Young, 
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1972; Roper and Young, 1975; Macy, 1980; Roper et al., 1984; reviewed in 

Nigmatullin et al., 2001). At the other end of the cephalopod MR spectrum, V. 

infernalis is bathypelagic (600-800 m), lives within or below the oxygen minimum 

layer (1-4 ml O2 · L
-1) and predominantly employs fin swimming (Roper and Young, 

1975; Seibel et al., 1998). Obviously the majority of cephalopods exhibit MR between 

these extremes, and some exhibit adaptations to mitigate energy expenditure. Several 

midwater species, for example, sequester ammonia in their tissues (Chirotuethids) and 

coelomic fluid (Cranchids) to aid in buoyancy (Roper and Young, 1975; Voight et al., 

1994; Roper and Veccione, 1997; Seibel et al., 2004), thus lowering the energy needed 

to maintain position in the water column resulting in lower MR.   

 A strong decline in MR with increasing depth has been well documented 

among visually-orienting pelagic species distributed in the open ocean (Childress, 

1995; Seibel and Drazen, 2007). To explain this phenomenon in fishes and 

crustaceans, Childress and Mickel (1985) proposed the visual interactions hypothesis, 

which states that high light levels in shallow water selects for strong locomotory 

abilities for predator-prey interactions and that such selection is diminished in the 

dimly lit meso- and bathypelagic depths. Seibel et al., (1997) expanded this hypothesis 

to include cephalopods, which, like fishes and crustaceans, rely strongly on visual 

cues. They also reported that metabolic rates among cephalopods declined more 

rapidly with depth than that of either fishes or crustaceans. They attributed this trend 

to a reduced use of energetically expensive, high-speed jet propulsion in favor of fin 

swimming. Likewise, the enzymatic activity of both citrate synthase (CS) and octopine 
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dehydrogenase (ODH), indicators of oxidative and glycolytic capacity, respectively, 

are also negatively correlated with increasing depth (Seibel et al., 2000).   

 The present study examined the mass-specific activity of CA in mantle muscle 

and gill, the predominant sites of CO2 production and excretion, respectively, from 11 

coleoid cephalopods (9 families) distributed from the surface to 600 m (minimum 

depth) (Fig. 1). We further test the visual interactions hypothesis by examining the 

activity of CA in pelagic cephalopods. We hypothesized that the activity of CA would 

decline with increasing habitat depth similar to MR and oxidative and glycolytic 

enzymes (e.g. CS and ODH) (Seibel et al., 1997; 2000). Another purpose was to 

determine whether CA activities among ecologically diverse cephalopod species 

reflect the large differences in metabolic rate and their environmental conditions. 

 

Methods 

Animal collection 

 The Atlantic squid species were captured between September 2008 and 

November 2009. The majority of Doryteuthis pealeii were caught via otter trawl either 

aboard the R/V Captain Bert (URI) in Narragansett Bay, RI, or Project Oceanology 

vessels (University of CT) near New London, CT. Additional D. pealeii were fished 

off Goat Island, Newport, RI using Japanese-style jigs while. Lolliguncula brevis were 

caught in creeks near the Virginia Institute of Marine Science Eastern Shore 

Laboratory, Wachapreague, VA using an otter trawl. Four Mastigoteuthis magna were 

brought to URI's Graduate School of Oceanography by fishermen trawling 25 km  
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Figure 1.  Representative profiles of oxygen concentration (solid lines) and 
temperature (dashed lines) as a function of depth, and the MDO of squids. A)  
Oxygen and temperature profiles are from data taken from the 1982 R/V Endeavor 
cruise along 71°W (Sta. 14, 39° 46'N, 71° 23'W). This station was located on the 
shelf ~150 km south of Block Island , RI. Data was taken from the Java OceanAtlas 
project (JOA: natl.1982.EV.71W.joa) using the accompanying OceanAtlas program. 
B) Temperature and O2 profiles from Guaymas Basin (27° 15'N, 111° 30.4'W) taken 
by CTD aboard the R/V New Horizon in 2007. Images of J. diaphana, M. magna, 
and D. gigas are from public domain sources. All other images were originally from 
Young, 1972 or Vecchione et al., 1989 and were taken from the Tree of Life web 
project (http://www.tolweb.org). 
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southeast of Block Island, RI aboard the F/V Fishtale at a reported depth of 200 

fathoms (366 m). With the exception of M. magna, which were deceased but in good 

condition and kept on ice until dissection, squids were either dissected immediately or 

maintained in aerated coolers until dissection.  

Cephalopods from the Pacific were caught over the course of several cruises 

aboard the R/V New Horizon or R/V Western Flyer between May 2006 and September 

2011. Three of the five Pterygioteuthis gematta used were caught in May 2006 and the 

other two in Sept 2011 from the Sea of Cortez aboard the R/V New Horizon. 

Dosidicus gigas were fished at night using Japanese-style jigs during a June 2011 

cruise aboard the R/V New Horizon in the Sea of Cortez, Mexico, and tissues were 

collected immediately upon landing. Helicocranchia pfefferi was caught using an 

opening/closing Mother Tucker trawl with a 10 m2 mouth and a 30 L thermally-

protected cod end (Childress et al., 1978) aboard the R/V Western Flyer in 2009. The 

remaining species were collected during that same cruise using the ROV Doc Ricketts. 

Specimens from trawls were allowed to recover from sampling before tissues were 

excised.  

Animal masses were measured for Lolliguncula brevis, D. pealeii, M. magna, 

and D. gigas prior to tissue dissection. Gill and mantle muscle tissues were excised 

from Gonatus onyx, Galiteuthis phyllura, Japatella diaphana, and P. gematta, before 

being fixed in 10% formalin and preserved in 70% ethanol. The masses for these 

species were obtained from the preserved specimens. The masses for three species 

(Chiroteuthis calyx, Histioteuthis heteropsis, and H. pfefferi) were not obtained.  
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Tissue sampling 

The mantle cavity was accessed by a sagittal incision along the ventral surface. 

Thin, rectangular slices of muscle tissue were excised from the anterior edge of the 

dorsal mantle and the first 1-2 cm of gill was sampled from each specimen. Three 

segments along the length of gill tissue were excised from M. magna for comparison 

with sections previously examined in D. pealeii (Nyack et al., in prep). These sections 

were defined as: anterior gill (the first 1 cm from the anterior tip), middle gill (± 0.5 

cm from the center of the gill), and posterior gill (the first 1 cm distal from the 

branchial heart). All tissue samples were immediately placed into cryo-vials and 

frozen in liquid nitrogen before being stored at -80 °C until use.  

 

Experimental procedures 

 Carbonic anhydrase activity was determined in crude homogenates using the 

ΔpH method (Henry, 1991). Frozen tissues were homogenized on ice in 5-30 volumes 

of assay buffer (in mM: 125 mannitol, 75 sucrose, 10 Tris-base, pH = 7.4) using glass 

homogenizers (Kotex, Fisher Scientific). Homogenates were then assayed at 4 °C in a 

water-jacketed reaction chamber (Radnoti Glass, Monrovia, CA) that contained 4 ml 

assay buffer that was continuously stirred. The ∆pH was measured every 5 sec for 2 

min using a Red Rod pH electrode (Radiometer Analytical) connected to a laptop 

computer through an Orion 720A+ (Fisher Scientific) meter. Catalyzed reactions were 

performed in triplicate with the addition of 2.5-40 µl of sample while uncatalyzed 

reactions had corresponding volumes of buffer added. The reaction was initiated by 

the addition of 80 µl CO2-saturated DI. The net reaction rate was calculated by 
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subtracting the initial slopes (ΔmV/s) of the catalyzed and uncatalyzed reactions. The 

buffering capacity of the assay buffer was determined by the addition of 80 µl of 0.1 

M HCl. This value and the proton contributed from the HCl were then used to quantify 

CA activity (μmoles CO2 · min-1 · g-1). Protein concentration was determined using the 

Bradford method (1976), and bovine serum albumin was used as standard.  

 

Metabolism and depth 

 Carbonic anhydrase activities were compared between gill and muscle both 

within and among species, as a function of animal mass, and also compared to 

calculated metabolic rates. The metabolic rates (Y) for species within each family were 

calculated using the scaling formula Y=aMb, where a is a taxon-specific normalization 

constant specific, b is the scaling coefficient (slope), and M is animal mass. Where 

body mass was not available, we normalized metabolism to 10 g, a size that is within 

the commonly captured size range for all species (Seibel, 2007).  It has been shown 

that the majority of variability in metabolism among cephalopods lies between 

families within an order (as opposed to species within a genus, or genus within a 

family) (Seibel et al, 2000). Therefore, published temperature-corrected normalization 

constants and scaling coefficients for cephalopod families (Seibel, 2007) were used to 

calculate MR for eight of the eleven species (five families). The normalization 

constants were derived for P. gemma, and M. magna by utilizing published 

temperature-corrected MR values (Seibel et al., 1997), an assumed scaling coefficient 

of -0.2 (Seibel, 2007) and the mean mass for each species. The estimated MR for these 

two species was then calculated using the actual mass values for each specimen. The 
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MR for C. calyx and H. heteropsis was calculated assuming a mass of 10 g for all 

specimens in these species, a normalization constant of 0.977 (Seibel et al., 1997) and 

a scaling exponent of -0.2 (Seibel et al., 1997; Seibel, 2007). 

 Total CA activity and gill mass (g) (as % body mass) were also examined as a 

function of minimum depth of occurrence (MDO). Minimum depth of occurrence is 

defined as the depth below which 90% of adult individuals of a species from a given 

region are captured (Childress, 1975). To maintain consistency with previous studies, 

and avoid distortions in log-transformed data, 10 m was used for specimens living at 

that depth or shallower and for species that undergo diel vertical migrations to the 

surface (Roper and Young, 1975; Seibel et al., 1997). Minimum depths were taken 

from several sources (Roper and Young, 1975; Macy, 1980; Wells et al., 1988; Finke 

et al., 1996; Seibel et al., 1997; Bartol, et al., 2001; Gilly et al., 2006; Seibel et al., 

2007) and personal communications (M. magna). 

 

Statistics 

Analysis of variance (ANOVA; α = 0.05) was used to test for differences in 

protein content and CA activity within tissues among species. When differences were 

detected, Student's t-test was used to identify differences within the data and also to 

test for differences in protein content between tissues within each species. 

Comparisons of CA activity in each gill segment between D. pealeii to M. magna 

were also analyzed using Student's t-test, and mean values are shown means ± sem. 

The relationship between CA activity as a function of MR and MDO were examined 

using regression analysis. Slopes of regressions were considered significantly different 
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from zero at the 95% confidence level (P < 0.05). Analyses were done using JMP 

software version 10 (SAS Institute, Cary, NC).  

 

Results 

 Carbonic anhydrase activity was measured in gill tissue from nine species and 

mantle muscle in 11 species of coleoid cephalopods, representing 8 families of 

Teuthoid squids and an incirrate pelagic octopod, J. diaphana. The MDO among these 

cephalopods ranged from near surface to 300 m for the three Atlantic squids sampled 

(D. pealeii, L. brevis, and M. magna), and to 600 m Pacific cephalopods (Table 1).  

The temperature and oxygen ranges over the depths in the regions sampled are 

presented in Figure 1. The mass range among all cephalopods sampled spanned nearly 

4 orders of magnitude. Also represented are species that accumulate ammonium in 

their tissues for buoyancy (Seibel et al., 2004) from both oceans, and all but two 

species have been described as exhibiting vertical migratory behavior to greater or 

lesser degrees. 

 The protein content in both gill and mantle muscle tissue showed a significant 

decline with increasing depth (P = 0.0017 and 0.0127, respectively) (Fig. 2). This 

trend is similar to that described by Seibel et al., (2004). In gills, the protein 

concentration ranged from 0.31 mg·ml-1 (J. diaphana) to over 500-times greater in D. 

pealeii (162.89 mg·ml-1). The mean protein content from gill tissue of D. pealeii and 

D. gigas was significantly greater than the protein content in gill tissue of any other 

species (P < 0.0001). Mantle muscle protein content among species yielded three 

distinct groupings. The mantle muscle protein concentration for D. pealeii and D. 
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Table 1. Depth, whole animal mass and range, [protein], and ecological some behavioral and physiological features of 11 species of 
cephalopods. Values are means ± SEM. 

Species  
MDO 
(m)  Animal mass (g) 

 
Protein content (mg/ml)  Vertical migrator   Ammoniacal  

    Mean Range  n Gill n Mantle muscle       
Doryteuthis pealeii  10      43.48 ± 4.85 7.8 - 78.4  15   97.96 ± 10.31  † 5      138.09 ± 6.33  †  Seasonal a  N  
Lolliguncula brevis  10     4.89 ±  1.72 0.7 - 26.1  9   61.16 ± 8.47 6       68.39 ± 5.48  ‡  Seasonal? a  N  
Dosidicus gigas  10    300.00 ± 23.57   200 - 400  4   49.47 ± 5.71 4      131.17 ± 3.96  †  Y c  N  
Pterygioteuthis gemmata  50      0.6 ± 0.12  0.14 - 0.82   ---------- 5        58.32 ± 7.25  ‡  Y a  N  
Gonatus onyx  100     3.00 ± 1.34  0.37 - 6.28  5    40.99 ± 2.06 4        72.80 ± 5.38  ‡  ontogenetic descent b  N  

Histioteuthis heteropsis  150  ---------- ----------  4    36.73 ± 1.41 1 17.62  Y   Tissue 
sequestration d 

Chirotuethis calyx  300  ---------- ----------  4    35.54 ± 5.41 3 27.59 ± 5.10  ontogenetic descent (juv)    
Y (adult) a  Tissue 

sequestration d 

Galiteuthis phyllura  300        9.5 ± 1.03 7.71 - 11.29  2    50.19 ± 6.51 2    25.52 ± 2.08  ontogenetic descent (juv)    
N (adult) a  Coelomic 

sequestration  e 

Helicocranchia pfefferi 
 300  0.85 ----------   ---------- 1 27.80  ontogenetic descent (juv)    

N (adult) a  Coelomic 
sequestration  d 

Mastigoteuthis magna  500     564.98 ± 56.75  313 - 704.3  4  35.66 ± 9.91 4    24.20 ± 6.18  N a  Tissue 
sequestration f 

Japetella diaphana  600      16.34 ± 4.30 4.21 -  24.49  2   18.14 ± 6.99 2       0.44 ± 0.13  N a  N  
                 

MDO = minimum depth of occurrence    

† = significantly greater total protein content than all other species within a given tissue  

‡ = significantly lower total than those marked with a †, but greater than in all other species   

    Sources: a) Roper and Young, 1975; b) Hunt and Seibel, 2000; c) Gilly et al., 2006, d) Seibel et al., 2004; e) Seibel and Walsh, 2004; f) Voight et al., 1994 
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gigas were each about double the next closest species, G. onyx (Table 1). Three 

species, L. brevis, P. gemmata, and G. onyx, all of which have MDO < 150 m, had 

total protein concentrations less than D. pealeii and D. gigas, but greater than the 

remaining species with MDO > 150m. Interestingly, cephalopods residing below 150 

m MDO seemed to exhibit a greater amount of protein in the gills than their mantle 
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Figure 2. Protein concentration (mg/ml) as a function of minimum depth of 
occurrence (MDO). A) The decline in gill protein with increasing depth was 
fairly strong significant ([protein] = 5.13MDO-0.29, P = 0.0017, r2 = 0.78). B) 
Mantle muscle protein also declined significantly with increasing MDO 
([protein] = 6.66MDO0.72, P = 0.0127, r2  = 0.52). Values are means of species. 
The n-values and symbols representing species are listed in table 2. 
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muscle, the opposite of species examined that are shallower than 150m. However, 

among species from >150 m depth only M. magna had sufficient replicates for a 

statistical comparison in protein content between gill and mantle tissue, but did not 

show a significant difference (P = 0.36). Among species <150 m, protein content was 

significantly greater in the mantle muscle than in the gill tissue of G. onyx (P = 

0.0005) and D. gigas (P < 0.0001). 

 

CA activity in gill and muscle tissue  

 Carbonic anhydrase activity was approximately an order of magnitude greater 

in gill than in mantle tissue for each species (Table 2). Each of the three "surface 

species", D. gigas, D. pealeii, and L. brevis, exhibited significantly greater gill CA 

activity (P ≤ 0.018) compared to the other 6 species examined (Table 2), but were not 

statistically different from each other. Gill CA activity in C. calyx and M. magna was 

also not different from each other (P = 0.37), but was in the middle, i.e. significantly 

lower than the "surface species," and greater than the remaining 4 species (P ≤ 0.028),  

 (Table 2). Mantle muscle CA activity was significantly greater in both L. brevis and 

P. gemmata compared to all other species (P ≤ 0.026), but not statistically different 

from each other (P = 0.37) (Table 2). 

 Gill CA activity from three sections along the length of gill in M. magna was 

compared to activity along the length of D. pealeii (Nyack et al., in prep) (Fig 3).  

Mean CA activity in D. pealeii ranged 6000-9000 μmol CO2·g
-1·min-1 (n=4-6), and 

were not significantly different from each other (ANOVA, P = 0.1696).  In M. magna, 

each section was significantly different from the others (ANOVA, P = 0.0006) and
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Table 2. Calculated mass-specific metabolic rates (MR), CA activity, and specific CA activity from gill and 
muscle tissue. Values are means ± SEM. 

Species  Symbol  MR (μmol O2 · g-1 · h-1)  CA activity  (μmol CO2 · g-1 · min-1) 
      n   Gill  n Mantle muscle 

D. pealeii  ▼  6.07 ± 0.08  15     8294.06 ± 716.56  †  4 317.76 ± 128.31 

L. brevis    7.51 ± 0.17  9     8438.93 ± 822.86  †  5      728.85 ± 127.89  † 

D. gigas  +  4.91 ± 0.03  5     8683.65 ± 403.1    †  4 216.8 ± 42.79 

P. gemmata  Z  4.95 ± 0.35  ---   -------  5      848.76 ± 130.44  † 

G. onyx  X  4.39 ± 0.07  5   3008.86 ± 527.42  3 235.68 ± 17.59 

H. heteropsis  ∆  0.78            4   793.99 ± 84.64  1 285.29 

C. calyx  O  0.62           4        4898.17 ± 836.89  ‡  2    253.27 ± 132.14 

G. phyllura  ◊  0.35 ± 0.01  2    1791.04 ± 206.24  2   135.69 ± 32.56 

M. magna  Y  0.60 ± 0.02  4        5202.05 ± 763.64  ‡  4       95.2 ± 27.88 

H. pfefferi  ♦  0.55  ---   -------  1 108.55 

J. diaphana  □  0.14 ± 0.02  2   1238.47 ± 126.98  2     313.83 ± 60.56 
             

† = significantly greater CA activity compared to all other species within a given tissue  
‡ = significantly lower gill CA activity than those marked with a †, but greater than activity in all other 

species   
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ranged from 3000 - 7500 μmol CO2·g
-1·min-1 (n = 4 in all assays).  Between the two 

species, the CA activity in the anterior and mid-gill sections were significantly greater 

in D. pealeii than in M. magna (P = 0.0287; 0.0017, respectively), but not in the 

posterior gill (P = 0.3966). 

 

CA activity and MR 

 Figure 4 shows the relationship between CA activity and MR. Gill CA activity 

increased significantly as species MR increased (CA activity = 831.97MR+2371.97, P 

= 0.0157, r2 = 0.589, Fig. 4A). Among cephalopods, one unit change in MR 

corresponds to nearly a 1000 unit increase in gill CA activity. There was also a 

significant relationship between CA activity in mantle muscle and MR (CA activity = 

57.36MR+163.93, P = 0.0324, r2 = 0.415, Fig. 4B). 
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Figure 3.  Carbonic anhydrase activity measured in three 1-2 cm segments of gill 
tissue from D. pealeii (white) and M. magna (black). There were significant 
differences in anterior and middle gills CA activity between the two species (P = 
0.0287 and 0.0017, respectively) (denoted by †). Activity of each segment from M. 
magna was significantly different from each other (P = 0.0006). Values are means ± 
SEM 
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 CA in gill and muscle tissues with MDO 

 A strong, significant decline in CA activity with increasing minimum depth of 

occurrence was observed in gill tissue (P = 0.0332, Fig. 5A). The slope for gill CA 
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Figure 4. Mean calculated mass-specific metabolic rate for each individual 
species. A) Gill CA activity is significantly correlated with mass-specific 
metabolic rate (CA activity = 826.24MR+2359.57, P = 0.0148, r2 = 0.60). B) 
Muscle CA activity was also significantly correlated (CA activity = 
57.36MR+163.93, P = 0.0324, r2 = 0.415) among all species. Symbols 
representing each species are in Table 2. 
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activity versus MDO was b = -0.37 (±0.14), and b = -0.32 (±0.18) for mantle muscle 

CA activity. However, despite the similar slopes, CA activity in cephalopod mantle 

muscle was not significantly correlated with MDO (P = 0.0974, Fig 5B). This may be 

due to low CA activity in mantle muscle of D. gigas (Nyack et al., in prep). The 

activity of CA as a function of MDO in both tissues was much less than the slopes 

exponents for CS and ODH (Seibel et al., 2000).   

 The gill tissue mass (as % body mass) measured in 9 representative species is 

plotted as a function of MDO (Fig 6). Four species, P. gemmata, M. magna, 

Grimaulditeuthis spp., and Planktoteuthis spp. are represented by a single specimen. 

Gill mass decreased significantly with increasing depth (P = 0.0384, r2 = 0.54), similar 

to trends observed by others (Seibel et al., 2004).  

 

Discussion 

 In agreement with previous findings that metabolism of pelagic animals 

declines with habitat depth, we demonstrate an inverse relationship between CA 

activity in cephalopod gill tissue and the MDO for each species and a positive 

correlation between CA activity and MR. The direct relationship between CA activity 

and MR in gill tissue strongly suggests that the primary role of CA in squid gill tissue 

is CO2 excretion. Metabolic rates in shallow-living species are among the highest in 

the animal kingdom, higher than scombrid fishes and even mammals once corrected 

for differences in temperature (Seibel and Drazen, 2007).  This is especially true at 

larger sizes because metabolism scales with a much shallower slope (b = 0.1) in  
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Figure 5. Carbonic anhydrase activity as a function of MDO for A) gill and B) 
muscle. The slope for the regression in gill (A) is described by CA activity = 
9.83MDO-0.37 and was significant (P = 0.0332, R2 = 0.50). For mantle muscle 
(B) the relationship between activity and MDO is CA activity = 6.60MDO-0.23 
but was not found to be significant (P = 0.0974, R2 = 0.276). The symbols for 
each species are in Table 2. 

C
A 

ac
tiv

ity
 (u

m
ol

 · g
-1

 · m
in

-1
) 

MDO (m) 

C
A 

ac
tiv

ity
 (u

m
ol

 · g
-1

 · m
in

-1
) 

B 

A 

epipelagic cephalopods than in either fishes or mammals (Seibel, 2007; Rosa et al., 

2009).  Interestingly, total CA activities in these squid families, while higher than 

deep-living cephalopods, are generally lower than that in fishes (Henry, et al., 1988; 

Maffia et al., 2001; Gilmour et al., 2002; Nyack et al., in prep). This is likely due to 

differences in osmoregulation in these groups. One of the roles for CA in the gill 
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tissue of marine fishes is to provide counter ions for Na+ and Cl-, and thereby water 

uptake (reviewed by Gilmour, 2012). Since squids are isosmotic to seawater they 

would not need gill CA in this context. Mantle in squids may be as multifunctional as 

gill tissue. As much as 90% of a squid's oxygen demand has been proposed to occur 

across the mantle (Portner, 1994). If mantle muscle tissue also acts as an 

osmoregulatory organ it may explain the high CA activity found in L. brevis, the only 

squid to inhabit estuarine waters (Hendrix, et al., 1981; Bartol et al., 2001 2002). The 

reason for the high
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Figure 6. Mean gill mass in relation to MDO of some representative 
squid species. The regression line is described by the equation gill mass 
= 2.11MDO-0.4 (P = 0.0384, r2 = 0.54). Closed points represent means 
of n = 2-9 species, open circles n=1.  

 activity in P. gemmata mantle tissue is unclear. 

 Regardless, the reduction in CA activity with depth is pronounced and deep-

living species have activities similar to other deep-sea species from stable 

environments (Seibel and Walsh, 2003).  This 10-fold reduction in CA activity is 

much less than previously reported for either whole-animal metabolism or the 
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concentrations of metabolic enzymes in muscle tissue (Seibel et al., 1997; 2000). The 

relatively shallow decline in CA activity is partly explained by differences in total gill 

size in deep- and shallow-living species. We found that both gill mass and protein 

concentration declines strongly with depth. Active squids tend to have very high gill 

surface areas and enlarged gills that presumably enhance oxygen and CO2 exchange 

on a whole-animal basis (Eno, 1994), while more sluggish species have smaller gills 

and lower gill surface areas (Madan and Wells, 1996, but see below for adaptations to 

the oxygen minimum zone). The higher protein concentration in gill tissue, combined 

with the higher gill CA activities, suggests portion of the difference is likely due to 

more enzyme in the gills of shallow living species. Interestingly, there was no 

correlation between metabolic rate and specific activity of CA (μmol CO2 · mg 

protein-1 · min-1) among squids (Nyack, PhD dissertation Ch3). Thus, total CA activity 

in gills of shallow species may exceed that in deep-living species by much more than 

is apparent in the tissue mass-specific activities reported here. 

 Another difference in gill CA between epi- and mesopelagic squids is 

illustrated by the differences CA activity along the length of the gills in D. pealeii and 

M. magna. In D. pealeii higher activity in the middle and posterior gill segments was 

largely due to a significant increase in the activity from the mitochondrial subcellular 

fraction (Nyack et al., in prep). The reason for the different activities between gill 

segments within M. magna cannot be ascribed using crude homogenate, the only 

measurement done here. However, the difference in CA activity in anterior and middle 

gill between the two species can be explained by the relationship between CA activity 

and MR. D. pealeii are actively swimming, surface squids whereas M. magna is a 
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neutrally buoyant species that 'hovers' in a tuning-fork shape with tentacles dangling in 

the water column (Roper and Veccione, 1998). The trend of increasing CA along the 

gills in both species is less clear. Squid have a closed circulatory system with highly 

folded gill lamellae that are profused by primary, secondary, and tertiary afferent and 

efferent vessels (Shipp et al., 1979). In many species the gills taper towards the 

anterior end of the mantle cavity (pers. obs.). The high CA activity in posterior gill 

segments (proximal to the branchial heart) of both species may be required to facilitate 

rapid CO2 excretion as the bulk of deoxygenated blood enters the gill. 

 Many of the species studied were captured in the Eastern Pacific where a 

strong oxygen minimum zone exists at intermediate depths. Such zones are 

characterized by oxygen levels less than 5% air saturation and high CO2 levels leading 

to pH levels less than 7.6. It may be that the more modest decline in CA activity with 

depth reflects an increased requirement for CA activity to facilitate CO2 excretion 

against a relatively low gradient from the blood to seawater. However, the relatively 

high activity found for M. magna and C. calyx compared to other species at or below 

the MDO for these species would argue against this possibility. The similarity in CA 

activity between these two species may be due to phylogeny rather than habitat since 

both species belong to the Chiroteuthis clade. The M. magna we used were fished 

from 300 m, but this species has been observed at depths of >500 m (Roper and 

Veccione, 1997). The waters of the Atlantic are characterized as well-oxygenated at 

these intermediate depths, especially compared to the same depths in the eastern 

Pacific and Gulf of California (Fig. 1). Furthermore, species permanently inhabiting 

oxygen minimum zones tend to have high gill surface areas that may compensate CO2 
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excretion (Friedman et al., 2012; Childress and Seibel, 1998; Seibel and Childress, 

1996; Roper, 1969). In fact, gill surface areas per unit gill mass in deep-living species 

from oxygen minimum zones approach those in active surface species, although the 

gills themselves are much smaller (Madan and Wells, 1996). 

 Recent attention to CA activity stems from an expectation of its importance in 

acid-base balance and CO2 excretion in waters that are becoming increasingly 

acidified due to anthropogenic carbon dioxide pollution. Ocean acidification is 

expected to result in an average decline in oceanic pH of about 0.3 units by the year 

2100 (Seibel and Fabry, 2003). Seibel and Walsh (2001) hypothesized that species 

with high metabolic rates may be more tolerant of ocean acidification because they are 

naturally equipped with a high capacity for acid-base balance that is required to deal 

with metabolically produced CO2 and proton equivalents. This hypothesis has received 

some support (Pane and Barry, 2007; Melzner et al., 2009) and the relationship shown 

here between CA activity and metabolic rate adds further support for that hypothesis.  

However, squids are nonetheless expected to be sensitive to high CO2 due to an 

extremely pH-sensitive oxygen transport protein (Seibel, 2013; Pörtner, 2002). In fact, 

Rosa and Seibel (2008) demonstrated that the epipelagic squid, D. gigas, has a 

reduced metabolic capacity under high CO2 conditions.    

 The decline with depth in CA activity in gill is hypothesized here to reflect the 

metabolic rate in deep- and shallow-living organisms. Metabolism is lower in deep-

living species as a result of relaxed selection for strong locomotory abilities in the 

light-limited deep-sea (Seibel and Drazen, 2007; Childress, 1995). This “visual 

interactions hypothesis” is supported by the presence of strong declines in metabolism 
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with depth in pelagic, visually-orienting groups, such as fishes, crustaceans and 

cephalopods. Such groups lack refuge from predators in well-lit surface waters and 

have evolved high locomotory capacity that facilitates predator avoidance and prey 

capture. In the deep-sea, such selection is reduced as visual taxa rely on sit-and-wait 

predation strategies. Deep-sea pelagic species tend to be neutrally buoyant, sluggish 

swimmers with high water content and low protein content in muscles.  In contrast, 

non-visual groups, such as jellyfishes, pteropod mollusks, chaetognaths, and 

copepods, tend to have low, albeit variable, metabolic rates regardless of habitat depth 

(Seibel and Drazen, 2007; Childress, 1995). Similarly, benthic representatives of 

sighted-taxa have greater opportunities for refuge and crypsis and so their metabolic 

rates are largely independent of habitat depth (Seibel and Drazen, 2007). Other 

hypotheses that have been put forward to explain the decline in metabolism with 

depth, including oxygen limitation, temperature, food-limitation and high hydrostatic 

pressure, have largely been refuted by comparative studies showing that declines in 

metabolism with depth are found in all regions but not all taxa (Childress, 1995; Seibel 

and Drazen, 2007). Thus the visual interactions hypothesis has been thoroughly tested 

over several decades and the present contribution may have more value as a test of the 

relationship between CA activity and metabolism than between metabolism and depth. 

   

Conclusions 

 CA activity was greater in gill tissue than in mantle muscle tissue from all 

cephalopods in this study, and the total protein concentration in both tissues showed a 

strong decline with increasing MDO. Shallow, more active squids had greater CA 
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activity in both tissues than meso- and bathypelagic cephalopods, indicating that 

metabolic rate appears to be a driving factor in CA activity among these animals. Both 

gill CA activity and the size of cephalopod gills relative to body mass decreased 

strongly with increasing depth. There was some evidence showing CA activity 

changes anterior-posteriorally in some species; however the reason underlying this 

trend is not yet clear.  
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Summary 

 The respiratory tissues of aquatic organisms are important for gas exchange 

and other key physiological processes, such as osmoregulation, acid-base balance, and 

waste excretion. The enzyme carbonic anhydrase (CA) is involved, directly or 

indirectly, in many of these processes and has been found in every organism and tissue 

type in which it has been sought. Over the past ~20 years there has been a growing 

body of research investigating the role of CA in invertebrate respiratory tissues. In this 

study we surveyed the literature and quantitatively analyzed the specific activity of 

CA (μmol CO2 · mg prot-1 · min-1) in the respiratory tissues of 67 invertebrate species 

in 4 phyla reported from 30 published studies. We compared the specific CA activity 

across these species as a function of phylogeny, habitat type, and metabolic rate. Our 

goal was to ascertain the factors that drive differences in CA activity between species. 

We found that specific CA activity was significantly greater within the phylum 

Arthropoda than in the other three phyla investigated. Taxonomic groups within the 

arthropods also exhibited greater specific CA activity compared to the activity in other 

animals at the same level. The observed differences between taxonomic groups seem 

to correlate to differences in the physiological demands of an animal's habitat. For 

example, the terrestrial arthropods exhibited significantly greater specific CA activity 

than euryhaline and marine arthropods. A significant correlation between weighted 

mean specific CA activity and weighted mean metabolic rates was not found among 

families within Cephalopoda, Bivalvia, or Malacostraca. However, a significant 

inverse correlation between specific CA activity and metabolic rate was found among 

genera within bivalves. Interestingly, the scaling analysis at this level showed that 
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genera within two families of hydrothermal vent bivalves (Vesicomyidae and 

Mytilidae) using different metabolic fuel sources exhibited very different specific CA 

activities despite often being found in the same environments. Our results suggest that, 

when the effects of whole animal mass and metabolism are accounted for, an 

organism's habitat drives CA activity.   

 

 

 

Key words: carbonic anhydrase, carbon dioxide, invertebrates, respiratory tissue, data 

synthesis, meta-analysis 
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1. Introduction  

 Since the discovery of carbonic anhydrase (CA) (Meldrum and Roughton, 

1933a,b; Stadie and O'Brien, 1933) this enzyme has been identified in a myriad of 

organisms including bacteria (So et al., 2004), marine algae (Moazami-Goudarzi and 

Colman, 2012; Hofmann et al., 2013), plants (Lamb, 1977; Badger and Price, 1994), 

invertebrates (Brinkman, 1933; Freeman and Wilbur, 1948; Nielsen and Frieden, 

1972; Maren, 1967; reviewed in Henry, 1996, 2001; Bertucci et al., 2013) and aquatic 

vertebrates (Wright et al., 1989; reviewed in Gilmour and Perry, 2009; Gilmour, 

2012). CA rapidly catalyzes the hydration/dehydration of CO2 and water to form 

protons (H+) and bicarbonate (HCO3
-), and is central to the transport and excretion of 

CO2 in metazoans. This enzyme also maintains instantaneous equilibrium between 

gaseous CO2 and ion products, which are important in several essential metabolic 

processes such as osmoregulation and acid-base balance, particularly in aquatic 

organisms (Perry et al., 1981; Henry and Cameron, 1982a, b, 1983; Perry, 1986; 

Henry and Watts, 2001; Grosell et al., 2007). Changes in some environmental 

conditions, such as salinity, affect the activity and expression of CA activity in 

intestines of marine-acclimated teleosts (Grosell et al., 2007, 2009) and gills of both 

teleosts and invertebrates (Henry and Cameron, 1982 a,b; Henry and Saintsing, 1983; 

Lopez Mañanes et al., 2000). In light of recent concerns about ocean acidification, the 

relationship between ambient CO2 concentrations and CA activity in aquatic 

organisms is beginning to be elucidated, but with mixed results. The expression of 

cytoplasmic CA in the gills of the rainbow trout (Oncorhyncus mykiss) showed a 20-

fold increase in mRNA expression (although no increase in enzyme activity) after a 24 
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hours hypercapnic challenge (Georgalis et al., 2006). This result contrasts with that of 

Fehsenfeld and Weihrauch (2013), who found no increase in cytoplasmic CA mRNA 

expression in the euryhaline crab, Carcinus maenas, after 7 days of hypercapnia. In 

addition to responding to environmental conditions, the CA activity has also been 

shown to be strongly correlated to mass-specific metabolic rates in both gill and 

muscle of cephalopods (Nyack PhD dissertation, Ch2).  

 In recent decades there has been increased focus on characterizing CA's role in 

the respiratory tissues of aquatic invertebrates from a broad array of environments  

(Kochevar and Childress, 1996; Goffredi et al., 1997, 1999; Henry et al., 2012; Nyack 

et al., in prep). For our purposes here, we define respiratory tissues as epithelial 

surfaces where the exchange of respiratory gases (i.e. O2 uptake and CO2 excretion) 

occurs. This definition enabled us to include tissues like the dermal layers of 

Cnidarians and plume tissue of deep-sea tube worms (e.g. Riftia pachyptila), in 

addition to the gills of molluscs and arthropods. However, it is well established that 

the function of these "respiratory tissues" in invertebrates extends beyond gas 

exchange to include ion exchange in crustaceans (Burnett et al., 1981; Henry and 

Cameron, 1982a,b, 1983; Henry and Saintsing, 1983; Lopez Mañanes et al., 2000), 

ammonia excretion in cephalopods (Boucher-Rodoni and Mangold, 1994), and CO2 

uptake in endosymbiotic clams (Yellowlees et al., 1993), corals (Weis et al., 1989), 

and in the gills of deep-sea bivalves (Kochevar and Childress, 1996; reviewed in 

Childress and Girguis, 2011). CA is involved in all of these functions and has been the 

focus of specific reviews (e.g. Bertucci et al., 2013; Henry, 2001; Henry et al., 2012).    
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 Teasing apart confounding factors (i.e. phylogeny, environmental conditions, 

or physiological processes) to identify the predominant drivers underlying variation in 

CA activity, if one exists, is a challenge that should employ a systematic quantitative 

analysis across taxa. Meta-analysis is a quantitative synthesis tool that summarizes the 

results of other studies to ascertain more robust conclusions (Glass, 1976). This 

approach was first used over a century ago by Pearson (1904) (in Shadish and 

Haddock, 1994), but did not gain wide-spread use until the 1970s (Glass, 1976). Since 

then, meta-analyses have been widely used in education (Hedges et al., 1994), medical 

fields (e.g. Engels et al., 1998), ecological studies (Hedges et al., 1999; Osenberg et 

al., 1999; Nakagawa and Cuthill, 2007; Preisser and Orrbock, 2012) and climate 

change (Martens, 1998). However, this technique largely remains scarce in the 

physiological literature (Havird, et al., 2012).  

 The ubiquity of CA among organisms has yielded a growing number of studies 

that quantify both the function of this enzyme and the factors that affect its activity in 

invertebrate respiratory tissue. To compare these data across species we analyzed the 

protein-specific activity of CA (μmol CO2 · mg prot-1 · min-1) in the respiratory tissues 

of invertebrates from four phyla (Arthropoda, Cnidaria, Mollusca, and Annelida) using 

data gathered from 30 peer-reviewed papers. We examined the natural variation in 

specific CA activity to ascertain if the differences across species are correlated with to 

taxonomy, differences in tissue type, animal habitat, metabolic rate, or a combination 

of these factors.  
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2. Methods: 

2.1 Data collection: 

 Carbonic anhydrase data was included in the present analysis if it met the 

following criteria: 1) CA activity was measured in respiratory tissues (as defined in the 

introduction) of metazoan invertebrates, 2) the specific activity of CA was expressed 

in standard international units (μmol CO2 · mg protein-1 · min-1), or was able to be 

converted into those units (Weis et al., 1989; Kochevar and Childress, 1996) (i.e. 

U/mg prot were excluded), 3) measurement of specific CA activity was done using 

electrometric methods (ΔpH or pH-stat), 4) tissues were excised soon after animal 

capture or field-collected specimens were acclimated for sufficient time after transport 

to the lab, and 5) for laboratory-kept specimens, the specific CA activity was reported 

for control animals, i.e. in conditions mimicking that of their natural environment. The 

control values were obtained from studies meeting the inclusion criteria and 

standardized to a common temperature (below). Many other studies on specific CA 

activity in invertebrate respiratory tissues were initially considered, but later excluded 

because they 1) measured activity using colorimetric methods (Böttcher et al., 

1990a,b; Furla et al., 2000; Pavičić-Hamer et al., 2003)--which can underestimate CA 

activity due to lack of sensitivity or enzymatic inhibition (Henry, 1991a), and 2) 

expressed activity in U · mg prot-1 (e.g. Burnett et al., 1981; Yellowlees et al., 1993) or 

U · ml-1 (LeRoy et al., 2012), or 3) discussed CA activity in terms of other 

physiological processes (e.g. Weihrauch et al., 1998; Tresguerres et al., 2008). Only 

two sources provided metabolic rate data for the same animals in which CA activity 

was also measured (Henry, et al., 1990a; Nyack, PhD dissertation Ch2). 
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 Because so few studies included in the CA dataset also investigated metabolic 

rate, or reported masses of study specimens, values for these parameters were obtained 

through a separate literature search. Suitable data was obtained from search results if it 

met the following criteria: 1) metabolic rate were measured in whole organisms, 2) 

metabolic rate was reported as amount of O2 (i.e. not other substrates as in some vent 

organisms) per unit wet mass per unit time; these parameters could differ between 

studies as long as they could be standardized (see below); 3) the respirometry 

temperature was specified, 4) the described animals handling methods suggested 

minimal animal stress, and 5) metabolic rate was from animals under control 

conditions.  

 

2.2. Data acquisition and handling 

 Where necessary, CA activity and metabolic rate data were gleaned from 

figures within publications using GIMP-2 free-access software (http://www.gimp.org). 

The distances (in pixels) between several printed axis values and the plot's origin (x-y 

intercept) were measured. The mean axis value:pixel ratio was calculated and that 

ratio was used to convert number of pixels measured for plotted data and error bars 

into values on the parameter of interest. 

 The genera and species used here were those reported in the original 

publications. For the purposes of the analysis of higher nodes and taxonomic 

comparisons, the higher level nomenclature used was that conveyed by any two of 

three databases: Integrated Taxonomic Information Service (http://www.itis.gov), the 

Encylopedia of Life project (http://www.eol.org), and the World Registry of Marine 
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Species (http://www.marinespecies.org). It should be noted that through this process it 

was revealed that several species listed in this study have since been reclassified into 

new genera: Protothaca staminea was reclassified as Leukoma stamina (Huber, 2010; 

Coan and Valentich-Scott, 2012), Xenia macrospiculata was recategorized as 

Ovabunda macrospiculata (van Ofwegen et al., 2013), and Chasmagnathus ganulata 

has been renamed as Neohelice granulata (Sakai et al., 2006). The bivalve reported by 

Kochevar and Childress (1996) as 'Seep Mytilid 1a' has since been identified as 

Bathymodiolus childressi (Gufstason et al., 1998). 

2.3 Standardization of data from the literature 

 The majority of the specific CA activity was reported in units of μmol CO2 · 

mg protein-1 · min-1, or was easily converted into these units. Some papers reported 

CA activities as units of ΔpH · mg protein-1 · min-1 (Kochevar and Childress, 1996; 

Weis et al., 1989; Weis, 1991, 1993; Weis and Reynolds, 1999). Because the data in 

these four publications were obtained using the same assay buffers (25 mM veronal 

buffer), volumes (3ml), and low assay temperatures (2-5 °C) the conversion ratio of 

0.351 ΔpH · mg protein-1 · min-1 ≈ 1 μmol CO2 · mg protein-1 · min-1 (Kochevar and 

Childress, 1996) was applied. The majority of studies in the dataset measured specific 

CA activity between 0-5 °C, however the values were converted to 15 °C using a Q10 

of 2 (Meldrum and Roughton, 1933a) because this was the mean temperature of the 

metabolic rate studies included in our dataset. 

 All metabolic rates were converted into the same units (μmol O2 · g wwt-1 · 

min-1) for comparison between species. Dry mass-specific metabolic rates were only 

reported for studies among bivalves, and were converted to wet mass using % water 
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values for a species where possible [e.g. Corbicula fluminea (Byrne et al., 1990); 

Ligumia subrostrata (Dietz, 1974)], or an assumed water content of 80% (Potts, 1958; 

Graney and Giesy, 1988). The metabolic rate was also standardized to a temperature 

of 15 °C assuming a Q10 = 2, unless otherwise stated in the literature for a particular 

species, or calculable from thermal treatments within the publication.     

 The metabolic rates (Y) for each species were then normalized to 10 g animal 

mass using the scaling formula Y=aMb, where a is a taxon-specific normalization 

constant specific, b is the scaling coefficient (slope), and M is animal mass. 

Normalization constants were calculated from metabolic rates standardized to 15 °C 

divided by the mean mass reported in each paper. Scaling exponents were either 

derived from the literature, or b = -0.25 was assumed and applied within a family. The 

metabolic rate at 15 °C was then normalized to 10 g for each species.  

 

2.5 Weighted mean values 

 Comparisons of specific CA activity in terms of tissue type, taxonomic group, 

animal habitat category, or assay conditions utilized all species in the full dataset 

sampled from publications as described above. However, species within a genus or 

family were often represented by a single value (from one study). Therefore a 

weighted mean value was calculated for specific CA activity and, when available for a 

given species, metabolic rate. This approach was employed to 1) account for the 

variability in sample size and mean values between studies and 2) derive 

representative CA activities and metabolic rates for comparison.. The weighted mean 

specific CA activity and metabolic rate were calculated according to: 
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In this equation mi is the variable of interest (CA activity or metabolic rate) from a 

given study, xi is the number of individuals of that species used in the experiment, and 

n is the number of studies reporting data at a predetermined taxonomic level. In 

accordance with the results from the analysis of higher nodes the weighted mean 

specific CA activity and metabolic rate was calculated at the family level.   

 

2.4 Analysis of higher nodes 

 We utilized an analysis of higher nodes described by Harvey and Pagel (1991) 

to determine the taxonomic level to calculate a weighted mean specific CA activity 

and metabolic rate. This method uses a nested ANOVA to partition the total variation 

among species (δ2
tot) into groups representing the variation in successively higher 

levels of taxonomy from species (s) through class (c). 

δ2
tot = δ2

s(g) + δ2
g(f) + δ2

f(o) + δ2
o(c) 

The term on the left is the total variance among species on the trait of interest, in this 

case specific CA activity (μmol CO2 · mg prot-1 · min-1). This total variation is 

partitioned among species within a genus, genera within a family, etc. If the 

cumulative portion of variance among species is found by summing the variance from 

the highest level to the lowest, then when δ2
s(g) is added, 100% of the variance will be 

accounted for (Harvey and Pagel, 1991). The percent variance of each component was 

then determined by dividing both sides of the equation by δ2
tot and multiplied by 100.  

Σxi 

xi 

Σmi 
n

i=1
m  =  
= 

n

i=1

n

i=1

n

i=1

n

i=1
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2.6 Statistical analysis 

Analysis of variance (ANOVA; α = 0.05) was used to test for differences in 

CA activity among taxa. When differences were detected, a Student's t-test was used 

to identify differences between categories. The relationship between weighted mean 

CA activity and metabolic rate was examined using regression analysis. Slopes of 

regressions were considered significantly different from zero at the 95% confidence 

level (P < 0.05). Analyses were done using JMP software version 10 (SAS Institute, 

Carey, NC).  

 

3. Results  

3.1 Summary of literature search 

 The literature search yielded 30 publications that met our inclusion criteria for 

specific CA activity. Most of these were from the Journal of Experimental Zoology 

(30%) and Comparative Biochemistry and Physiology (20%), and 80% of the 

publications used in the dataset were from 1990 or more recent. Surprisingly, few 

studies in the CA activity dataset stated mass range (Henry et al., 1990b; Henry and 

Campoverde, 2006) or mean mass (Wheatly and Henry, 1987) of their study 

organisms. 

 The metabolic rate and mass data was acquired from 76 publications, most of 

which were from the Journal of Experimental Biology and Marine Biology. All 

publications were from articles more recent than 1970, with 22% of the data from 

publications in each of the 1980s and 2000s. 
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Figure 1 (previous page). The mean of reported CA specific activity in respiratory 
tissues reported in the literature normalized to 15 °C grouped at different taxonomic 
levels. A) Activity in phylum Arthropoda was significantly greater than the other 
phyla (ANOVA, P < 0.0001). B) The specific CA activity among class Malacostraca 
was significantly greater than that in Polychaeta, Anthozoa, Bivalvia, or 
Cephalopoda (P < 0.0001). Merostomata, Scyphozoa, and Hydrozoa were excluded 
from the analysis due to small sample size. Only phyla Mollusca had sufficient data 
to compare classes within a phyla; the specific CA activity was significantly greater 
among cephalopods (t-test, P = 0.0303) than bivalves as noted by †. C) Inter-ordinal 
analysis revealed that specific CA activity among decapods was significantly greater 
(ANOVA, P = 0.0053) than all other orders except Teuthida (t-test, P = 0.0645). The 
activity in Teuthid squids, however, was not statistically different from other orders. 
Seven additional species within Canalipalata, Solemyoida, Corallimorpha, 
Octopoda, Unionoida, and Zoanthidea were excluded from this analysis. Class 
abbreviations in (C) are as follows: Polychateata (Ply), Malacostraca (Mal), 
Merostomata (Mer), Anthozoa (ant), Hydrozoa (Hyd), Scyphozoa (Scy), Bivalvia 
(Biv), and Cephalopoda (Cph). Values are means ± SEM. Number of mean values 
sampled and numbers of species are presented in Table 1. 

Figure 2. Mean CA specific activity among families of decapod crustaceans. 
Portunidae is represented by three species and Gecarcinidae, Geryonidae, and 
Varunidae are represented by 2 species. The remaining families are represented by a 
single species. Values are means of reported values in the literature ± SEM 
normalized to 15 °C.  
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3.2 Specific CA activity between taxa 

 The published specific activity of CA in respiratory tissues among the 67 

species in the data set was recalculated to the same units and standardized to 15 °C in 

order for comparison among phyla (Fig. 1A; Table 1). The mean specific CA activity 

in the gills of all arthropods (558.2 μmol CO2 · mg prot-1 · min-1) was nearly four times 

that of molluscs, the phylum with the next highest activity, and 66 times the activity 

exhibited among cnidarians (8.43 μmol CO2·mg prot-1·min-1). Activity between classes 

and orders within the four phyla was also investigated (Fig. 1 B and C), however there 

were fewer groups that had sufficient numbers of published means for comparisons 

with each lower level examined. At the class level, the highest specific CA activity 

was found in the class Malacostraca (Arthropoda) (Fig. 1B). Only phylum Mollusca 

had sufficient reports of mean activity for an analysis between classes. Cephalopods 

had significantly greater specific CA activity than bivalves (t-test, P = 0.0303). Nine 

of the 17 orders were excluded from an inter-order analysis of specific CA activity 

because they were represented by 1-2 published mean values. Of the remaining eight 

orders, the specific CA activity in Decapods was significantly greater than all other 

orders, except squids (Teuthida) (Fig. 1C). Interestingly, the gill tissue of Teuthid 

squids, with some species exhibiting very high metabolic rate, exhibited similar 

activities (about 200 μmol CO2 · mg prot-1 · min-1) to gill tissues of the freshwater 

bivalves (Unionoida) (Fig 1C; Table 1). A statistical analysis among families within a 

phylum was not possible because of low sample size at this level or below. This is 

illustrated in Fig. 2 that show the mean specific CA activity of families within 

Arthropoda, the most represented 
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Table 1. Specific CA activity (μmol CO2 mg prot min) from published values averaged at each taxonomic level. Values are the mean of the reported 
activities from the studies sampled ± SEM (number of mean values reported for a given grouping, number of species) 
            
Phylum    Class    Order    Family    
Cnidaria   Anthozoa  Actinaria  Actiniidae 0.91 ± 0.35 (3,3) 

8.43 ± 2.0 (23,23)  8.63 ± 2.3 (20,20)  7.72 ± 3.37 (6,6)  Aiptasiidae 11.41 ± 1.38 (3,2) 
         Stoichactidae 20.76 ± 0.00 (1,1) 
            
      Alyconacea  Alcyoniidae 2.11 ± 0.00 (1,1) 
      8.82 ± 5.50 (6,6)  Gorgoniidae 35.59 ± 0.00 (1,1) 
         Plexauridae 6.63 ± 2.42 (2,2) 
         Xeniidae 0.98 ± 0.21 (2,2) 
            
      Corallimorpharia  Discosomatidae 3.3 (1,1) 
      3.30 (1,1)     
            
      Scleractinia  Agariciidae 2.74 (1,1) 
      6.32 ± 1.46 (6,6)  Caryophylliidae 3.16 (1,1) 
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         Faviidae 11.22 (1,1) 
         Oculinidae 8.56 (1,1) 
         Pocilloporidae 8.59 (1,1) 
         Siderastreidae 3.65 (1,1) 
            
      Zoanthidea  Sphenopidae 32.23 (1,1) 
      32.23 (1,1)     
            
   Hydrozoa  Anthoathecata  Milleporidae 7.24 ± 2.58 (2,2) 
   7.24 ± 2.58 (2,2)  7.24 ± 2.58 (2,2)    

 
 
  

 
 
 

 
 

       
Schyphozoa  Rhizostomeae  Cassiopeidae 6.63 (1,1) 

  6.63 (1,1)  6.63 (1,1)      
            

 

 



 

Table 1 (continued).         
Phylum    Class    Order    Family     
Annelida  Polychaeta  Canalipalpata  Chaetopteridae 3.31 ± 0.44 (3,1) 

± 19.39 (8,5)  24.34 ± 19.39 (8,5)  3.31 ± 0.44 (3,1)     24.34 
            

      Sabellida  Siboglinidae 36.96 ± 30.77 (5,4) 
      36.96 ± 30.77 (5,4)     
         
Arthropoda  Malacostraca  Decapoda  Astacidae 1848.23 ± 20.9 (2,1) 

558.20 ± 119.01 (32,14)  567.61 ± 122.52 (31,13)  567.61 ± 122.52 (31,13)  Cancridae 288.63 (1,1) 
         Coenobitidae 1161.63 ± 1137.6 (2,1) 
         Gecarcinidae 1014.02 ± 560.5 (4,2) 
         Geryonidae 70.17 ± 15.1 (3,2) 
         Penaeidae 244.54 (1,1) 
         Pisidae 26.99 (1,1) 
         Portunidae 395.75 ± 74.0 (14,3) 
         Varunidae 402.98 ± 135.3 (3,1) 89             
   Merostomata  Xiphosura  Limulidae 266.42 (1,1) 
   266.42 (1,1)  266.42 (1,1)     
            
          
          
          
          
          
          
 
 

 
 

 
 

 
 

 
 

     
     

          
          
          

 



 

 

Table 1 (continued).         
Phylum    Class    Order    Family     
Mollusca  Bivalvia   Mytiloida  Mytilidae 1.80 ± 0.5 (4,3) 

147.51 ± 30.92 (26,23)  99.67 ± 35.22 (17,14)  1.80 ± 0.5 (4,3)     
            

      Solemyoida  Solemyidae 4.44 (1,1) 
      4.444 (1,1)     
            

      Unionida  Unionidae 208.03 ± 36.98 (2,1) 
      208.03 ± 36.98 (2,1)     
            
      Veneroida  Corbiculidae 580.9 (1,1) 
      126.67 ± 53.39 (10,9)  Lucinidae 13.45 (1,1) 
         Mactridae 108.89 ± 18.65 (2,1) 
         Veneridae 3.25 (1,1) 
         Vesicomyidae 90.27 ± 26.68 (5,5) 
            
   Cephalopoda  Teuthida  Chiroteuthidae 294.86 (1,1) 
   237.86 ± 48.81 (9,9)  224.73 ± 53.31 (8,8)  Cranchiidae 162.34 (1,1) 
         Gonatidae 46.6 (1,1) 
         Histioteuthidae 136.03 (1,1) 
         Loliginidae 298.43 ± 78.52 (2,1) 
         Mastigoteuthidae 482.16 (1,1) 
         Ommastrephidae 78.97 (1,1) 
            
      Octopoda  Bolitaenidae 342.96 (1,1) 
      342.96 (1,1)     
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group in the dataset in terms of number of studies. The freshwater crayfish, 

Pacifastacus leniusculus (Astacidae), and the land crabs Birgus latro (Coenobitidae),  

Cardisoma guanhumi and Gecarcinus lateralis (Gecarcinidae) all exhibited specific 

CA activities between 1000 - 2000 μmol CO2 · mg prot-1 · min-1, activities that were 5-

60 times higher than mean activity in gill tissue from other families (Table 1).  

 

3.3 Specific CA activity by respiratory tissue type 

 The specific activity of CA was compared as a function of respiratory tissue 

type between the phyla (Fig. 3). The CA activity per mg protein was significantly 

greater in the gill tissues of arthropods (558.2 μmol CO2 · mg prot-1 · min-1) than in the 

gills of molluscs (147.51 μmol CO2 · mg prot-1 · min-1). The specific CA activities 

between respiratory tissues within a phylum were not statistically different. In other 

words, the notopodia of Chaetopterus variopedatus (Polychaeta: Canalipalpata), a 

coastal annelid collected off Santa Barbara, CA (Kochevar and Childress, 1996), and 

the plume of deep-sea tube worms were not different (Table 1; t-test, P = 0.44) despite 

coming from different environments. Similarly, the specific CA activity among 

Cnidarians was very similar between polyp segment (8.75 μmol CO2 · mg prot-1 · min-

1) and whole animal (8.72 μmol CO2·mg prot-1·min-1).  
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Figure 3. The specific activity of CA between respiratory tissue types grouped 
by phylum. Activity in arthropod gills was significantly greater than that in 
respiratory tissue from all other phyla (ANOVA, P < 0.0004). Specific CA 
activity in molluscan gills was not significantly greater than activity in the 
remaining species. Values are means of reported values in the literature ±SEM. 
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3.4 Specific CA activity in relation to habitat 

 Animals were also grouped into habitat categories based on environmental 

characterizations in the literature (Fig. 4). All annelids and cnidarians in this study 

were exclusively marine, as were all cephalopod species except for the brief squid, L. 

brevis, which also inhabits estuarine waters (Hendrix et al., 1981; Bartol et al., 2002). 

The euryhaline animals within the class Malacostraca were acclimated to marine 

salinities (≥ 29 ppt) in the lab, whereas animals labeled as marine are exclusive to that 

habitat. The specific CA activity values reported for the gill tissue of the terrestrial 

malacostracan species, Birgus latro and Gecarcinus lateralis, (n = 4) were 

significantly greater than the activities of the animals exclusive to marine habitats 
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(Fig. 4). The data suggest decreasing specific CA activity among arthropods with 

transition among species from terrestrial to marine habitats.  When grouped by habitat, 

the mean reported specific CA activity among marine cephalopods was significantly 

greater than other exclusively marine organisms (ANOVA, P < 0.0001), and twice that 

of the next closest group (marine malacostracans). The mean specific CA activity in 
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Figure 4. Mean specific CA activity reported in respiratory tissues compared to 
organism habitat. Organisms are further grouped by class within phylum. The gills of 
freshwater bivalves showed significantly greater activity than those of marine bivalve 
species (P = 0.0017). Pair-wise comparisons (Student's t-test) showed that specific CA 
activity in the gills of the two terrestrial arthropods species, B. latro and G. lateralis, 
were significantly greater than that found among the marine species (P = 0.0278). 
Values shown are means ± SEM.

* *

 

the gills of freshwater bivalve species Rangia cuneata, Corbicula fluminea, and 

Ligumia subrostrata was 281.13 μmol CO2 · mg prot-1 · min-1, 7 times the activity of 

marine bivalves (39.97 μmol CO2 · mg prot-1 · min-1), and also statistically the same as 
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that reported in the gills of cephalopods and euryhaline malacostracans (Fig. 4). 

Because R. cuneata is an iono- and osmoconformer at 10 ppt (Henry and Saintsing, 

1983) the CA activity reported at this salinity was excluded from the analysis, 

however values for freshwater acclimated specimens of this species were included. 

 

3.5 Subcellular fraction and specific CA activity 

 The specific activity for CA reported in the studies used was either that derived 

from crude homogenate (minimal, if any, centrifugation) or of the cytoplasmic 

fraction, which contains the cytosolic and membrane-bound CA isozymes after 

centrifugation removes large particulates and mitochondria. A difference in activity 

between subcellular fractions was also examined. When fractions were compared 

among all studies regardless of taxonomy, the specific CA activity reported for 

cytoplasmic fraction (452.95 ±64.61 μmol CO2 · mg prot-1 · min-1, n=55) was 

significantly greater than that for crude homogenate (55.43 ±13.92 μmol CO2 · mg 

prot-1 · min-1, n=56) (P < 0.0001). However, this may be due to the fact that all of the 

studies among arthropods, except for Morris and Greenaway (1990), measured activity 

in the cytoplasmic fraction. Also, arthropods exhibited statistically greater specific CA 

activity than the other three phyla. It was not possible to statistically compare activity 

between the fractions among arthropods because there were only 2 data points for 

crude homogenate activity. Studies on annelids and cnidarians all examined CA 

activity in crude homogenate, and activities in these phyla are lower than arthropods. 

Among molluscs, five of the 26 studies examining CA activity used cytoplasmic 

fractions, but there was not a significant difference between these fractions when 
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compared within molluscs (P = 0.1348) (Fig. 5). However, nine of the crude 

homogenate data points were CA specific activity from cephalopods, which was seven 

times greater than crude homogenate from bivalves (Table 1). The specific CA activity 

in the cytoplasmic fraction among bivalves (242.95 μmol CO2 · mg prot-1 · h-1) was 

significantly greater than the crude homogenate activity (P = 0.0042) and very close to 

the crude homogenate activity found in cephalopods (237.86 μmol CO2 · mg prot-1 · h-

1) (Fig. 5). 

 

3.6 Analysis of higher nodes 

 An analysis of higher nodes (Harvey and Pagel, 1991) was used to identify the 

appropriate taxonomic level for subsequent comparisons. The majority of the 
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Figure 5. Mean reported specific CA activity from respiratory tissue 
subcellular fractions grouped by class within their phyla. The cytoplasmic 
fraction among bivalves was significantly greater than crude homogenate only 
when compared within the class (P = 0.0042). When activity between these 
fractions was compared within lower taxonomic levels for which both fractions 
were measured no significant differences were detected. The crude 
homogenate in Malacostraca is from 1 reported mean value of B. latro (Morris 
and Greenaway, 1990) Values shown are means ±SEM. 
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variability in phyla Cnidaria (41%) was among orders within a class (Table 2). 

However, Scyphozoa and Hydrozoa each had specific CA activity represented by a 

single family in each class. All of the annelids reported in the literature were from 

class Polychaeta. Therefore, the analysis in this group was limited to comparing 

taxonomic levels no higher than among families within an order. Most of the 

variability, 76%, was between genera within the two families of annelids, 

Chaetopteridae and Siboglinidae. The majority of the variation in gill CA activity, 

48% and 62%, was among families within an order for Arthropods and Molluscs, 

respectively. Similarly, the majority of variance in metabolic rates among cephalopods 

also is reported to be at the family level (Seibel, 1998; Seibel et al., 2000) as well. 

These results were used as a guide to determine which taxonomic level weighted mean 

values were calculated. 

 

Table 2. The taxonomic distribution of specific CA activity variance within each phyla. Values 
are percentages of total variance accounted for at successive taxonomic levels estimated from 
nested ANOVA. 
              
 Among: species  genera  families  orders  
 Within: genera  families  orders  classes  
Cnidaria  13.39 (14)  20.11 (12)  25.61 (8)  40.88 (6)  
Annelida  24.40 (4)  75.56 (4)  0.04 (2)  ----- --  
Arthropoda  7.21 (14)  8.83 (12)  47.64 (10)  36.33 (2)  
Mollusca  11.08 (23)  12.27 (17)  62.00 (15)  14.65 (6)  
             
The value in parentheses is the total number within the next lower taxonomic group   

 

3.7 Weighted mean specific CA activity, metabolic rate, and mass 

 Among the species for which specific CA activities were reported in the 

literature, there was sufficient reported metabolic rate data for analysis of phyla 

Mollusca and Arthropoda. The weighted mean specific CA activity and metabolic rate 
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calculated within families are listed in Table 3. Within the molluscs metabolic rate 

data was obtained from the literature for 13 species from seven genera (6 families) of 

bivalves, and 9 species (8 families) of cephalopods. The estimates of metabolic rates 

among bivalves ranged from 0.2 - 6 μmol O2 ·g
-1 · h-1, and cephalopod weighted mean 

metabolic rates ranged 1 - 18 μmol O2 · g-1 · h-1. Among phyla Arthropoda the 

weighted mean metabolic rate ranged from 1.15 μmol O2 · g
-1 · h-1 at 10 g and 15 °C 

for the bathyal crab C. fenneri to over 10 μmol O2 · g
-1 · h-1 for L. polyphemus at the 

same temperature and mass (Table 3).  

 Figure 6A depicts a significant correlation between total CA activity (μmol 

CO2 · g
-1 animal · min-1) and metabolic rate (redrawn from Nyack PhD dissertation, 

chapter 2). However, no relationship exists when CA activity is normalized to protein, 
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Figure 6. The scaling of CA activity as a function of mass-specific metabolic rate in 
individual species of cephalopods. A significant relationship exists between total CA 
activity and the metabolic rates among cephalopods distributed at different depths (A) 
(redrawn from Nyack, PhD dissertation, chapter 2), however, this relationship is no 
longer significant when specific CA activity was compared to metabolic rate in the 
same animals (B) (specific CA activity = 0.1MR + 4.2, P = 0.30, r2 = 0.15). 

Mass-specific metabolic rate 
(μmol O2·g-1·h-1) 

Mass-specific metabolic rate 
(μmol O2·g-1·h-1) 



 

 
98

as throughout this study (Fig 6B). The correlation between weighted mean specific CA 

 activity and weighted mean metabolic rate among families within Bivalvia (Fig. 7A) 

and decapod crustaceans (Fig. 7B) was not significant. 
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Weighted mean metabolic rate 
(μmol O2 · g-1 · h-1) 
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Figure 7. The weighted mean specific CA activity (y) as a function of weighted mean 
metabolic rate (MR) in bivalve (A) and decapod (B) families. A) There was not a 
significant correlation between weighted mean CA activity and either metabolic rate 
(y = -0.78MR + 5.38, P = 0.11, r2 = 0.51). Symbols represent bivalve families as 
follows: Corbiculidae (◊), Vesicomyidae (+), Lucinidae (∆), Unionidae (x), 
Solemyoida (*), Mytilidae (●). B) There was also no relationship between the 
weighted mean specific CA activity among decapod families versus weighted mean 
metabolic rate (MR) (y = 0.12MR + 5.16, P = 0.67, r2 = 0.03). Symbols represent 
decapod families as follows: Astacidae (●), Pisidae (▲), Portunidae (Z), Varunidae 
(*), Penaeidae (Y), Geryonidae (X), Cancirdae (+), Gecarcinidae (♦).  

  

 To thoroughly investigate any residual scaling trends the correlation between 

weighted mean CA activity and weighted mean metabolic was examined at other 

taxonomic levels. A significant inverse relationship was revealed between the 

weighted mean specific CA activity and weighted mean metabolic rate among 

bivalves (Fig. 8 P = 0.0002, r2 = 0.7). This trend seems to be independent of habitat 
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Table 3. Weighted mean values for CA activity, mass, and metabolic rates (MR). Weighted measures were summed at the family level 
within each group. Values are means ± SEM. n-values are the total number of specimens used in published experiments within each family. 
        CA activity  MR 
Phylum  Class  Order  Family   (umol CO2/mg prot/min)  (umol O2/g/h) 
        n Mean ± sem  n Mean ± sem 
Arthropoda  Malacostraca  Decapoda  Portunidae  93 383.89 ± 23.0  231 2.61 ± 0.11 
      Pisidae  8 26.99 ± 4.98  14 2.14 ± 0.11 
      Gecarcinidae  54 711.99 ± 131.4  97 7.02 ± 0.07 
      Varunidae  33 427.37 ± 24.51  25 2.87 ± 0.2 
      Astacidae  13 1846.62 ± 191.3  1 1.92 ----- 
      Geryonidae  12 70.17 ± 14.86  18 3.38 ± 0.15 
      Cancridae  6 288.63 ± 36.8  25 6.89 ± 0.64 
      Penaeidae  6 244.54 ± 84.81  188 3.16 ± 0.05 
             
  Merostomata  Xiphosura  Limulidae  6 266.42 ± 95.61  81 9.37 ± 0.28 
             
Cnidaria  Anthozoa  Actinaria  Actiniidae  6 0.91 ± 0.18  60 0.06 ± 0.01 
             
  Schyphozoa  Rhizostomeae  Cassiopeidae  2 6.63 ± 2.42  9 0.93 ± 0.06 
             
Annelida  Polychaeta  Sabellida  Siboglinidae  39 23.21 ± 3.94  107 15.26 ± 1.23 
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Table 3 (continued)             
        CA activity  MR 
Phylum  Class  Order  Family   (umol CO2/mg prot/min)  (umol O2/g/h) 
        n Mean ± sem  n Mean ± sem 

 Bivalvia  Veneroida  Corbiculidae  1 580.9 --------  26 0.87 ± 0.03 Mollusca 
      Vesicomyidae  10 90.27 ± 12.92  37 1.85 ± 0.19 
      Lucinidae  5 13.45 ± 5.1  18 0.22 ± 0.19 
             
    Unionoida  Unionidae  8 208.03 ± 37.28  17 1.67 ± 0.12 
             
    Mytiloida  Mytilidae  12 1.79 ± 0.21  35 4.71 ± 0.44 
             

   Solemyoida  Solemyidae  3 4.44 ± 0.46  30 5.29 ± 0.25  
             
  Cephalopoda  Teuthida  Loliginidae  19 252.97 ± 25.58  153 15.94 ± 0.29 

     Ommastrephidae  2 78.97 ± 19.05  170 17.62 ± 0.65  
      Chiroteuthidae  4 294.86 ± 27.21  13 1.62 ± 0.09 
      Cranchiidae  5 162.34 ± 34.35  38 1.67 ± 0.07 
      Gonatidae  4 46.6 ± 5.24  30 12.1 ± 0.92 

     Histioteuthidae  2 136.03 ± 126.5  23 2.43 ± 0.09 
     Mastigoteuthidae  4 482.16 ± 240.3  5 2.98 ± 0.6 
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Octopoda Bolitaenidae  342.96 ± 60.0 5  1.63 ± 0.14 
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or depth distribution. Species within Calyptogena exhibited specific CA activities and 

mean metabolic rates more similar to those of freshwater bivalves (L. subrostrata and 

C. fluminea) than to the other deep-sea bivalves, Bathymodiolus spp and S. reidi. It 

should be noted, however, that our result from the analysis of higher nodes indicates 

that genera within bivalve families should not be considered independent from each 

other. However, the only family that was represented by more than one genus was 

Mytilidae (Mytilus spp. and Bathymodiolus spp.) 
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Weighted mean metabolic rate 
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Figure 8. The scaling of the weighted specific CA activity (y) as a function of 
weighted mean metabolic rate (MR) among bivalves. All of the weighted mean 
values were calculated from species within a genus. There was a significant decline 
in weighted mean specific CA activity with increasing metabolic rate (y = -0.87MR 
+ 5.47, P = 0.0002, r2 = 0.7). Note that Calyptogena and Bathymodiolus, both 
bathyal bivalves, are on opposite ends of the distribution. Symbols represent species 
within families as follows: Corbicula fluminea (◊), Calyptogena spp. (+), Lucinoma 
aequizonata (∆), Ligumia subrostrata (x), Solemya reidi (*), Mytilus californianus 
(○) and Bathymodiolus spp. (●). 
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4. Discussion 

4.1 Taxonomic differences in specific CA activity 

 There were significant differences in the specific CA activity among 

taxonomic groups at the phylum, class, and order levels when the recalculated mean 

reported specific CA activity values for all species sampled was analyzed. In some 

active animals the difference between species may be due to the amount of total 

protein content within the respiratory tissues. A number of the squids included in this 

study (e.g. Ommastrephidae) are muscular, active swimmers with high metabolic rates 

(Seibel, 2007). However, the specific CA activity of the ommatrephid species 

examined (Dosidicus gigas) was among the lowest of the teuthid squids. In some 

instances the difference in specific CA activities between taxonomic groups may be 

related to the activity of animals within a group. For example, the mean values for 

sessile annelids and cnidarians were all similar to each other and much lower than the 

activity in molluscs and arthropods. The observed differences between taxonomic 

groups at various levels are probably due to the demands an organisms' habitat places 

on it to maintain homeostasis. 

  

4.2 Differences in specific CA activity due to habitat 

 The specific CA activity in an organisms' respiratory tissue has a clear 

correlation with its habitat.  The elevated activities within Arthropoda were largely 

due to by terrestrial and semi-terrestrial decapod species (Fig. 4), and the euryahline 

crayfish, Pacifasticus lenisculus (Astacidae) (Fig. 2). In the terrestrial species, high 

CA activity has been attributed to either ion regulation (Morris and Greenaway, 1990) 
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or elevated metabolic rate (Henry, 1991b). The published specific CA activities used 

here for the group of decapods labeled as 'euryhaline' were all acclimated to 29-35 ppt, 

salinities that do not induce differential upregulation of CA activity between the gill 

arches in these animals (Henry and Cameron, 1982a). The exception to this was P. 

leniusculus (Astacidae), of which the values used here were from animals caught and 

maintained in freshwater (Wheatly and Henry, 1987) and the highest values in the data 

set (Table 1). Exclusion of the P. leniusculus did not change the results of the 

analyses, i.e. result in a significant difference in specific CA activity between 

terrestrial and euryhaline arthropods. In fact, acclimation to higher salinity treatments 

(15 and 25 ppt) led to reductions in specific activity of CA in the gills of P. 

leniusculus (Wheatly and Henry, 1987). The effect of habitat on specific CA activity is 

also illustrated by the activity among osmoregulating freshwater bivalves. CA in this 

group is important in ion regulation (Henry and Saintsing, 1983), but the specific 

activity is comparable to isosmotic squids.  

 

 4.3 Specific CA activity in cytoplasm versus crude homogenate 

 The observed differences in specific CA activity between taxa versus habitat 

could also be an artifact of the fraction used in the assay. The majority of the studies 

that met the inclusion criteria measured specific CA activity in either the cytoplasmic 

fraction (i.e. cell debris and mitochondria were removed by centrifugation), or were 

from crude homogenate (Fig. 5). Within the full dataset, only reported values for the 

class Bivalvia had sufficient sample size to analyze the differences in these two 

fractions, and showed that cytoplasmic activity was significantly greater than crude 
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homogenate (t-test, P = 0.0042). The difference between these two fractions, however, 

may be correlated to differences in habitat of the study animals instead of the fraction. 

All of the studies that used crude homogenate to measure specific CA activity were 

performed on marine bivalves, which demonstrated low specific CA activity (39.9 

μmol CO2 · mg prot-1 · min-1 at 15 °C).  

 Some studies in crustaceans separated the cytoplasmic fraction to measure the 

activity in the microsomal and cytosolic subcellular compartments (Henry, 1988; 

Henry 1991b; López Mañanes et al., 2000). The activities in these fractions were 

combined for the purposes of our comparisons since other studies in the dataset did 

not separate these subcellular compartments. While the CA activity in the subcellular 

fraction may be significant for some crustacean species, Weis (1993) showed that the 

specific CA activity in crude homogenate and soluble (cytoplasmic) fraction in A. 

pulchella were statistically the same. Crude homogenates probably contains more total 

protein than when the homogenate is separated by differential centrifugation. If the 

increase in protein concentration from inclusion of the mitochondria (which contain 

their own CA isozyme) and cell debris fractions is greater than the difference in CA 

activity, then the specific are likely underestimates of the specific CA activity.  

 

4.4 Presence of symbionts 

 The majority of cnidarian species and the deep-sea annelids (Siboglinidae) and 

bivalves (Vesicomyids and Bathymodiolus spp.) used in the full dataset contained 

endosymbionts that aid in carbon fixation. Our analysis did not show a significant 

difference in the specific CA activity between symbiotic and asymbiotic species 
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among values reported in the literature. The lack of significance may have been due to 

a large standard error associated with the specific CA activity values reported for 

asymbiotic organisms among the studies included in the dataset. Further, our results 

contrast the findings of some of the individual studies. For example, Weis et al. (1989) 

found significantly greater specific CA activity in the animal tissue of zooxanthellate 

cnidarians despite examining the CA activity in very few azooxanthellate species. 

Kochevar and Childress (1996) demonstrated higher values in vesicomyid gills and the 

plumes of siboglinid worms. However, there was large variability in the activity for 

most species they measured and sample sizes were typically three or less. While the 

findings in the present study pertain to only the results of the literature sampled here, 

both our results comparing specific CA activity and those in the original studies 

should be considered carefully. 

 

4.5 Weighted mean specific CA activity and metabolic rate 

 Using a subsample of the full CA dataset, we examined the weighted mean 

specific CA activity, metabolic rate, and animal mass to investigate any residual 

scaling trends. The results of an analysis of higher nodes indicated that the specific CA 

activity data for most phyla were independent between families within an order. Mass-

specific metabolic rates tend to decline with increasing body mass (e.g. Kleiber, 1932; 

Schmidt-Nielsen, 1984; Seibel, 2007). Similarly, aerobic enzymes in gill and muscle 

tissues also tend to scale negatively with body mass (Childress and Somero, 1990; 

Seibel, 2007; Kinsey et al., 2003), reflecting the trend in metabolic rate scaling. Thus, 

larger organisms with low metabolic rate also tend to have low oxidative enzyme 
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activity and vice versa. For example, the total CA activity (μmol CO2·g animal-1·min-

1) in cephalopod gill tissue is correlated with metabolic rate (Fig. 6A), but specific CA 

activity is not (Fig. 6B). However, using specific activity of CA as the basis of 

comparison among animals from different phyla has the advantage of mitigating the 

effects of animal mass and metabolic rate between otherwise disparate groups. The 

lack of a correlation between weighted mean specific CA activity and weighted mean 

metabolic rate and animal mass among families within orders Malacostraca and 

Bivalvia appears to support this (Fig. 7).  

 The only significant correlation found was a strong inverse relationship 

between weighted mean specific CA activity and weighted mean metabolic rate 

among bivalve genera (Fig. 8). That the specific CA activity of some hydrothermal 

vent clams (Calyptogena spp. and L. aequizonata) is similar to that of the freshwater 

species C. fluminea and L. subrostrata suggests that CA activity might be more 

influenced by habitat demands than metabolic rate. The activity of CA in the 

freshwater species has been attributed to the osmotic demands of their environment 

(Henry and Saintsing, 1983). Calyptogena spp. and L. aequizonata, however, have 

similar depth distributions to the clam S. reidi and mussels Bathymodiolus spp. and are 

often sympatric (Kochevar and Childress, 1996; Fisher et al., 1988a). However, 

Calyptogena spp., like other Vesicomyid clams, has hemoglobin in its circulatory 

system to transport oxygen, supplies its endosymbiotic bacteria in the gills with both 

H2S and S2O3
2- chemoautotrophy and uptake mechanism (Arp et al., 1984; Childress 

et al, 1991; reviewed in Childress and Girguis, 2011). Vesicomyid clams have a 

reduced digestive tract and rely heavily on their endosymbionts (Fisher et al., 1988b), 
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which they digest (Childress and Girguis, 2011), suggesting relatively rapid turnover 

rate of endosymbiotic bacteria in these animals. The high specific activity of gill CA 

in this group may be needed to not only facilitate ambient CO2 uptake (Kochevar and 

Childress, 1996), but also the dehydration of circulatory bicarbonate to supply 

sufficient carbon to the endosymbionts in order to sustain the population. C. 

magnifica, and probably other vesicomyid clams, flourishes in narrower conditions 

than other vent bivalves, such as Bathymodiolus thermophilus (Fisher et al., 1988b,c). 

This sensitivity to changes in their environment suggests that another reason for the 

higher specific CA activity in the vesicomyids compared to B. thermophilis could be 

due to shell deposition. 

 

4.7 Conclusions 

 The enzyme CA is a physiologically important enzyme in that it both 

maintains the instantaneous equilibrium of CO2 and HCO3
- and assists in several other 

key homeostatic processes. In the present study we collected data from the literature 

that reported specific CA activity in respiratory tissues for a broad group of 

invertebrates to examine the factors underlying differences in CA activity. Our results 

suggest that when the effects of animal mass and metabolic rate are removed, the 

specific CA activity is are strongly correlated with the demands of an organisms' 

habtat. The fact that CA is strongly influenced by habitat and environmental factors in 

invertebrate respiratory tissue suggests that this enzyme should be included in studies 

that investigate impacts of climate change. It is important to keep in mind that the 

findings presented here pertain to natural variation in specific CA activity from studies 
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that met our particular inclusion criteria. However, the accruing body of CA literature 

in invertebrates could generate future meta-analyses that examine the effects of 

environmental conditions (e.g. climate change) on CA across species. 
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