
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Biological Sciences Faculty Publications Biological Sciences 

3-26-2018 

Cellulose Microfibril Structure: Inspirations from Plant Diversity Cellulose Microfibril Structure: Inspirations from Plant Diversity 

Alison Roberts 
University of Rhode Island, aroberts@uri.edu 

Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs 

Citation/Publisher Attribution Citation/Publisher Attribution 
Roberts, A.W. Cellulose Microfibril structure: Inspirations from Plant Diversity (2018) IOP Conference 
Series: Earth and Environmental Science, 130(1), art. no. 012001. DOI: 10.1088/1755-1315/130/1/012001 

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Biological 
Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, 
please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author 
directly. 

http://ww2.uri.edu/
http://ww2.uri.edu/
https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/bio_facpubs
https://digitalcommons.uri.edu/bio
https://digitalcommons.uri.edu/bio_facpubs?utm_source=digitalcommons.uri.edu%2Fbio_facpubs%2F140&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


Cellulose Microfibril Structure: Inspirations from Plant Diversity Cellulose Microfibril Structure: Inspirations from Plant Diversity 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 3.0 License. 

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/bio_facpubs/140 

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
https://digitalcommons.uri.edu/bio_facpubs/140


IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

Cellulose microfibril structure: inspirations from
plant diversity
To cite this article: A W Roberts 2018 IOP Conf. Ser.: Earth Environ. Sci. 130 012001

 

View the article online for updates and enhancements.

Related content
Possibilities of Using Cellulose Fibres in
Building Materials
V Hospodarova, N Stevulova and A
Sicakova

-

Direct and indirect impacts of climatic
change on species diversity and genetic
diversity
Tetsukazu Yahara, M Donoghue and A
Hendry

-

Stochastic Huge-Resonance Caused by
Coupling for a Globally Coupled Linear
System
Li Jing-Hui

-

This content was downloaded from IP address 131.128.197.37 on 21/11/2018 at 18:14

https://doi.org/10.1088/1755-1315/130/1/012001
http://iopscience.iop.org/article/10.1088/1757-899X/96/1/012025
http://iopscience.iop.org/article/10.1088/1757-899X/96/1/012025
http://iopscience.iop.org/article/10.1088/1755-1307/6/30/302003
http://iopscience.iop.org/article/10.1088/1755-1307/6/30/302003
http://iopscience.iop.org/article/10.1088/1755-1307/6/30/302003
http://iopscience.iop.org/article/10.1088/0253-6102/51/2/16
http://iopscience.iop.org/article/10.1088/0253-6102/51/2/16
http://iopscience.iop.org/article/10.1088/0253-6102/51/2/16
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/655954596/Middle/IOPP/IOPs-Mid-EES-pdf/IOPs-Mid-EES-pdf.jpg/1?


1

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1234567890

ICBSB IOP Publishing

IOP Conf. Series: Earth and Environmental Science 130 (2018) 012001  doi :10.1088/1755-1315/130/1/012001

Cellulose microfibril structure: inspirations from plant 
diversity 

A W Roberts 

Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, 
Kingston RI 02881 USA 
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Abstract. Cellulose microfibrils are synthesized at the plasma membrane by cellulose synthase 
catalytic subunits that associate to form cellulose synthesis complexes. Variation in the 
organization of these complexes underlies the variation in cellulose microfibril structure among 
diverse organisms.  However, little is known about how the catalytic subunits interact to form 
complexes with different morphologies. We are using an evolutionary approach to investigate the 
roles of different catalytic subunit isoforms in organisms that have rosette-type cellulose synthesis 
complexes. 

1.  Diversity in cellulose microfibril structure and biosynthesis 
Cellulose is an important component of many commercial products and a carbon-neutral energy source. It 
is produced by diverse organisms in the form of microfibrils, which consist of bundles of 1,4-β-glucan 
chains stabilized by inter-chain hydrogen bonds. These microfibrils are synthesized by cellulose synthase 
catalytic subunits that associate in the plasma membrane to form Cellulose Synthesis Complexes (CSC). 
The number and arrangement of catalytic subunits varies among different taxa, and this variation in CSC 
organization has been correlated with variation in cellulose microfibril structure [1]. For example, linear 
CSCs in bacteria [2], brown algae [3], dinoflagellates [4], and red algae [5, 6] produce ribbon-like 
cellulose microfibrils. In some chlorophycean green algae, large CSCs produce microfibrils containing 
more than 100 glucan chains [7]. The CSCs of land plant and their close charophycean green algal relative 
are hexagonal structures known as rosettes ([8], which contain 18 catalytic subunits and therefore produce 
cellulose microfibrils consisting of 18 glucan chains [9]. These rosette CSCs are composed of specialized 
cellulose synthases designated CESAs [10, 11] and it has been proposed that domains unique to CESAs 
participate in CSC assembly [12]. The CESAs diversified early in the evolution of the seed plant lineage 
to form a medium-sized family whose members are functionally-specialized [13]. Although nearly all 
commercial cellulose is derived from organisms that have CESAs and rosette CSCs, we know little about 
the evolutionary origin of CESA proteins or the selective pressures that drove their functional 
specialization.  
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2. CESAs functional specialization in Arabidopsis 
The specialized functions of the ten members of the Arabidopsis CESA family have been well 
characterized. First, it has been shown that different CESAs are responsible for primary and secondary cell 
wall deposition. Specifically, the cellulose microfibrils in secondary cell walls are synthesized by 
AtCESA4, -7 and -8 [14] and those in in the primary cell walls are synthesized by AtCESA1, -3, and 
members of the 6-like group [15, 16]. However, promoter swap experiment have shown that at least some 
primary AtCESAs can substitute for secondary AtCESAs and vice versa, i.e. AtCESA3pro::AtCESA7 
partially rescues atcesa3 and AtCESA8pro::AtCESA1 partially rescues atcesa8 [17]. This is consistent 
with a role for sub-functionalization in the evolution of seed plant CESAs. A role for neo-functionalization 
is reflected in the shared phenotype of atcesa4, atcesa7, and atcesa8 null mutants [18] and the inability to 
complement these mutants by expressing one of the other secondary AtCESAs with the promoter for the 
missing isoform [19].  This, combined with similar studies of the primary AtCESAs [15, 16], suggests a 
requirement for three functionally distinct, non-interchangeable CESA isoforms for both primary and 
secondary cell wall biosynthesis. In addition, there is some functional redundancy among the 6-like 
members of the AtCESA family, AtCESA2, -5, -6 and -9 [16].  
 
3.  Physcomitrella patens as a model for investigating CESA and CSC evolution 
Physcomitrella patens represents the mosses, a lineage of non-vascular plants that diverged from the seed 
plant lineage over 440 million years ago [20]. The life cycle of P. patens [21] includes a haploid phase 
consisting of a system of protonemal filaments and leafy gametophores (Fig. 1), and a diploid phase that 
consists of short-stalked sporangia. Although true vascular tissue is lacking, the leaf midribs of P. patens 
contain supportive stereid cells with thick secondary cell walls and thin-walled hydroids that function in 
transport [22]. The ability to make targeted changes in the P. patens genome by homologous 
recombination [23] along with a sequenced genome [24, 25] has led to the extensive use of this organism 
to study the evolution of developmental mechanisms in plants [26, 27]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Protonemal filament (top) and leafy gametophores (bottom) of P. patens.  
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Like other land plants, P. patens has rosette CSCs [9, 28]. The genome of P. patens contains 
seven CESA genes and phylogenetic analysis has shown that the moss and seed plant CESA families 
evolved independently from a single common ancestral gene [19, 29-31]. Thus, the diversification and 
functional specialization of CESAs followed independent paths in the two lineages [28]. We have 
investigated CESA functional specialization in P. patens using a targeted gene knockout approach in an 
effort to better understand the selective pressures that drove the evolution of CESA families. 
 
4.  CESA functional specialization in P. patens  
Knock out of individual PpCESAs revealed that PpCESA5 is the only family member with an obvious 
single-knockout morphological phenotype. The ppcesa5KO lines are distinguished by their inability to 
produce leafy gametophores (Fig. 2). Gametophore buds develop normally through the 4-cell stage, but 
these cells expand and divide abnormally, producing irregular cell clumps instead of an organized leaf-
generating meristem [32]. The defects in cell division and cell expansion are consistent with a role for 
PpCESA5 in biosynthesis of the primary cell wall.  

 
 

 

 
Figure 2. Phenotype of ppcesa5KO with irregular clumps of tissue (arrows, left),  

in place of wild type leafy gametophores (right). 
 
The production of double knockouts revealed phenotypes for ppcesa3/8KO, ppcesa6/7KO and 

ppcesa4/10KO. In ppcesa3/8KO and ppcesa6/7KO lines, the leaf midribs showed reduced birefringence 
and staining with the cellulose binding dye Pontamine Falst Scarlet 4B (S4B; Fig. 3), consistent with 
cellulose deficiency [33]. Labeling of sections with the carbohydrate binding module 3A indicated that the 
secondary cell walls of the stereid cells in the leaf midribs were cellulose deficient [33]. Quantitative 
analysis of S4B fluorescence revealed a slight deficiency in midrib cellulose deposition in ppcesa8KO. 
However, the ppcesa3KOs were indistinguishable from the wild type, indicating that PpCESA3 and 
PpCESA8 are partially redundant. The ppcesa3/8KO phenotype could not be rescued by expressing 
PpCESA6, PpCESA7, PpCESA4 or PpCESA10 under control of the PpCESA8 promoter, indicating that 
the evolutionary history of the PpCESA family included neofunctionalization. However, we were able to 
rescue the ppcesa3/8KO by expressing PpCESA5 under control of the PpCESA8 promoter. This indicates 
that evolution of the PpCESA family also involved subfunctionalization. The ppcesa4/10KO lines have 
defects in protonemal growth (unpublished) and are currently being investigated. 
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Figure 3. Polarization and fluorescence microscopy of leaves from wild type and ppcesa3/8KO P. patens 

showing cellulose deficiency in midribs. 
 
5.  Conclusion 
Phylogenetic analysis has confirmed that the CESA families of seed plants and mosses diversified 
independently from a single common ancestor [19, 29-31]. However, there are similarities in functional 
specialization of the PpCESA and AtCESA families that are attributable to convergent evolution. First, the 
CESAs that deposit secondary cell walls (PpCESA3, -6 and -7) and primary cell walls (PpCESA5) are 
functionally differentiated [32, 33]. Second, subfunctionalization has occurred as indicated by the ability 
of PpCESA5, which is normally functions in primary cell wall deposition, to rescue the ppcesa3/8KO 
secondary cell wall phenotype when expressed with the PpCESA8 promoter. Third, neofunctionalization 
is indicated by the shared phenotype of ppcesa3/8KO and ppcesa6/7KO and the inability of 
PpCESA8pro::PpCESA7 to complement the ppcesa3/8KO phenotype. We are currently investigating 
whether the secondary PpCESAs physically interact to form a CSC. Finally, there is some functional 
redundancy in the PpCESA family since a strong secondary cell wall phenotype is observed only when 
PpCESA3 and -8 or PpCESA6 and -7 are knocked out together [33]. 
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