
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

2013 

Seasonal Particle and Carbon Dynamics in the Eastern Bering Sea Seasonal Particle and Carbon Dynamics in the Eastern Bering Sea 

Matthew S. Baumann 
University of Rhode Island, mbaumann11985@gmail.com 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Baumann, Matthew S., "Seasonal Particle and Carbon Dynamics in the Eastern Bering Sea" (2013). Open 
Access Dissertations. Paper 126. 
https://digitalcommons.uri.edu/oa_diss/126 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/126?utm_source=digitalcommons.uri.edu%2Foa_diss%2F126&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


 

 

 

 

 

SEASONAL PARTICLE AND CARBON DYNAMICS IN THE EASTERN 

BERING SEA 

BY 

MATTHEW S. BAUMANN 

 

 

 

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN  

OCEANOGRAPHY 

 

 

  

 

 

 

UNIVERSITY OF RHODE ISLAND 

2013 



 

 

 

 

 

 

                                          DOCTOR OF PHILOSOPHY DISSERTATION 

 

                                                                             OF 

 

                                                          MATTHEW S. BAUMANN 

 

 

 

 

 

 

 

 

 

 

 

                     APPROVED:  

 

                                          Dissertation Committee: 

 

                                                 Major Professor S. Bradley Moran 

                                                   

                                                                            Edward Durbin 

 

                                                                            Dawn Cardace 

                                                                               

       Nasser H. Zawia 

                                                                              DEAN OF THE GRADUATE SCHOOL 

 

 

 

 

 

 

UNIVERSITY OF RHODE ISLAND 

2013 



 

ABSTRACT 

 The ocean margins of high-latitude seas, such as the eastern Bering Sea, are 

recognized as important areas for the enhanced scavenging removal of particle reactive 

chemicals and for the potential to sequester atmospheric carbon dioxide via 

photosynthetic conversion to biogenic particles and subsequent downward particle 

transport to deeper waters.   This region is expected to warm in the future, and with the 

warming will come a reduction in the extent and duration of seasonal sea-ice.  This 

physical process exerts an important control on the timing, location, and magnitude of the 

spring primary production bloom.  Within the context that 2008-2010 are characterized as 

cold years in the eastern Bering Sea, establishing the mechanistic link between primary 

production and the seasonal progression in particle export represents a significant 

challenge because these processes exert a control on organic matter transport from the 

surface ocean and on the success of economically and culturally important animals. 

 During spring and summer cruises in 2009 and 2010, distributions of 
234

Th (t1/2 = 

24.1 days) in the water column and sediments were measured at ~60 stations over the 

middle and outer regions of the shelf and at the shelf break.  The inventory of excess 

234
Th (

234
Th which is not produced in the sediments) in shelf sediments was ~1/3 of the 

total deficit of 
234

Th (
234

Th scavenged by sinking particles) in the overlying water column 

leading to an average focusing factor of 0.34 ± 0.23.  Further, 
234

Th export from the shelf 

was determined to ~30% of the total production of this radionuclide by 
238

U decay based 

on a 
234

Th budget.  These results, taken together with elevated focusing factors in the off-

shelf region, suggest that the shelf sediments and lateral transport of particles from the 

shelf represent significant sinks for biogenic particles produced over the shelf in the 

spring and summer. 



 

 The elevated focusing factors at the shelf break are attributed to enhanced particle 

flux from blooms of primary production in this region, an area commonly referred to as 

the ‘Green Belt’ for its exceptionally high rates of primary production.  Thus, seasonal 

export of particles from elevated rates of primary production at the shelf break may 

transfer a significant amount of particulate organic carbon (POC) from the surface 

waters.  POC export in this region demonstrates a clear seasonal progression with low 

fluxes in the early spring that increase by late spring and early summer.  Rates of net 

primary production (NPP) were high and export fluxes relatively low near the ice-edge in 

spring, leading to export ratios (e-ratio = POC export/NPP) <0.25.  In early summer, 

POC export exceeded NPP individual stations leading e-ratios >1, which is attributed to a 

temporal lag, or offset, between the high rates of primary production in spring and export 

as POC during the early summer.  Using a water column-sediment 
234

Th budget, the 

export of POC from the outer shelf to slope water was estimated to be 24±35 mmol C m
-2

 

d
-1

, which represents an off-shelf e-ratio of 0.07-0.52 for contemporaneous seasonally 

averaged and historical monthly averaged daily rates of NPP.  In addition to the vertical 

POC fluxes measured at the shelf break, the imputed off-shelf export flux and e-ratios 

further suggests that there may be a significant transfer of shelf-derived particles to the 

slope waters. 

 The high e-ratios and particles fluxes determined at the shelf may be a result of 

the biological response to the timing of physical processes in spring and summer of cold 

years.  In spring, total chlorophyll a concentrations are generally low; however, localized 

phytoplankton blooms near the marginal ice zone (MIZ) lead to elevated spring average 

chlorophyll a concentrations, relative to summer, over the shelf and at the shelf break.  



 

Diatoms represent the greatest contribution to total chlorophyll a in spring and summer of 

cold years.  This algal class also represents the majority of total chlorophyll a in particles 

sinking through the water column.  Further, the relatively high proportion of 

pheophorbide a in sediment trap material indicates that sinking of zooplankton fecal 

pellets facilitates the export of particles through the water column.  In cold years, the 

emergence of large diatom blooms in the spring MIZ supports the production of abundant 

large zooplankton.  Large zooplankton are a primary food source for juvenile pelagic 

fishes of economically important species.  Therefore, these cold year specific processes 

may be essential for the transfer of POC from the surface waters and the success of the 

economically important pelagic fishery.  A consequence of a warmer Bering Sea in the 

coming decades is a reduction in seasonal sea-ice extent and duration.  A change in sea-

ice cover may alter the timing and magnitude of spring primary production and the flow 

of energy through the lower trophic levels. 
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PREFACE 

 The eastern Bering Sea supports nearly half of the US fishing industry in terms of 

fish catch revenue (National Marine Fisheries Service) and provides sustenance 

harvesting for the thousands of natives residing on the islands and Alaskan shore.  This 

region is predicted to warm in the future.  A warmer climate will alter the timing of 

annual physical processes, such as sea-ice advance in the fall and retreat in the spring.  

These physical processes are the most important control on the structure of the 

ecosystem, in particular, at the lowest trophic levels (phytoplankton and zooplankton).  

The magnitude and composition of the lowest trophic levels, in turn, have a direct impact 

on the success of economically important animals. The three years (2008-2010) of the 

field study, from which the three following manuscripts are derived, are considered cold 

years in this region characterized by extensive sea-ice cover that persists late into spring.  

This dissertation is an investigation of the seasonality of particle dynamics in this region, 

and results are discussed within the context that these observations are from cold years.  

The following section provides a brief overview of the objectives of this thesis and the 

approaches employed to achieve those goals. 

 The radiochemical balance of 
234

Th (t1/2 = 24.1 days) over the eastern Bering Sea 

shelf is used to estimate (a) the fraction of particles produced in the water column that are 

retained in shelf sediments and (b) the net flux of particles, defined here as particulate 

organic carbon (POC), from the shelf to the slope waters over a seasonal time-scale.  

Uranium-series radionuclides are proven tracers of particle transport process in aquatic 

environments.  Previous studies; however, have utilized long-lived tracers, such as 
210

Pb 

(t1/2 = 22.3 years), 
230

Th (t1/2 = 75, 200 years), and 
231

Pa (t1/2 = 32, 500 years) to 
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investigate processes over decadal and longer time-scales (Anderson et al., 1994; Bacon 

et al., 1994; Nozaki et al., 1997; Roy-Barman, 2009).  The relatively short half-life, 

particle reactive nature, and known rate of production of 
234

Th suit this radionuclide as a 

tracer of particle transport over seasonal time-scales, a method which has not be used 

before.  Following the approach described by Bacon et al. (1994) and assuming a steady-

state of several months for 
234

Th, the radiochemical balance over the shelf is defined as: 

                                                                           (i.1) 

This equation represents the balance between the supply of 
234

Th via in situ production 

from 
238

U decay, λAU (
234

Th decay constant; λ = 0.0288 d
-1

), and the net flux of 
234

Th 

from the Oceanic to the Outer shelf waters, V*ΔThCS (dpm cm
-2

 d
-1

), where V (m
2
 s

-1
) is 

the horizontal cross-front exchange rate and ΔThCS (dpm m
-4

) represents the cross-shelf 

234
Th activity gradient between the Oceanic and Outer domains (ΔThCS can be represented 

by dTh/dy, where y represents the cross-shelf direction). The removal terms include the 

in situ decay of 
234

Th, λATh, and the along-shelf transport of 
234

Th, T* ΔThAS (dpm cm
-2

 d
-

1
), where T (m s

-1
) represents the along-shelf water volume transport and ΔThAS (dpm m

-3
) 

is defined as 
234

Th activity difference between the northern and southern regions.  The 

term Jsed represents the net flux of 
234

Th to the sediments, and Jexp is the net 
234

Th export 

from the shelf to the ocean interior. 

 Sub-tidal flow fields and cross-front exchange rates are small over the mean life 

of 
234

Th (35 days), therefore the terms V*ΔThCS  and T* ΔThAS are negligible in the overall 

234
Th balance.  Thus, Eq. (i.1) is simplified:

 

                                               (i.2) 
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The production and decay terms are evaluated using spatially averaged, depth integrated 

activities of 
234

Th and 
238

U.  The difference between the production and decay rates of 

234
Th (λ(AU - ATh)) is equal to the total particle removal flux (Jsed + Jexp).  Once again, 

assuming a steady-state, the flux of 
234

Th into sediments must be balanced by the decay 

in the sediment column.  Therefore, Jsed is quantified as the product of the average excess 

sediment inventory of 
234

Th and the 
234

Th decay constant (Bacon et al., 1994): 

                                                                       
 

 
                     (i.3) 

The remainder of Eq. (i.2) is the daily flux of 
234

Th from the shelf to the slope 

waters (Jexp) over seasonal-time scales.  Multiplying a POC/
234

Th by Jexp converts the off-

shelf 
234

Th flux to a daily POC flux to off-shelf waters.  In this region, the majority of the 

annual carbon fixation occurs during the spring bloom.  Because of the seasonality in this 

system, constraining the fraction of POC production from the spring bloom event 

exported from the shelf and, more generally, from the surface ocean has implications in 

regional carbon budgets.  

The shelf break of the eastern Bering Sea is well known for its rich levels of 

spring primary production (Springer et al., 1996).  An accurate assessment of the 

seasonal progression of primary production and subsequent POC export in relation to 

seasonal sea-ice is necessary for the development of carbon budgets and understanding 

how carbon flows through the lowest trophic levels.  Further, an improved understanding 

of the seasonality and magnitudes of primary and export production in cold years will 

provide a framework from which future observations from a warmer eastern Bering Sea 

may be interpreted.  
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There is no truly unbiased method to estimate POC export from the upper ocean.   

A combination of the 
234

Th approach and sediment traps are used to provide a range in 

estimates of POC export.  The use of 
234

Th to constrain the vertical flux of POC from the 

upper ocean is a more traditional application of this radionuclide.  It has been 

increasingly utilized in high-latitude system over the past few decades (Amiel and 

Cochran, 2008; Amiel et al., 2002; Cai et al., 2010; Gustafsson and Andersson, 2012; 

Lalande et al., 2007; Lalande et al., 2008; Moran et al., 1997; Moran and Smith, 2000); 

however, a multi-year study of the eastern Bering Sea has yet to be presented.   

A one-box model is typically used for the calculation of the 
234

Th flux through the 

upper ocean water column (Savoye et al., 2006): 

                                     
    

  
                                                 (i.4) 

where the change in 
234

Th activity over time (dATh/dt) is equal to production (λAU) and 

decay (λATh) of the radionuclide in the water column, vertical flux of particulate 
234

Th 

from the upper water column (PTh), and net transport of 
234

Th by advection and diffusion 

(VTh).  A lack of time-series measurements necessitates the assumption of one-

dimensional (VTh=0) and steady-state (SS; dATh/dt=0) conditions, which simplifies Eq. 

(i.4): 

                                                                                                                     (i.5) 

Trapezoidal integration of Eq (i.5) yields the flux of particle flux of 
234

Th through a 

specified depth horizon: 

                                       
 

 
          (i.6) 
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  The 
234

Th-derived POC flux (PPOC) is then calculated as the product of PTh and 

POC/
234

Th ratio (POC/
234

Thtrap) on sinking particles determined from sediment traps 

                                                            
   

                                 (i.7) 

At individual stations, the fraction of net primary production exported from the photic 

zone is traditionally represented as the export ratio (e-ratio): 

                                                               
          

   
                                         (i.8) 

where POC export is either the sediment trap derived or the 
234

Th-derived POC flux.  

Each e-ratio calculated at the shelf break represents a single observation or ‘snapshot’ on 

the day the measurements were made.  Compiling e-ratios over time and space can be 

used to infer the seasonality in the pulse of primary production in the photic zone and 

export of particles from the surface waters.  More specifically, the seasonal succession of 

the e-ratio, coupled with proximity to the retreating sea-ice edge and data on the seasonal 

emergence of zooplankton stocks, provides the basis to interpret carbon cycling within 

the sunlit upper ocean, the magnitude of particle export from this layer, and perhaps the 

fraction of carbon available for transfer to higher trophic level, economically important 

animals. 

 The composition of the autotrophic community and seasonal emergence of 

zooplankton may control the seasonal fluxes of POC from the surface ocean in cold years 

as described above.  Algal classes, such as diatoms or prymnesiophytes, produce specific 

accessory pigments.  For example, the pigment fucoxanthin is found in the chloroplasts 

of brown algae.  The primary brown algae in the eastern Bering Sea are diatoms and, to a 
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lesser extent, chrysophytes (silicoflagellates).  A more complete description of the 

specific accessory pigments associated with various algal classes is presented in Mackey 

et al. (1996).  The CHEMTAX program (also described in Mackey et al., 1996) uses the 

ratio of these indicator pigments to total chlorophyll a from water column samples to 

calculate the relative contribution of the algal classes to total chlorophyll a.  The 

approach is used to interpret the seasonal evolution of the autotrophic community in 

spring and summer over shelf and shelf break.  The same program is used to evaluate the 

composition of phytoplankton sinking through the water column.  In addition, the 

pheopigment signature in settling material is used a proxy for the influence that sinking 

zooplankton fecal pellets exert on the flux of particulate organic matter (POM) from the 

photic zone.   

 In the following dissertation, the above approaches are utilized to improve the 

understanding of carbon cycling in the Bering Sea within the context that these studies 

are conducted over a multi-year cold period in this region.  In Manuscript I, titled “
234

Th 

balance and implications for seasonal particle retention in the eastern Bering Sea,” the 

radiochemical balance (Eq. i.1) is used to provide estimates of the off-shelf 
234

Th flux 

over seasonal time-scales.  Further, retention of water column produced particles in the 

underlying sediments is evaluated on a station by station basis using the ratio of the 

excess 
234

Th in the sediment to the 
234

Th deficit in the water column.  These ratios, 

known as focusing factors (FFThs), are used as a means to determine whether local areas 

serve as regions of net sediment gain or loss by lateral transport.  This manuscript was 

published in Deep Sea Research Part II: Topical Studies in Oceanography (October, 

2013) in the second special issue on results from BEST-BSIERP (Bering Sea Project).  In 
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Manuscript II, titled “Seasonal decoupling of particulate organic carbon export and net 

primary production in relation to sea-ice at the shelf break of the eastern Bering Sea: 

implications for off-shelf carbon export,” the vertical flux of POC from the photic zone at 

the shelf break is investigated using Eqs. (i.2-i.8).  The seasonal progression in the flux of 

POC from the photic zone and e-ratio is compared with the results of the first manuscript 

and a concurrent integrated assessment of the carbon budget of the eastern Bering Sea 

(J.N. Cross et al., submitted manuscript).  Manuscript II was published in Journal of 

Geophysical Research-Oceans in the fall of 2013.  In Manuscript III, titled “Diatom 

control of the autotrophic community and particle export in the eastern Bering Sea during 

the recent cold years (2008-2010),” we use the concentrations of autotrophic pigments 

and particle nutrients in suspended and settling particles to infer the biological controls 

that the lowest trophic levels exert on carbon and particle cycling.  Here, we determine 

the seasonal structure of the autotrophic community and composition of particles sinking 

from the photic zone.  The composition of sinking particles is used to assess the influence 

of phytoplankton and zooplankton fecal pellets on the vertical flux of POM.  The results 

of Manuscript III provide the lowest trophic level controls on the particle fluxes 

presented in the first two manuscripts during the cold years of this field program.  This 

manuscript will be submitted to Journal of Marine Research in December 2013.  This 

dissertation is presented in manuscript format in accordance with the guidelines of the 

Graduate School of the University of Rhode Island.  The bibliographic format follows 

that required for submission to Deep Sea Research.  
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MANUSCRIPT I 

 

234
TH BALANCE AND IMPLICATIONS FOR SEASONAL PARTICLE  

RETENTION IN THE EASTERN BERING SEA 

 

Abstract  

  As part of the Bering Ecosystem Study-Bering Sea Integrated Ecosystem 

Research Program (BEST-BSIERP), distributions of 
234

Th in the water column and 

sediments were measured at approximately 60 stations over the shelf and slope/oceanic 

regions of the eastern Bering Sea during spring and summer of 2009 and 2010.  During 

this study period, the inventory of sediment excess 
234

Th (
234

Thxs) on the shelf was 

determined to be ~1/3 of the total 
234

Th deficit in the overlying water column; the average 

focusing factor (FFTh = sediment 
234

Thxs/ water column 
234

Th deficit) was 0.34±0.23.  In 

addition, the export flux of 
234

Th from the shelf to the slope/oceanic region was 

determined to be on average ~30% of the total production of 
234

Th over the shelf.  Taken 

together, these results indicate that 
234

Th and associated particles are largely retained on 

the shelf, and that shelf sediments represent a sink for particles.  In contrast, the FFTh in 

the slope/oceanic region was higher, averaging 1.52±1.34. The higher FFTh at the slope is 

attributed primarily to enhanced scavenging removal and sediment deposition of 
234

Th 

associated with periods of high biogenic particle flux at the marginal ice zone during the 

spring sea-ice retreat.  A more general conclusion is that the ocean margin of the eastern 

Bering Sea may serve as an accumulation area for particles and associated reactive 

chemicals. 

1.1. Introduction 
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Continental shelves represent only 10% of the world ocean, yet these regions 

account for ~20% of global primary production (Walsh, 1988).  Ocean margins are 

recognized to be effective areas for the enhanced removal of reactive chemicals via 

particle scavenging and for the transfer of organic matter from continental shelves to the 

deep ocean.  These processes are thought to play an important role in shelf-basin 

exchange of organic carbon and the sediment accumulation of particle-reactive pollutants 

on a global basis.  A significant challenge is quantifying the rates and mechanisms of 

particle transport in shelf/slope systems. 

Uranium-series radionuclides are proven tracers of particle transport processes in 

aquatic environments.  In particular, previous studies have utilized long-lived 

radionuclides, such as 
210

Pb (t1/2 = 22.3 y), 
230

Th (t1/2 = 75, 200 y), and 
231

Pa (t1/2 = 32, 500 

y) to investigate particle transport in shelf regions on decadal and longer time-scales (e.g., 

Anderson et al., 1994; Bacon et al., 1994; Nozaki et al., 1997; Roy-Barman, 2009; Smith 

et al., 2003).  Over the past several decades, the short-lived, particle-reactive radionuclide 

234
Th (t1/2 = 24.1 d) has been increasingly used as a tracer of POC export from the upper 

ocean (e.g., Buesseler, 1998; Buesseler et al., 1998; Charette et al., 2001; Lalande et al., 

2007; Moran and Buesseler, 1993; Moran et al., 2003; Savoye et al., 2004).  In addition 

to its utility in quantifying POC export from the upper water column, the disequilibrium 

between 
234

Th and its soluble parent 
238

U in seawater and sediments has significant 

potential in quantifying seasonal particle transport and retention in shelf systems; for 

example, in a manner similar to that described for 
210

Pb (e.g., Bacon et al., 1994).   

As part of the Bering Ecosystem Study-Bering Sea Integrated Ecosystem 

Research Program (BEST-BSIERP), measurements of the water column deficit of 
234

Th 
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and sediment excess inventory (
234

Thxs) are presented from 2009 and 2010 over the 

eastern Bering Sea shelf and slope (Fig. 1.1).  These data have been used to investigate 

several aspects of particle transport, including: seasonal particle retention over the shelf, 

export of POC, and enhanced particle export and deposition associated with the marginal 

ice zone (MIZ).  Results indicate that ~30% of 
234

Th produced over the shelf is exported 

to the ocean interior, implying that 
234

Th and, by inference, associated particles in this 

system are largely retained over the shelf on a seasonal basis.  In addition, relatively large 

inventories of 
234

Thxs observed in the slope and deep ocean sediments during summer are 

suggested to result from enhanced scavenging removal and deposition of 
234

Th associated 

with the MIZ during the spring sea-ice retreat, and possibly augmented by boundary 

scavenging removal of 
234

Th at the ocean margin.     

a. Study area  

The broad (~500 km) and extensive (>500,000 km
2
) seasonally ice-free eastern 

Bering Sea shelf is bordered on the south by the Alaska Peninsula and to the east by the 

Alaska mainland (Fig. 1.1).  The shelf break, located approximately at the 170 m isobath, 

extends northwestward from Unimak Pass and encompasses the Pribilof Islands, St. 

Matthew Island, Nunivak Island, and St. Lawrence Island.  During the ice-free months, 

the shelf waters may be subdivided into three cross-shelf domains, separated by three 

fronts (Coachman, 1986; McRoy et al., 1986).  The Inner Front, located near the 50 m 

isobath, separates the shallow, well-mixed Coastal Domain (0-50 m) from the two-

layered Middle Domain (50-100 m) (Kachel et al., 2002; McRoy et al., 1986).  The 

Coastal Domain is well-mixed because the wind and tidally mixed layers overlap.   The 

Middle Domain, characterized by the strongest stratification and the presence of a 
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summer cold pool (Fig. 1.2; summer temperature section), is isolated from the Outer 

Domain by the Middle Front, which overlies the 100 m isobath.  Recent observations 

(Stabeno et al., 2002) have indicated north-south variability within the Middle Domain, 

though these trends are less pronounced than cross-shelf variability.  The Outer Domain 

(100 m-shelf break) is characterized by surface and bottom mixed layers, though is 

separated by a structured middle layer (Stabeno et al., 1999).  The Shelf Break Front 

separates the Outer Domain from the Oceanic Domain.  These fronts affect lateral 

advection and diffusion, property exchange rates, and mixing between the water masses.   

1.2. Methods 

Water column and sediment core samples were collected in the eastern Bering Sea 

during spring and summer cruises as part of the 2009 and 2010 BEST-BSIERP field 

program (Fig. 1.1).  A series of transects were completed during each cruise aboard 

USCGC Healy (March 31 to May 12, 2009), R/V Knorr (June 14-July 13, 2009), and R/V 

Thomas G. Thompson (May 9-June 14, 2010 and June 16-July 13, 2010) (Table 1.1).  

Because the 2010 spring cruise was delayed until May and early June it is referred to as 

‘late’ spring compared to 2009.  Major transects from south to north are as follows: CN 

(Cape Newenham), NP (Nunivak Island-St. Paul Island), MN (St. Matthew Island-

Nunivak Island), SL (St. Lawrence Island) and the 70 m isobath line running from CN 

northward to SL (Fig. 1.1).   

a. Water column 
234

Th sampling and analysis 

234
Th water column profiles were obtained via small volume (4 L) water samples 

collected from CTD-rosette casts (n = 27 and 29 profiles collected in 2009 and n = 29 
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and 19 profiles collected in 2010, during spring and summer, respectively).  Samples 

were analyzed for total (dissolved + particulate) 
234

Th at high vertical resolution (~10 m) 

throughout the upper water column to encompass the entire photic zone.   On the shelf, 

the entire water column was sampled.  In the slope/oceanic region, profiles extend to a 

depth of ~500 m.  
234

Th was extracted via co-precipitation with MnO2 (Benitez-Nelson et 

al., 2001; Buesseler et al., 2001).  Briefly, the pH of the sample was raised by the drop-

wise addition of concentrated ammonium hydroxide followed by the addition of 0.2 M 

KMnO4 (25 µL) and 1.0 M MnCl2 (11.5 µL) to generate the MnO2 precipitate.  After one 

hour of equilibration, each sample was vacuum filtered onto a 25 mm diameter 1 µm pore 

size glass microfiber filter (GM/F).  Deep samples (>1000 m) were collected as a check 

for detector efficiency.  Samples were spiked with a known 
230

Th activity as an internal 

standard of 
234

Th scavenging efficiency (n = 52).  After 
234

Th analysis (described below), 

Th was radiochemically purified and 
230

Th was measured by alpha particle emission 

(Lepore et al., 2007). Scavenging efficiencies for the small volume 
234

Th method were 

determined to be 91±4.5% (1 σ).   

Total 
234

Th in water column samples was quantified by measurement of the beta 

emission of 
234m

Pa (Emax = 2.19 MeV; t1/2 = 1.2 min) using a low-background beta 

detector (RISØ National Laboratory, Roskilde, Denmark), with an average detector 

efficiency of 44±3% determined at sea.  Prior to analysis, each sample was mounted on 

an acrylic planchet and covered with clear plastic wrap and aluminum foil to shield low-

level beta and alpha emitters.  Samples were counted several times over the first six half-

lives of 
234

Th, with the first count at least three days after collection to allow for the 

decay of short lived isotopes.  After 144 days (six half-lives of 
234

Th), the activity of 
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234
Th decayed below detection limit and samples were counted to establish background 

levels.  Data were fitted to the 
234

Th decay curve and corrected to yield 
234

Th activity at 

the time of collection. 

238
U activities were calculated from salinity according to 

238
U = 0.07081 x S (‰) 

(Chen et al., 1986). 

b. Sediment core 
234

Th sampling and analysis 

Sediment cores were collected during each cruise in 2009 and 2010 (n = 19 and 

19 profiles collected in 2009 and n = 21 and 17 profiles collected in 2010, during spring 

and summer, respectively) using an Oceans Instruments MC-800 eight-tube multicorer.  

Cores were sectioned into 0.5 cm increments in the upper two cm, and into one cm 

increments for depths of 2 to 5 cm.  Sediment samples were dried at 60°C in 125 mL jars, 

ground, and homogenized prior to analysis.  The sediment density (ρ = ρD (1 – φ)) of each 

sample analyzed was calculated using an assumed solid particle density (ρD) of 2.65 g 

cm
-3

 (Burdige, 2006) and sediment porosities (φ) determined in the laboratory from 

measurements of wet and dry sediment weight. 

Samples were analyzed for 
234

Th using a sea-going Canberra pure Ge planar type 

detector (GCW3023, 2000 mm
2
) or on a shore-based Canberra pure Ge well type detector 

(GL20203, 150 cm
3
) calibrated for the specific sample geometry.  Sample activities were 

determined by gamma emission at 63.3 keV and decay corrected to the mid-point of 

collection.  Supported levels of 
234

Th (
234

Th produced in the sediment column) were 

measured after 144 days and subtracted from the total 
234

Th activity.  Self-absorption 

corrections were applied according to the method described by Cutshall et al., (1983).  
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Detector efficiencies were determined to be 10.8±0.3% and 52.1±1.0% for 
234

Th at 63.3 

keV for the planar and well type detectors, respectively.   

1.3. Results 

a. Water column 
234

Th- 
238

U disequilibrium  

The 
234

Th-
238

U activity ratio (AR) provides a quantitative measure of the removal 

of 
234

Th relative to 
238

U from the water column via particle scavenging and export.  

During spring 2009, activity ratios ranged from ~0.4 to 0.8 on the shelf, whereas secular 

equilibrium (AR = 1) was observed in the slope/oceanic water column (Fig. 1.3).  In 

summer 2009, AR’s measured in the shelf domains indicate a similar degree of 
234

Th-

238
U disequilibrium (AR < 1) compared to spring.  Unlike spring, however, 

234
Th-

238
U 

disequilibrium was observed during summer in the upper water column of the Oceanic 

Domain.  In 2010, AR’s on the shelf indicate a deficiency of 
234

Th in the water column 

consistent with 2009 (Fig. 1.3).  In contrast to the previous spring, disequilibrium was 

observed in the water column of the Oceanic Domain during late spring 2010 down to 

depths of ~200 m.  Cross-shelf 
234

Th-
238

U activity ratios along the MN Line (Fig. 1.4) 

indicate that disequilibrium is also similar between late spring and summer over the shelf 

and at the shelf break.  The difference in water column AR’s between spring 2009 and 

spring 2010 may be attributed to the temporal offset in sampling dates. 

b. Sediment excess 
234

Th 

Sediment excess 
234

Th (
234

Thxs) is defined as 
234

Th unsupported by the decay of 

parent 
238

U, and which is supplied by particle scavenging of 
234

Th from the overlying 

water column to the sediments: 
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                                                              (1.1)                                                            

 
234

Thxs was observed in nearly all sediment cores, typically confined to the upper 1.5 cm 

(Fig. 1.5).  Sediment cores were not obtained for the Coastal Domain because coring was 

not possible due to sandy sediment.  Sediment excess 
234

Th activities measured in shelf 

sediments indicate high spatial variability; though do not exceed ~40 dpm g
-1

 at the 

surface of the sediment column.  The highest 
234

Thxs activities were observed during 

summer in the slope/oceanic region sediments, where activities of up to 135 dpm g
-1

 were 

measured.   

c. Water column deficits of 
234

Th 

234
Th deficits in the water column are calculated by difference of depth integrated 

234
Th and 

238
U activity profiles:          

                     
 

 
                                    (1.2) 

where AU is the activity of,  ATh is the activity of 
234

Th and z is the depth of the water 

column. For the shelf regions (z<200 m), 
234

Th and 
238

U activities were integrated over 

the entire water column.  For the slope/oceanic regions, the water column was integrated 

to the depth where 
234

Th and 
238

U reached secular equilibrium (~200 to 400 m).   

For spring 2009, average 
234

Th deficits over the Middle and Outer shelf were 

7.3±0.7 and 9.4±1.9 dpm cm
-2

 (1 σ), respectively.  The Oceanic Domain yielded an 

average 
234

Th deficit of 3.1±3.6 dpm cm
-2

 (Fig. 1.6; Table 1.2).  
234

Th deficits over the 

eastern Bering Sea during summer 2009 were 6.2±1.1 in the Middle, 10.0±1.7 dpm cm
-2

 

in the Outer, and 10.7±5.2 dpm cm
-2

 in the Oceanic domains, respectively.  During late 
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spring 2010, average deficits of 
234

Th over the Middle and Outer shelf increased to 

8.8±1.7 and 11.5±1.4 dpm cm
-2

, respectively, though large standard error within the data 

sets prevent statistical differentiation between seasons.  Furthermore, the late spring 2010 

average deficit in the oceanic water column was 16.9±3.6 dpm cm
-2

, which is an 

approximate five-fold increase from earlier in spring of 2009.  Average water column 

deficits in the summer of 2010 were 7.2±1.3 in the Middle, 14.7±3.3 in the Outer, and 

13.0±2.2 dpm cm
-2

 in the Oceanic domains, respectively (Fig. 1.6; Table 1.2). 

d. Sediment inventories of excess 
234

Th   

Because 
234

Thxs is typically observed in the upper 1.5 cm of the sediment core, 

sediment profiles are integrated to this depth to yield the excess 
234

Th inventory: 

                                                                  
 

 

 

 
    (1.3)                               

In spring 2009, average 
234

Thxs inventories were 2.8±1.1 (Middle Domain), 4.1±2.7 

(Outer Domain), and 2.3±1.0 dpm cm
-2

 (Oceanic Domain) (Fig. 1.6; Table 1.2).  For 

summer 2009, average excess inventories were 2.7±2.0, 2.3±1.0, and 3.6±1.8 dpm cm
-2 

for the Middle, Outer, and Oceanic domains, respectively.  Average 
234

Thxs inventories in 

late spring 2010 are not differentiable from either season in 2009: 2.1±1.0 (Middle 

Domain), 3.2±1.7 (Outer Domain), and 4.0±1.2 (Oceanic Domain) dpm cm
-2

.  In summer 

2010, the highest inventories were observed in the summer Oceanic Domain, while this 

relative increase is not observed over the shelf: 3.3±1.8 in the Middle, 3.9±3.4 in the 

Outer, and 30.6±18.8 dpm cm
-2 

in the Oceanic domains, respectively. 
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1.4. Discussion 

a. 
234

Th balance over the eastern Bering Sea shelf 

The radiochemical balance of 
234

Th over the eastern Bering Sea shelf can be used 

to provide insight into particle transport, including the seasonal retention of particles in 

shelf sediments.  Specifically, particle retention can be evaluated by establishing the 

balance between the export flux of 
234

Th from the water column and the flux of 
234

Th into 

the sediments.  This approach follows that described by Bacon et al. (1994), who used 

210
Pb to evaluate the transport of particles on a decadal time-scale in the Middle Atlantic 

Bight (MAB).  Figure 1.7 illustrates the balance between the supply and removal of 
234

Th 

over the eastern Bering Sea shelf.  Assuming a steady-state, the radiochemical balance of 

234
Th over the shelf is defined as:  

                                                                       (1.4) 

Eq. (1.4) represents the balance between the supply of 
234

Th via in situ production from 

238
U decay, λAU (

234
Th decay constant; λ = 0.0288 d

-1
), and the net flux of 

234
Th from the 

Oceanic to the Outer shelf waters, V*ΔThCS (dpm cm
-2

 d
-1

), where V (m
2
 s

-1
) is the 

horizontal cross-front exchange rate and ΔThCS (dpm m
-4

) represents the cross-shelf 
234

Th 

activity gradient between the Oceanic and Outer domains (ΔThCS can be represented by 

dTh/dy, where y represents the cross-shelf direction). The removal terms include the in 

situ decay of 
234

Th, λATh, and the along-shelf transport of 
234

Th, T* ΔThAS (dpm cm
-2

 d
-1

), 

where T (m s
-1

) represents the along-shelf water volume transport and ΔThAS (dpm m
-3

) is 

defined as 
234

Th activity difference between the northern and southern regions.  The term 

Jsed represents the net flux of 
234

Th to the sediments, and Jexp is the net 
234

Th export from 
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the shelf to the ocean interior.  Note that this equation does not explicitly include 

diffusive transport of 
234

Th over the shelf.  It is assumed that the contribution of diffusion 

is negligible in the radiochemical balance for 
234

Th, which is justified below.  Also, this 

balance neglects 
234

Th input from rivers because 
234

Th activities in freshwater are 

negligible and riverine supply to the Middle and Outer shelf regions is insignificant.  

a.1. Diffusive and advective fluxes of 
234

Th 

The net exchange of 
234

Th from the Oceanic Domain to the Outer shelf can be 

quantified as the product of the exchange rate (V) across the shelf break and the 
234

Th 

activity gradient between the Oceanic and Outer domains (ΔThCS).  A similar approach 

was used to examine the diffusive flux of 
210

Pb across the MAB frontal zone to the shelf 

(Bacon et al., 1994).  In their study, strong cross-shelf gradients of 
210

Pb and a significant 

correlation between 
210

Pb activity and salinity were used to estimate the flux of 
210

Pb 

from the deep ocean to the shelf.  For the eastern Bering Sea, however, there is not a 

significant correlation between 
234

Th and salinity for any season (r
2 

= 0.01 to 0.36).  The 

calculated cross-shelf gradient in 
234

Th (ΔThCS) between the Oceanic and Outer domains 

ranged from -0.0005±0.0013 to 0.0057±0.0017 (mean: 0.0018 ± 0.0028) dpm m
-3

 per m 

of the approximately 100 km width of the Outer Domain.  The cross-front exchange rate 

(V) for the shelf break was determined to be 0.46 m
2
 s

-1 
based on a reported net on-shelf 

water mass transport rate of 14, 500 km
3
 y

-1
 (Aagaard et al., 2006) and a shelf length of 

approximately 1000 km. This value is similar to cross-front exchange rates recently 

reported for the Middle Front at the 100 m isobath (Danielson et al., 2012).  Using these 

values, the cross-shelf exchange of 
234

Th from the Oceanic Domain to the Outer shelf 

was estimated to range from -0.0018±0.0051 to 0.0226±0.0069 (mean : 0.0069±0.0100) 
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dpm cm
-2

 d
-1

 spread over the approximate width of the Outer shelf (Table 1.3).  These 

low average lateral fluxes imply that the cross-shelf exchange of 
234

Th from the deep 

ocean to the Outer shelf is a minor component in the 
234

Th balance for the eastern Bering 

Sea shelf (Fig. 1.8).  

Because of the separation imposed by the Middle Front and the difference in 

water mass circulation, the along-shelf transport of 
234

Th may vary for the Outer and 

Middle domains.  Sub-tidal water transport over the Middle and Outer shelf is small 

relative to boundary currents, (Coachman, 1986) and along-shelf 
234

Th activity 

differences between the northern and southern regions of the eastern Bering Sea shelf are 

negligible. Therefore, T is small and variable and ΔThAS is zero, implying that the along-

shelf transport of 
234

Th over the shelf is negligible in the 
234

Th budget. 

A further argument for the negligible transport of 
234

Th by advection and 

diffusion lies in the length scale over which these processes are significant for the 

relevant spatial and temporal scales.  Physical transport of water over the Middle and 

Outer shelf of the eastern Bering Sea is predominantly due to cross-shelf tidal currents 

(Coachman, 1982, 1986).  The eastern Bering Sea experiences mixed semi-diurnal tides, 

with M2 tidal current velocities of 15-30 cm s
-1

 and the K1 constituent contributing 10 - 

20 cm s
-1

 (Coachman, 1986).  The length scale (La) over which advective transport of 

234
Th is significant can be determined using (e.g., Lepore et al., 2007): 

                                                                                                        (1.5)                                                    

where Uh is the tidal velocity (15 cm s
-1

) and t is the mean life of 
234

Th (35 d).  Using 

these values, La is approximately 450 km.  However, because daily current velocities are 
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a function of both ebb and flood tides, the net daily cross-shelf water flux over the 

Middle and Outer shelf is small.  Thus, the net advective transport of 
234

Th by tides is a 

minor component in the radiochemical balance of 
234

Th.   

To examine horizontal diffusion as a mechanism for the transport of 
234

Th, the 

mean diffusive path length in the absence of 
234

Th scavenging is calculated as (e.g., 

Lepore et al., 2007; Moran et al., 1997): 

                                                                                                    (1.6)                                                       

Coachman (1982) determined eddy diffusion (KH) to range from ~1 to 5 x 10
6
 cm

2
 

s
-1

, depending on depth, location, and time of year for the Middle and Outer shelf areas of 

the eastern Bering Sea.  An average KH of 2.6 x 10
6
 cm

2
 s

-1
 provides an Ld of ~40 km.  

Over transit scales of >40 km, ingrowth of 
234

Th would tend to obscure the scavenging 

signature for a particular parcel of water.  Note also that, assuming a shelf length of 1000 

km and average depth of 170 m, the net cross-shelf water flux to the Outer shelf averaged 

over the entire shelf break is 85 km y
-1

, or 8 km over the mean-life of 
234

Th.  Therefore, 

because La, Ld, and the imported signal of 
234

Th from the deep ocean are small compared 

to spatial sampling, the flux of 
234

Th from advective transport by tidal currents, horizontal 

diffusion, and on-shelf transport over the mean-life of 
234

Th are insignificant over the 

relevant spatial and temporal time scales of this study. 

a.2. Production, decay, and sediment flux of 
234

Th over the shelf 

Because advection and diffusion of 
234

Th has been determined to be insignificant, 

the radiochemical balance of 
234

Th (Eq. 1.4) for the Middle and Outer domains of the 

eastern Bering Sea simplifies to an equation dependent on the in situ water column 



15 
 

production and decay of 
234

Th, the flux of 
234

Th into the sediments, and the net particle 

export flux of 
234

Th from the shelf: 

                                                                                                   (1.7) 

The production and decay terms are evaluated using spatially averaged, depth integrated 

activities of 
234

Th and 
238

U.  On a seasonal basis, the areal production of 
234

Th by 
238

U 

decay in the water column ranges from 0.55±0.21 to 0.64±0.30 (mean: 0.59±0.04) dpm 

cm
-2

 d
-1

.  The areal decay of 
234

Th in the water column is smaller than production, 

ranging from 0.32±0.18 to 0.36±0.23 (mean: 0.34±0.02) dpm cm
-2

 d
-1

 (Table 1.3).  The 

difference between the production and decay rates of 
234

Th (λ(AU - ATh)) is equal to the 

total particle removal flux (Jsed + Jexp).  

 At steady-state, the flux of 
234

Th into the shelf sediments must be balanced by 

decay in the sediment column.  Thus, Jsed is quantified as the product of the average 

excess sediment inventory of 
234

Th and the 
234

Th decay constant (Bacon et al., 1994): 

                                                                        
 

 
                                            (1.8) 

The seasonal decay of 
234

Th in shelf sediments of the eastern Bering Sea ranges from 

0.07±0.04 to 0.10±0.07 (mean: 0.09±0.02) dpm cm
-2

 d
-1

 (Table 1.3).  By comparison, 

decay of excess 
234

Th in the sediments represents 15±3% of 
234

Th production in the water 

column (Table 1.3).  The implication is that shelf sediments are an important sink in the 

scavenging removal of 
234

Th from the overlying water column. 

 

 



16 
 

a.3. Off-shelf export of 
234

Th  

The radiochemical balance of 
234

Th in the eastern Bering Sea is summarized in 

Table 1.3.  The seasonal export flux of 
234

Th from the shelf to the ocean interior (Jexp) can 

be calculated from the difference between the supply and removal fluxes of 
234

Th (Eq. 

1.7).  For spring and summer, Jexp represents on average 29±2% of the total production of 

234
Th (Fig. 1.8), implying that on a seasonal basis 

234
Th is largely retained (i.e., ~70% of 

234
Th production) over the eastern Bering Sea shelf.  This result is consistent with a 

previous study conducted in the MAB using 
210

Pb, which demonstrated that ~20% of the 

total 
210

Pb supplied to that shelf is removed by particle export into the interior ocean on a 

time-scale of decades (Bacon et al., 1994).  From the present data set, however, it is not 

possible to define a mechanism responsible for the transport and removal of 
234

Th and 

associated particles off the shelf over seasonal time-scales.  It is interesting to note that 

Bacon et al. (1994) propose that particles are removed from the shelf by a deposition-

bioturbation-resuspension-redeposition loop over decadal time-scales, and it is possible 

that such a mechanism exists for the eastern Bering Sea. 

 In addition, Jexp can be used to place an upper bound on the seasonal export flux 

of POC.  Using the average Jexp value (Table 1.3; 0.17±0.35 dpm cm
-2

 d
-1

) and an average 

POC/
234

Th ratio of 11±9 µmol C dpm
-1

 at 100 m measured in sediment trap material 

collected in spring and summer of 2008 - 2010 (Baumann et al., in press) yields a POC 

export flux of  18±41  mmol C m
-2

 d
-1

.  Despite the inherent uncertainty in this estimate, 

this POC export flux is similar to values of 10±8 mmol C m
-2

 d
-1

 determined using 
234

Th-

238
U disequilibrium and sediment traps in 2008 (Moran et al., 2012), and 19±17 mmol C 

m
-2

 d
-1

 recorded in sediment traps in spring and summer of 2008-2010 (Baumann et al., 
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in press). The estimated POC export flux should be regarded as an upper estimate, due to 

the uncertainty in converting Jexp to a POC export flux using an imputed POC/
234

Th ratio, 

which can vary considerably (e.g., Moran et al., 2003), and to possible preferential 

remineralization of POC.    

b. Residence time of 
234

Th in the water column 

The residence time of total 
234

Th (τt) can be used to further assess the time-scale 

of particle retention over the eastern Bering Sea shelf.  Specifically, the residence time of 

total 
234

Th provides a quantitative measure of the efficiency of scavenging and transport 

of 
234

Th within the shelf and upper water column of the Oceanic region.  A one-

dimensional, irreversible scavenging model is used for the estimation of total water 

column 
234

Th residence time, which as justified above, sets advective and diffusive 

transport of 
234

Th to zero (Coale and Bruland, 1987; Wei and Murray, 1992):   

                                        
    

  
                                                   (1.9) 

where λc is the first-order rate scavenging constant for 
234

Th.  Eq. (1.9) describes the 

balance between 
234

Th production, decay, and particle scavenging.  Assuming steady-

state, Eq. (1.9) simplifies to: 

                                                
            
 
 

       
 
 

                                              (1.10) 

where z is the depth of integration.  The residence time of total 
234

Th can be estimated for 

the entire water column by the relationship: 

                                                               
 

  
       (1.11) 
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 Water column 
234

Th residence times exhibit a gradient off the shelf during spring 

and summer (Fig. 1.9; Table 1.2).  For the Middle and Outer shelf, 
234

Th residence times 

average 49±26 d, which is similar to other coastal systems, such as Dabob Bay, 

Washington State (4 to 70 d) (Wei and Murray, 1992) and the inner region of the Gulf of 

Maine (34 to 143 d) (Moran and Buesseler, 1993).  In the Oceanic region, residence times 

increase to 5 to 6 months, which are similar to those reported for the outer reaches of the 

Gulf of Maine (Moran and Buesseler, 1993) and Funka Bay, Japan (Wei and Murray, 

1992).  By comparison, estimates of water transport onto the shelf of the eastern Bering 

Sea and flow through the Bering Strait were used to determine water mass residence 

times of ~3-7 y for the shelf region (Aagaard et al., 2006).  Shelf water residence times 

are much longer than the average τt, which is consistent with the largely seasonal 

retention of 
234

Th and associated particles over the eastern Bering Sea shelf.   

c. 
234

Th focusing factors 

 To further establish the extent to which there is a net seasonal retention of 

particles over the shelf, the exchange of 
234

Th between the water column and sediments 

can be evaluated on a station-by-station basis.  The relationship between the 
234

Th deficit 

in the water column and 
234

Thxs inventory (Table 1.2) on the eastern Bering Sea shelf is 

illustrated in Fig. 1.10.  This comparison indicates that for ~65% of stations sampled over 

the shelf, 
234

Thxs inventories are within a factor of ~1.5-4 of the measured water column 

deficits of 
234

Th.  This observation is consistent with the conclusion that the flux of 
234

Th 

into the sediment represents an important sink for 
234

Th produced over the shelf.  
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 The 
234

Th focusing factor (FFTh) can be used to further quantify the exchange of 

234
Th between the water column and sediment.  In particular, the FFTh is an empirical 

relationship that defines the efficiency of 
234

Th transport from the water column to the 

underlying sediment (Cochran et al., 1990).  The sediment 
234

Thxs inventory is related to 

the water column deficit by the relationship (Cochran et al., 1990; Lepore et al., 2007): 

                                                           
        
 
 

  

       

 
        

   
        (1.12) 

A FFTh = 1 implies that the sediment inventory is in balance with water column removal 

of 
234

Th over seasonal time-scales.  A FFTh greater, or less, than 1 indicates the 

redistribution of 
234

Th into, or away from, a specific sampling location, respectively.   

Evaluation of individual FFTh values over the entire geographical area of the 

eastern Bering Sea provides insight into the shelf-wide, seasonal retention of 
234

Th (Fig. 

1.11).  For the Middle Domain, seasonally averaged FFTh values range from 0.25±0.11 to 

0.53±0.29 (mean = 0.38±0.11), whereas values in the Outer Domain range from 

0.26±0.22 to 0.33±0.15 (mean = 0.29±0.03) (Fig. 1.12; Table 1.2).  Elevated (>1) FFTh 

values are observed to a lesser extent in the oceanic/slope areas, where seasonal averages 

range from 0.27±0.10 to 2.71±2.07 in both years (mean = 1.52±1.34) (Figs. 1.11, 1.12), 

though fewer stations were occupied in the deeper slope water stations. 

The observation that FFTh values range from ~0.25-0.50 implies that shelf 

sediments are an important sink for 
234

Th scavenged from the water column on a seasonal 

time-scale (Figs. 1.10, 1.11, 1.12; Table 1.4).  Based on these results, vertical processes 

of sedimentation must be efficient at retaining particulate 
234

Th, thereby working against 
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lateral processes that would otherwise largely export 
234

Th (Jexp) off the shelf into the 

interior ocean.  As noted above, this result is consistent with a previous study using 
210

Pb 

in the MAB, which indicated a net retention of particles on the shelf for up to several 

decades (Bacon et al., 1994). 

d. Implications for particle transport and retention 

There are several possible qualitative interpretations that may account for the 

elevated FFTh values observed in the slope/oceanic region (Figs. 1.11, 1.12).  In 

particular, surface water chlorophyll (Chl a) distributions indicate events of high 

autotrophic production at the MIZ associated with retreating sea-ice at the shelf break 

during late spring.  High levels of Chl a persist into early summer at the shelf break and 

are clearly visible from satellite aqua MODIS chlorophyll distributions in May 2009 and 

2010 (http://oceancolor.gsfc.nasa.gov/).  Spring blooms of primary production appear 

coincident with the locations of the high FFTh values along the shelf break.  Thus, 

elevated FFTh values in deeper water sediments may be attributed to the scavenging 

removal and deposition of 
234

Th associated with biogenic particle blooms.  Furthermore, 

there exists a temporal lag between the upper water column deficit and the high 
234

Thxs 

observed in the sediments in late spring 2010 and summer 2010 (Table 1.2).  Assuming a 

settling speed of 80-150 m d
-1

 (Berelson, 2002) for particles sinking through a 2000 m 

water column, 13-25 days would be required for particles to sink from the surface waters 

to the underlying sediments.  This suggests that vertically exported 
234

Th from spring 

autotrophic blooms near the MIZ would settle to the deeper sediments after 

approximately several weeks.   
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In addition, the spatial distribution of the elevated FFTh values is consistent with 

removal of 
234

Th from high activity, open ocean water to the underlying deep slope 

sediments.  This process is commonly referred to as boundary scavenging, which has 

been identified as important for a number of other long-lived radiochemical tracers, 

including 
210

Pb, 
230

Th, and 
231

Pa (e.g., Anderson et al., 1994; Roy-Barman, 2009).  In 

particular, because FFTh values are >1 in summer at several stations located seaward of 

the Shelf Break Front, and 
234

Th export from the shelf is relatively small, the elevated 

FFTh values are consistent with boundary scavenging removal of 
234

Th.  The source of 

234
Th that results in the elevated sediment 

234
Thxs and hence high FFTh values in the 

slope/oceanic sediments may be attributed to 
234

Th-rich off-shore water that is 

transported to areas of high particle flux, such as near MIZ blooms.  Therefore, boundary 

scavenging provides an additional explanation for the observation of large FFTh values in 

the slope/oceanic region of the eastern Bering Sea. 

Finally, post-depositional transport of surficial, shelf or slope-derived sediments 

could result in large FFTh values in deep water sediments.  Many of the deep water 

(>2000 m) cores were extracted from submarine canyons, such as the Pribilof and 

Zhemchung canyons, which may accumulate sediments from large areas of the shelf and 

slope. 

1.5. Conclusions 

The results reported in this study provide important new insights regarding our 

understanding of particle transport processes, water column-sediment interaction, and the 

magnitude of off-shelf export of particles and associated reactive chemicals in a highly 



22 
 

dynamic Arctic shelf environment.  Prior studies in the northern Bering Sea have reported 

dramatic shifts in benthic productivity and water column-benthic coupling in the context 

of a changing climate (Grebmeier et al., 2006a; Grebmeier et al., 2006b). The present 

study utilizes a geochemical tracer method to evaluate the fate of particles over the 

southeastern Bering Sea shelf, which has broader applicability in quantifying particle 

transport processes in other complex shelf systems.   

Specifically, based on comprehensive measurements of 
234

Th in the water column 

and sediments, it has been determined that on a seasonal basis roughly 2/3 of the supply 

of 
234

Th is balanced by decay and sediment burial over the eastern Bering Sea shelf. 

Furthermore, the off-shelf export flux of 
234

Th (Jexp) represents ~30% of the total 
234

Th 

supply, implying that 
234

Th and associated particles are largely retained on the shelf, 

rather than exported to the ocean interior.  While it not possible to define the 

mechanism(s) responsible for off-shelf export of 
234

Th, it is suggested that this may 

involve a particle deposition-bioturbation-resuspension-redeposition loop, as described 

for the off-shelf transport of particles in the MAB (Bacon et al., 1994).  In addition, the 

results of this study have been used to provide an upper estimate of seasonal POC export 

from the shelf water column of 18 ± 41 mmol C m
-2

 d
-1

.  The short average residence 

time of 
234

Th in the water column (49±26 d) and average FFTh of 0.34±0.23 on the shelf 

is further indicative of the net shelf-retention of 
234

Th in this region. Specifically, the 

mean residence time of total 
234

Th is much shorter than mean water mass residence times 

estimated for the entire shelf, and the average FFTh of ~0.3 suggests that a significant 

fraction of 
234

Th removed from the water column is retained in shelf sediments.  In 

contrast, elevated sediment 
234

Thxs and relatively high average FFTh values of 1.52±1.34 
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observed in the slope/oceanic region of the eastern Bering Sea are attributed to enhanced 

particle scavenging associated with bloom events in the MIZ region during spring sea-ice 

retreat.  In addition, these high 
234

Thxs and FFTh values may also result from boundary 

scavenging removal of 
234

Th supplied from high activity, open ocean water transported to 

areas of high particle flux at the slope, and post depositional transport of material to 

deeper sediments.  It is concluded that 
234

Th scavenged from the water column, and by 

inference particles, particulate organic carbon, and other reactive chemicals supplied to 

the eastern Bering Sea, are largely retained over the shelf on a seasonal time-scale.  
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Table 1.1.  Sampling dates during the 2009 and 2010 BEST-BSIERP field program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cruise Vessel Dates

HLY 0902 USCGC Healy March 31 - May 12, 2009

KN195-10 R/V Knorr June 14 - July 13, 2009

TN249 R/V Thompson May 9 - June 14, 2010 

TN 250 R/V Thompson June 16 - July 13, 2010
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Table 1.2.  Water column 
234

Th deficit, sediment excess inventory (
234

Thxs), focusing 

factor (FFTh), and residence time of total 
234

Th (τt) for the eastern Bering Sea during 2009 

and 2010. 

 

 

 

Station Latitude Longitude Bottom Depth
234

Th deficit  234
Th xs FF Th τ t

°N °W m dpm cm
-2

dpm cm
-2

d

Spring, March 31 - May 12, 2009

Middle Domain (z=50-100 m)

1-NP7 57.90 169.32 66 7.71 ± 0.41 nd nd 25.9

2-NP6.5 58.04 169.23 67 8.01 ± 0.43 nd nd 26.6

3-Ice/Process 1 58.23 169.12 72 nd 1.93 ± 0.35 nd nd

9-MN4.5 59.97 169.86 55 6.32 ± 0.34 1.41 ± 0.32 0.22 ± 0.02 25.4

10-MN5 58.90 170.40 62 7.38 ± 0.39 nd nd 25.4

14-MN8 59.91 172.18 72 7.54 ± 0.52 nd nd 34.1

32-SL12 62.20 175.14 80 6.87 ± 0.74 3.22 ± 0.38 0.47 ± 0.06 50.3

35-SL9 61.97 173.24 62 7.26 ± 0.60 1.85 ± 0.35 0.26 ± 0.03 25.3

39-SL6 61.93 171.22 51 nd 2.96 ± 0.47 nd nd

54-NP5 58.37 168.73 68 7.63 ± 0.66 2.76 ± 0.45 0.36 ± 0.04 28.2

58-NP9 57.45 169.75 67 7.01 ± 0.50 1.67 ± 0.29 0.24 ± 0.02 33.2

66-NP11 56.98 170.28 75 6.87 ± 0.61 nd nd 40.3

83-ICE 3 60.81 174.39 91 nd 4.05 ± 0.45 nd nd

92-MN-SL5 61.57 173.71 72 8.47 ± 0.52 4.79 ± 0.58 0.57 ± 0.04 28.4

93-BN1 62.25 172.51 57 6.06 ± 0.39 nd nd 29.3

98-SL12 62.18 175.15 81 7.69 ± 0.69 3.74 ± 0.35 0.49 ± 0.05 41.1

120-70M42 60.00 172.73 64 6.62 ± 0.56 nd nd 38.7

Average (± 1 σ) 7.2 ± 0.7 2.8 ± 1.1 0.37 ± 0.14 32.3 ± 7.7

Outer Domain (z=100-200 m)

17-MN11 59.90 173.99 104 nd 3.64 ± 0.44 nd nd

19-MN13 59.86 175.22 120 10.12 ± 1.11 2.05 ± 0.31 0.20 ± 0.03 55.6

22-MN16 59.90 176.99 136 7.37 ± 1.55 nd nd 107.6

29-MN-SL4 61.78 176.80 113 7.68 ± 1.16 nd nd 72.8

60-ST 56.27 171.08 142 6.70 ± 1.80 nd nd 131.7

65-NP12 56.72 170.53 109 nd 9.75 ± 0.96 nd nd

69-BL1 59.56 175.20 133 10.30 ± 1.34 5.31 ± 0.64 0.52 ± 0.07 61.3

73-BL4 59.59 175.08 129 9.85 ± 1.35 2.62 ± 0.34 0.27 ± 0.04 63.5

90-BL20 59.55 175.15 132 12.30 ± 0.98 2.47 ± 0.34 0.20 ± 0.02 36.0

116-BL15 59.56 175.15 130 10.53 ± 1.38 2.91 ± 0.38 0.28 ± 0.04 61.0

Average (± 1 σ) 9.4 ± 1.9 4.1 ± 2.7 0.29 ± 0.13 73.7 ± 30.9

Oceanic Domain (z= >200 m)

25-MN19 59.89 178.90 705 1.26 ± 0.14 1.57 ± 0.23 1.25 ± 0.17 -

26-MN20 59.92 179.45 2714 0.71 ± 0.08 2.96 ± 0.51 4.17 ± 0.59 -

61-NP15 56.05 171.30 2760 7.23 ± 5.91 nd nd -

Average (± 1 σ) 3.1 ± 3.6 2.3 ± 1.0 2.71 ± 2.07 -
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Summer, June 14 - July 13, 2009

Middle Domain (z=50-100 m)

10-UAP3 55.96 163.14 90 7.85 ± 0.76 nd nd 44.0

17-CN2 57.56 162.13 51 5.75 ± 0.32 1.49 ± 0.35 0.26 ± 0.03 23.4

45-NP7 57.90 169.24 70 5.97 ± 0.60 0.64 ± 0.09 0.11 ± 0.01 44.3

89-XB6 59.71 170.32 66 5.82 ± 0.56 5.34 ± 0.77 0.92 ± 0.11 40.8

100-MN6 59.90 171.00 70 7.19 ± 0.65 nd nd 39.4

104-MN9 59.90 172.80 77 4.62 ± 0.86 nd nd 83.2

130-XB2-4 61.00 171.76 65 nd 5.51 ± 0.45 nd nd

137-SL6 62.20 171.89 51 5.20 ± 0.34 2.09 ± 0.33 0.40 ± 0.04 29.3

140-SL9 62.20 173.11 62 7.06 ± 0.41 3.21 ± 0.42 0.45 ± 0.03 25.8

147-SL16 62.20 175.98 95 7.73 ± 0.88 0.75 ± 0.06 0.10 ± 0.01 52.5

165-70M41 59.91 172.42 70 5.68 ± 0.75 nd nd 61.2

181-70M25 58.05 169.65 68 5.19 ± 0.45 nd nd 38.4

Average (± 1 σ) 6.2 ± 1.1 2.7 ± 2.0 0.37 ± 0.30 43.8 ± 17.1

Outer Domain (z=100-200 m)

22-CN12 56.13 166.13 113 10.04 ± 0.95 2.18 ± 0.27 0.22 ± 0.02 43.1

25-CN17 55.43 168.06 203 10.61 ± 2.57 nd nd 115.1

32-CNN6 56.80 167.87 104 10.86 ± 0.81 2.19 ± 0.41 0.20 ± 0.02 33.1

60-SB7 56.28 173.84 196 12.63 ± 2.20 1.72 ± 0.33 0.14 ± 0.03 80.5

79-XB16 57.16 172.95 121 8.14 ± 1.36 4.10 ± 0.48 0.50 ± 0.09 72.7

106-MN11 60.00 174.00 105 8.14 ± 1.07 1.12 ± 0.23 0.14 ± 0.02 58.4

109-MN14 59.90 175.80 132 11.98 ± 1.34 nd nd 51.4

112-MN17 59.90 177.60 140 10.73 ± 1.49 nd nd 64.3

113-MN19 59.90 178.74 152 8.29 ± 1.92 3.10 ± 0.46 0.37 ± 0.09 -

122-XB2-12 59.56 175.20 136 8.49 ± 1.57 1.94 ± 0.32 0.23 ± 0.05 84.8

Average (± 1 σ) 10.0 ± 1.7 2.3 ± 1.0 0.26 ± 0.13 67.0 ± 24.7

Oceanic Domain (z= >200 m)

1-U1 54.25 166.56 1246 15.96 ± 2.80 4.51 ± 0.4748 0.28 ± 0.05 92.0

27-CN20 55.02 169.22 2343 15.38 ± 3.87 3.79 ± 0.4348 0.25 ± 0.07 124.2

53-NP15 56.06 171.34 2800 10.65 ± 4.34 2.99 ± 0.348 0.28 ± 0.12 193.9

66-P14-7 58.23 171.59 2090 13.29 ± 3.30 nd nd 142.5

67-P14-10 57.50 175.24 3492 4.19 ± 0.46 1.11 ± 0.181 0.26 ± 0.04 -

115-MN20 59.89 179.37 2779 4.87 ± 3.78 6.02 ± 0.4668 1.24 ± 0.97 -

Average (± 1 σ) 10.7 ± 5.2 3.7 ± 1.8 0.46 ± 0.43 138.1 ± 42.7
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Spring, May 9 - June 14, 2010

Middle Domain (z=50-100 m)

15-Z6 57.90 170.65 80 10.63 ± 0.46 1.51 ± 0.27 0.14 ± 0.01 19.0

24-Z15 58.35 171.80 99 13.01 ± 0.63 3.04 ± 0.44 0.23 ± 0.02 21.6

66-NZ4.5 59.07 170.17 67 6.96 ± 0.45 0.99 ± 0.29 0.14 ± 0.02 29.3

71-HBR1 56.92 167.32 78 9.14 ± 0.51 1.76 ± 0.37 0.19 ± 0.02 24.5

80-AL2 57.18 170.87 85 nd 1.27 ± 0.24 nd nd

81-70M26 58.17 169.91 72 8.77 ± 0.41 4.22 ± 0.60 0.48 ± 0.03 23.0

99-70M4 56.85 164.51 73 7.30 ± 0.56 1.42 ± 0.23 0.20 ± 0.02 33.6

121-70M26 58.15 169.92 71 8.74 ± 0.42 nd nd 21.2

124-70M29 58.62 170.28 72 8.11 ± 0.51 2.05 ± 0.36 0.25 ± 0.02 28.4

147-70M52 61.41 173.74 75 7.85 ± 0.58 2.20 ± 0.35 0.28 ± 0.03 33.4

156-SL12 62.19 175.15 80 8.22 ± 0.65 2.90 ± 0.31 0.35 ± 0.03 35.9

175-MN8 59.90 172.20 73 7.72 ± 0.56 nd nd 33.1

178-AL4 59.52 170.50 68 nd 1.66 ± 0.30 nd nd

Average (± 1 σ) 8.8 ± 1.7 2.1 ± 1.0 0.25 ± 0.11 27.5 ± 5.9

Outer Domain (z=100-200 m)

2-NP14 56.28 171.05 141 8.96 ± 1.51 nd nd 83.8

6-NP13 56.51 170.80 122 nd 1.83 ± 0.31 nd nd

7-NP12 56.73 171.57 109 11.71 ± 0.93 nd nd 37.7

35-ZC8 58.74 174.90 146 13.16 ± 1.40 4.62 ± 0.60 0.35 ± 0.04 49.8

39-IE1 59.33 177.61 138 12.71 ± 1.33 1.80 ± 0.31 0.14 ± 0.02 49.6

54-AL1 58.86 176.86 126 nd 1.08 ± 0.24 nd nd

84-CN17 55.44 168.06 200 12.36 ± 2.25 nd nd 88.0

87-CN17 55.43 168.06 204 11.24 ± 2.50 3.52 ± 0.46 0.31 ± 0.08 108.1

161-MN19 59.90 178.91 206 10.12 ± 2.61 nd nd 125.1

169-MN14 59.90 175.81 130 12.75 ± 1.21 3.68 ± 0.50 0.29 ± 0.03 44.3

190-NP14 56.28 171.06 188 10.65 ± 1.42 5.94 ± 0.64 0.56 ± 0.08 62.5

Average (± 1 σ) 11.5 ± 1.4 3.2 ± 1.7 0.33 ± 0.15 72.1 ± 30.7

Oceanic Domain (z= >200 m)

49-MN19 59.90 178.91 489 13.65 ± 5.44 4.92 ± 0.72 0.36 ± 0.15 203.7

52-MN20 59.90 179.44 2699 12.55 ± 5.51 nd nd 225.6

55-NZ11.5 58.20 174.24 381 16.41 ± 5.32 2.64 ± 0.42 0.16 ± 0.06 163.7

56-P14-3 58.00 174.85 3014 15.80 ± 5.42 nd nd 173.0

57-NZ11.5 58.22 174.35 440 18.83 ± 5.34 nd nd 137.8

162-MN20 59.90 179.44 2672 24.44 ± 4.79 nd nd 99.1

163-MN19 59.89 178.90 656 16.54 ± 3.80 4.54 ± 0.55 0.27 ± 0.07 112.6

195-NP15 56.05 171.30 2740 17.28 ± 5.33 nd nd 155.1

Average (± 1 σ) 16.9 ± 3.6 4.0 ± 1.2 0.27 ± 0.10 158.8 ± 42.9
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Summer, June 16 - July 13, 2010

Middle Domain (z=50-100 m)

8-UAP5 55.53 163.98 91 9.85 ± 0.69 nd nd 31.3

15-UAP2 57.06 161.04 74 nd 1.16 ± 0.17 nd nd

20-CN8 56.71 164.51 76 7.20 ± 0.65 2.07 ± 0.30 0.29 ± 0.03 39.8

34-CNN4 57.35 167.04 72 7.88 ± 0.52 1.15 ± 0.26 0.15 ± 0.02 29.7

47-NP9 57.44 169.82 66 6.94 ± 0.53 nd nd 34.0

74-W7 60.00 171.06 70 nd 5.10 ± 0.66 nd nd

91-MN10 59.90 173.40 86 7.20 ± 0.79 5.74 ± 0.76 0.80 ± 0.10 51.0

122-ML3 61.97 170.78 50 4.62 ± 0.37 3.38 ± 0.43 0.73 ± 0.07 37.1

134-SL11 62.20 173.93 64 nd 2.76 ± 0.35 nd nd

145-BN3 62.67 173.38 66 7.30 ± 0.51 5.08 ± 0.62 0.70 ± 0.06 32.2

167-70M39 59.83 171.77 75 7.02 ± 0.62 nd nd 40.5

197-70M9 57.26 165.75 70 7.16 ± 0.57 nd nd 35.3

Average (± 1 σ) 7.2 ± 1.3 3.3 ± 1.8 0.53 ± 0.29 36.8 ± 6.5

Outer Domain (z=100-200 m)

25-CN17 55.43 168.06 198 19.28 ± 1.89 nd nd 46.4

31-CNN7 56.35 168.29 130 nd 0.94 ± 0.15 nd nd

53-TD2 56.25 171.11 190 11.50 ± 2.14 1.61 ± 0.23 0.14 ± 0.03 91.2

58-SB5 56.72 173.02 132 nd 7.76 ± 0.68 nd nd

97-MN16 59.90 177.00 136 14.38 ± 1.17 7.33 ± 0.97 0.51 ± 0.05 37.4

100-TD4 59.90 178.85 225 13.43 ± 2.76 1.79 ± 0.28 0.13 ± 0.03 97.5

Average (± 1 σ) 14.6 ± 3.3 3.9 ± 3.4 0.26 ± 0.22 68.1 ± 30.6

Oceanic Domain (z= >200 m)

26-CN20 55.02 169.22 2332 16.52 ± 5.38 nd nd 163.7

54-NP15 56.06 171.32 2785 12.71 ± 5.66 39.69 ± 3.77 3.12 ± 1.42 223.3

62-P14N-10 57.50 175.24 3473 13.08 ± 5.62 nd nd 215.0

63-P14N-7 58.27 174.56 2112 12.25 ± 2.46 9.00 ± 0.74 0.73 ± 0.15 97.3

102-MN20 59.90 179.40 2705 10.62 ± 5.71 43.24 ± 4.45 4.07 ± 2.23 273.5

Average (± 1 σ) 13.0 ± 2.2 30.6 ± 18.8 2.64 ± 1.72 194.6 ± 66.9
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Table 1.3.  Seasonal 
234

Th budget for the middle and outer domains of the eastern 

Bering Sea shelf (all units in dpm cm
-2

 d
-1

). 
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Table 1.4.  Shelf averages (Middle and Outer domains) of the water column 
234

Th 

deficit and sediment 
234

Thxs inventory.  FFThs were calculated from average deficits and 

inventories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Season
234

Th Deficit  234
Th xs FF Th

dpm cm
-2

dpm cm
-2

Spring 2009 8.01 ± 1.60 3.36 ± 1.97 0.42 ± 0.26

Summer 2009 8.00 ± 2.37 2.53 ± 1.55 0.32 ± 0.22

Spring 2010 10.01 ± 2.09 2.53 ± 1.38 0.25 ± 0.15

Summer 2010 9.52 ± 4.07 3.53 ± 2.41 0.37 ± 0.30

Average 8.79 ± 2.61 2.97 ± 1.85 0.34 ± 0.23
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Figure 1.1.  Map of the eastern Bering Sea identifying the major transects during the 

BEST-BSIERP field program and station locations where water column and sediment 

samples were collected. 
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Figure 1.2. Temperature (°C), salinity (PSU), and density anomaly (kg m
-3

) sections 

along the MN line for spring and summer 2009-10.   

 

 

 

 

 

 

 



40 
 

 

Figure 1.3. Depth profiles of 
234

Th-
238

U activity ratios according to season and 

domain. Slope-Oceanic Domain profiles plotted to a maximum depth of 500 m.  Middle 

and Outer domains profiles plotted to sea floor. 
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Figure 1.4.  Seasonal variability in 
234

Th-
238

U activity ratio (AR) along the MN Line. 
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Figure 1.5.  Depth profiles of sediment 
234

Thxs (dpm g
-1

).  Profiles are plotted to a 

maximum depth of 1.5 cm (1.25 cm mid-point), which correlates with integration depth.   
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Figure 1.6. Maps of water column 
234

Th deficit and sediment 
234

Thxs inventory.  Note 

that two Oceanic sediment 
234

Thxs inventories for summer 2010 are off-scale and 

indicated by lightly shaded symbols.      
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Figure 1.7.  Illustration of the supply and removal terms responsible for the 

radiochemical balance of 
234

Th over the eastern Bering Sea shelf.  Terms defined in Table 

1.3. 
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Figure 1.8. Seasonally averaged supply (white bar), removal (black bars), and off-

shelf export (gray bar) of 
234

Th over the eastern Bering Sea shelf. 
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Figure 1.9.   Distributions of total 
234

Th residence time (τt, d) in the eastern Bering Sea. 
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Figure 1.10.  Plot of sediment 
234

Thxs inventory against water column deficit of 
234

Th for 

the eastern Bering Sea shelf.  Data plotted only for the Middle and Outer shelf regions.  
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Figure 1.11.   
234

Th focusing factors (FFTh) determined in the eastern Bering Sea. 
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Figure 1.12. Average FFTh calculated according to season and domain.  Uncertainties 

represent 1 σ. 
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Publication Status 

Manuscript II, titled “Seasonal decoupling of particulate organic carbon export and net 

primary production in relation to sea-ice at the shelf break of the eastern Bering Sea: 

implications for off-shelf carbon export” was published in Journal of Geophysical 

Research-Ocean. The co-authors of this manuscript are S. B Moran, M. W. Lomas, R. P. 

Kelly, and D. W.  Bell. 
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MANUSCRIPT II 

 

SEASONAL DECOUPLING OF PARTICULATE ORGANIC CARBON EXPORT 

AND NET PRIMARY PRODUCTION IN RELATION TO SEA-ICE AT THE 

SHELF BREAK OF THE EASTERN BERING SEA: 

IMPLICATIONS FOR OFF-SHELF CARBON EXPORT 

 

Abstract  

Particulate organic carbon (POC) export fluxes and net primary production (NPP) 

rates are used to assess seasonal patterns in the export ratio (e-ratio = POC export/NPP) 

in relation to proximity of the sea-ice edge near the shelf break of the eastern Bering Sea 

during 2008-2010.  POC fluxes were relatively low in April (4.6±1.6, trap, and 5.7±4.3 

mmol C m
-2

 d
-1

, 
234

Th-derived) and increased in May-early June (19.9±13.3 and 17.0±8.8 

mmol C m
-2

 d
-1

).  POC export reached a maximum in mid-June-mid-July (30.0±12.6 and 

48.1±17.4 in 2009; 33.1±27.6 and 57.0±68.4 mmol C m
-2

 d
-1

 in 2010) and decreased by 

late July (13.1±4.7 and 14.1±8.0 mmol C m
-2

 d
-1

).  NPP rates were relatively high and 

export fluxes low near the ice-edge in spring, leading to e-ratios <0.25.  In early summer, 

POC export exceeded NPP at individual stations and resulted in e-ratios >1, which is 

attributed to a temporal decoupling, or offset, of spring NPP and export during summer.  

While these observations reveal a seasonal progression in POC export and the e-ratio, 

there is no direct relationship to sea-ice proximity.  Furthermore, based on a water 

column-sediment 
234

Th budget, the off-shelf export of POC during spring-summer is 

estimated to be 24±35 mmol C m
-2

 d
-1

, which represents an off-shelf e-ratio of 0.07 and 

0.21 for contemporaneous seasonally averaged daily rates of NPP and 0.17 and 0.52 for 
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historical monthly averaged daily rates of NPP.  An implication is that off-shelf POC 

transport may represent a seasonal net sink for CO2 in this and other polar shelf regions. 

2.1. Introduction 

The eastern Bering Sea shelf, as with other polar seas, influences the uptake of 

atmospheric CO2 in part by the conversion of dissolved inorganic carbon into biogenic 

particles and subsequent vertical removal by particle export.  The seasonal increase in 

solar irradiance, coupled with the retreat of sea-ice in spring, allows for exceptionally 

high rates of primary production in the nutrient rich waters of the shelf break and Outer 

shelf region of the eastern Bering Sea (Alexander and Niebauer, 1981; Niebauer et al., 

1995).  The resulting pulse in primary production within the marginal ice zone (MIZ) 

during spring sea-ice retreat has been reported to decouple from zooplankton growth due 

to reduced grazing efficiency resulting in the potential for seasonally high rates of 

particle export in Arctic shelf systems (e.g., Wassmann et al., 2004).  Because of the 

potential for seasonally high particle export fluxes at the shelf break and Outer shelf of 

the eastern Bering Sea, previous studies have suggested that this region may represent a 

seasonal net sink for atmospheric CO2 (Walsh et al., 1981).  

  The recent decline in Arctic and sub-Arctic seasonal sea-ice thickness and extent 

may restructure energy flow through the lowest trophic levels of the ecosystem (Arrigo et 

al., 2008; Grebmeier et al., 2006; Overland and Wang, 2007), potentially impacting the 

export of organic carbon from the surface to deeper polar ocean waters.  In particular, the 

seasonal timing of sea-ice retreat exerts an important control on the timing of primary 

production (Brown and Arrigo, 2013), but it is still unclear as to how sea-ice retreat 
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influences the overall magnitude of primary production in high-latitude systems.  During 

cold years, the ice-edge can extend as far as the shelf break of the eastern Bering Sea, 

overlying nutrient rich water upwelled from the deep North Pacific (Alexander and 

Niebauer, 1981).  As sea-ice retreats due to seasonal warming, the upper water column is 

stratified by the release of freshwater.  As a result, cold years typically yield large spring 

blooms near the MIZ as sea-ice retreats over the shelf break.  Zooplankton stocks tend 

not to respond as quickly to such blooms during the spring, which may allow for a more 

efficient particle export of primary production at the shelf break following the bloom 

(e.g., Sakshaug, 2004).  Here, we hypothesize that such a temporal offset between the 

spring primary production event and subsequent export during early summer may allow 

for the transfer of a large fraction of POC from the surface ocean to depth, and in turn, 

lead to a seasonal net sink for CO2 during cold years.  Conversely, during warm years 

characterized by early sea-ice retreat, spring blooms tend to be delayed until the upper 

water column is thermally stratified and occur primarily under ice-free, open water 

conditions.  These warmer year blooms are more tightly coupled in time with the 

seasonal emergence of zooplankton stocks, resulting in a greater fraction of carbon 

retained and recycled within the pelagic ecosystem, reduced export, and hence a reduced 

transfer efficiency of carbon to benthic organisms.  These hypotheses form the basis of 

the Oscillating Control Hypothesis (OCH), which postulates that walleye pollock 

(Theragra chalcogramma) recruitment is dictated by bottom-up control during cold years 

and top-down control during warm years (Hunt et al., 2002).   

While the OCH has been recently modified (Hunt et al., 2011) based on new 

observations obtained as part of BEST-BSIERP (Bering Ecosystem Study-Bering Sea 
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Integrated Ecosystem Research Project) in the relatively cold period during 2007-2011 

(Stabeno et al., 2012), the essential premise remains that the transfer efficiency of export 

production associated with the spring bloom event may be greater during cold years.  

However, no contemporaneous measurements of both net primary and export production 

exist over multiple years for the eastern Bering Sea, either during cold or warm regimes.  

Such information is necessary to testing not only the OCH, but also to address the notion 

that off-shelf export of POC may represent a seasonal net sink for CO2 in such dynamic 

high-latitude shelf systems as the eastern Bering Sea. 

 A primary goal of this study is to assess seasonal changes in rates of POC export 

and the export ratio (e-ratio = POC export/NPP) at the shelf break and Outer shelf of the 

eastern Bering Sea in relation to sea-ice proximity.  Because there is no ideal, truly 

unbiased method to quantify export production from the surface ocean, this study reports 

POC fluxes determined using both drifting sediment trap arrays and 
234

Th-
238

U 

disequilibria.  Due to its short half life (t1/2 = 24.1 d), particle-reactive nature, and known 

rate of production, 
234

Th has been widely used as a tracer to quantify POC export from 

the upper ocean (Benitez-Nelson et al., 2001a; Buesseler et al., 1995; Buesseler et al., 

1998; Coale and Bruland, 1985, 1987; Moran et al., 2003).  The use of 
234

Th as a flux 

proxy for POC export has been increasingly utilized in the Arctic (Amiel and Cochran, 

2008; Amiel et al., 2002; Cai et al., 2010; Gustafsson and Andersson, 2012; Lalande et 

al., 2007; Lalande et al., 2008; Lepore et al., 2007; Moran et al., 1997; Moran et al., 

2005; Moran and Smith, 2000), however there is only one previous study of POC export 

over the eastern Bering Sea shelf, which reports data from a single year (Moran et al., 

2012).  Within the context that 2008 - 2010 represents a multi-year cold period, sediment 
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trap and 
234

Th-derived POC export, together with seasonal variability in the e-ratio, are 

compared for the eastern Bering Sea during spring and summer.  In addition, an estimate 

of the off-shelf transport of POC is reported, based on a recent water column-sediment 

234
Th budget for the Outer shelf (Baumann et al., 2013), and the resultant implications for 

a net seasonal sink for atmospheric CO2 in this region are discussed. 

2.2. Methods 

a. Study area 

The eastern Bering Sea shelf may be subdivided into three cross-shelf domains 

isolated by seasonal fronts: Coastal Domain (0–50 m), Middle Domain (50–100 m), and 

Outer Domain (100 m – shelf break front at ~200 m) (Coachman, 1986; Kachel et al., 

2002; McRoy et al., 1986).  These three shelf domains can be further sectioned into 

North and South regions separated at 60°N (Mathis et al., 2010).  This present study is 

focused in the North and South Outer domains and along the shelf break/slope (off-shelf 

region; ~200–3500 m).  For consistency, the study regions will henceforth be referred to 

as the Outer Domain/shelf or shelf break/off-shelf (Fig. 2.1).          

Seasonal sea-ice extent and duration over the southeastern Bering Sea shelf is 

highly variable, with distinct temporal changes occurring on the order of less than a 

decade to several decades (Stabeno et al., 2012).  Specifically, the last three decades of 

the previous century were characterized by a high degree of variability in spring sea-ice 

cover, which was followed by a five year period (2001-2005) of reduced ice extent 

during the spring months.  The latter period of the previous decade (2007-2010) was 

characterized by extensive sea-ice cover in spring and low water column temperatures. 
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b. Sediment trap sampling 

Sediment trap and water column samples were collected along the shelf break 

(200–3500 m) and Outer shelf (100–200 m) of the eastern Bering Sea during spring and 

summer cruises from 2008-2010 as part of the BEST-BSIERP field program.  Cruise 

information is listed in Table (2.1).  

Surface tethered, drifting particle trap arrays (KC Denmark, Silkeborg, Denmark) 

were deployed near the shelf break in waters >125 m depth (Table 2.2; n = 3 and 3 for 

spring and summer of 2008; 5 and 4 for spring and summer of 2009 and 2010).  

Deployments were ~24 h in duration with trap depths of 25, 40, 50, 60, and 100 m (4x72 

mm diameter traps per depth).  Sediment traps were filled with non-poisoned, 0.4 µm 

filtered brine (S = ~85 ‰) prior to deployment to isolate swimmers and suspended 

particulate matter from passively sinking material.  After recovery, the upper seawater 

layer was siphoned to the seawater-brine interface indicated by the discontinuity between 

the layers.  Each sample was vacuum filtered onto a pre-combusted 25 mm GF/F, sub-

sampled for the determination of particulate organic carbon (POC) content, dried at 60°C, 

and analyzed for 
234

Th at sea.   

c. Water column sampling 

Total (dissolved + particulate) 
234

Th was sampled in the water column at the 

locations of the sediment trap deployments.  The 
234

Th profiles are high resolution (~10 

m) over the upper 100 m and also correlate with the sediment trap depths for direct 

comparison.  Water column 
234

Th samples were collected from CTD-rosette casts using 

the small volume (SV; 4 L) technique, in which 
234

Th is extracted via co-precipitation 
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with manganese oxide (MnO2) (Benitez-Nelson et al., 2001b; Buesseler et al., 2001).  

The pH of the sample was raised by the dropwise addition of concentrated ammonium 

hydroxide (28%) followed by the addition of 0.2 M KMnO4 (25 µL) and 1.0 M MnCl2 

(11.5 µL) to generate the MnO2 precipitate.  After one hour of equilibration, each sample 

was vacuum filtered onto a 25 mm diameter 1 µm pore size glass microfiber filter 

(GM/F).  Deep samples (>1000 m) were collected as a check for detector efficiency.  In 

addition, replicate samples were spiked with a known 
230

Th activity as an internal 

standard of 
234

Th scavenging efficiency.  Scavenging efficiencies were typically >90%.    

d. 
234

Th and 
238

U analysis  

Sediment trap and water column 
234

Th samples were quantified by the 

measurement of beta emissions of 
234m

Pa (Emax = 2.19 MeV; t1/2 = 1.2 min) on a low-

background beta detector (RISØ National Laboratory, Roskilde, Denmark; average 

detector efficiency: 44 ± 3%) (Charette et al., 2001).  Prior to analysis, each sample was 

mounted on an acrylic disc and covered with clear plastic wrap and aluminum foil to 

shield low-level beta and alpha emitters. Because of the time-sensitive nature of 
234

Th 

analysis, the initial count occurred at sea.  The first count for the sediment trap samples 

occurred immediately, while the first count for the water column samples was withheld at 

least three days to allow for the decay of short lived isotopes.  Each sample was counted 

several times over the first six half-lives of 
234

Th.  After this period, each sample was 

counted to establish background levels.  Data were fitted to the 
234

Th decay curve and 

corrected to yield 
234

Th activity at the time of collection.        
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 Water column 
238

U activities were calculated from salinity according to the 

relationship 
238

U (dpm L
-1
) = salinity (‰) x 0.0708 (Chen et al., 1986).  Salinities were 

obtained from CTD profiles of water column hydrography.  This relationship has been 

previously verified by sector-ICP-MS analysis of unfiltered seawater samples from the 

Outer shelf and slope water of the Chukchi Sea, a similar high-latitude marginal sea to 

the Bering Sea (Moran et al., 2005) as well as for the high salinity Mediterranean Sea, 

where possible nonconservative behavior of 
238

U may be expected (Speicher et al., 2006). 

e. Analysis of POC 

An arc-punch was used to generate a 10 mm diameter subsample from each 

sediment trap GF/F, which was used for the analysis of POC.  It was necessary to 

subsample the trap GF/F by area rather than weight because of the need to analyze for 

234
Th at sea.  The POC subsample was frozen until preparation for analysis in a shore-

based laboratory.  The subsamples were dried at 60°C, fumed in a desiccator containing 

hydrochloric acid for 24 h to oxidize and remove inorganic carbon, and dried once again 

for 24 h at 60°C.  POC was analyzed on a CE-440 Elemental Analyzer (Exeter 

Analytical, Inc., North Chelmsford, MA, USA) (Pike and Moran, 1997).  Field blanks 

were prepared for each set of samples by filtering 200 mL of pre-filtered brine. An 

average blank for each cruise was subtracted from corresponding gross POC 

concentrations. 

2.3. Results 

a. Hydrographic characteristics of the southeastern Bering Sea Outer shelf and shelf 

break 
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The temporal and spatial variability of sampling during the 2008-2010 field 

program allowed for the characterization of the seasonal succession of primary 

production and subsequent export of POC during early (HLY0802 in 2008 and HLY0902 

in 2009) and late (TN249 in 2010) spring as well as early (KN195-10 in 2009 and TN250 

in 2010) and mid-summer (HLY0803 in 2008) under relatively persistent interannual 

spring sea-ice extent over the southeastern Bering Sea shelf (Fig. 2.1; Tables 2.1, 2.2).  

The ~sea-ice maximum (solid) and minimum (dashed) during the spring field studies are 

depicted on Fig. (2.1).  Listed in Table (2.2) are the approximate distances from the 

spring sediment trap deployments to the center of the MIZ (<8/10ths ice cover) on the 

day of deployment.  Sea-ice data were obtained from the U.S. National Ice Center 

(http://www.natice.noaa.gov/products/).  For the HLY0802 and HLY0902 (early spring) 

cruises the location of sediment trap deployment ranged from 57–138 (2008) and 25–88 

(2009) km from the center of the MIZ.  With the exception of one TN249 (late spring 

2010) sediment trap station, all other sediment trap deployments are considered open 

water locations as they are >150 km from the sea-ice edge.  

 Spring upper water column temperature, salinity, and buoyancy may provide 

additional, yet qualitative, insight into recent sea-ice cover and melt water release.  

During HLY0802, the upper water column (150 m) along the shelf break was well mixed 

as 0 - 40 and >40 m horizons demonstrated little variation in density (σt).  Density of the 

upper 40 m ranged from 25.93 to 26.38 (mean: 26.10) and the 40-150 m ranged from 

25.96 to 26.51 (mean: 26.35) kg m
-3

 at the locations of sediment trap deployments (Figs. 

2.1, 2.2a; Table 2.2).  Cruise HLY0902 in 2009 overlapped with spring 2008; however, 

substantial ship time was allocated to characterize a well-formed spring bloom (Bloom 

http://www.natice.noaa.gov/products/
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Station; BL; Fig. 2.1; Table 2.2) over the Outer shelf (z = ~125 m).  As with the shelf 

break, the Outer shelf water column was also well mixed in early spring.  The density 

range in the upper 40 m was 25.69 to 26.21 (mean: 25.84) and the >40 m horizon ranged 

from 25.91 to 26.34 (mean: 26.26) kg m
-3

 (Fig. 2.2c).  Moreover, during both early spring 

cruises the upper 40 m of the water column was on average 1.25°C colder and 0.46 psu 

(practical salinity units) less saline than the >40 m water column indicating recent melt 

water input from sea-ice retreat.  However, during TN249 the upper water column (<40 

m) of the shelf break demonstrated more stratification, which is characteristic of summer 

for the region.  At the sediment trap stations, the upper 40 m σt range was 24.70 to 26.19 

(mean: 25.79) kg m
-3

, while the density structure of the deeper waters varies little 

between early and late spring (Fig. 2.2e). 

 During KN195-10 and TN250, σt in the <40 m horizon ranged from 25.29 to 

26.22 (mean: 25.75) and 24.99 to 26.11 (mean: 25.74) kg m
-3

, respectively (Fig. 2.2d, f).  

Mean density in the upper 40 m of the water column varied by only 0.04 kg m
-3

 in  late 

spring and early summer, which indicates a similarly stratified water column between 

May and mid-July.  During HLY0803, the σt range was 25.31 to 26.06 (mean: 25.57) kg 

m
-3

, implying a slightly more buoyant <40 m water column than early summer (Fig. 

2.2b). 

b. Sediment trap POC and 
234

Th fluxes 

Along the shelf break during HLY0802, spatial and depth (40 – 100 m traps) 

averaged particle fluxes of 
234

Th (
234

Thtrap) and POC (POCtrap) were relatively low at 

759±235 (± 1σ) dpm m
-2

 d
-1

 and 4.6±1.6 (± 1σ) mmol C m
-2

 d
-1

, respectively (Fig. 2.3; 
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Table 2.3).  By May and mid-June (TN249) average 
234

Thtrap and POCtrap increased to 

2172±803 dpm m
-2

 d
-1

 and 19.9±13.4 mmol C m
-2

 d
-1

, respectively (Fig. 2.5).  Particle 

fluxes of 
234

Th during the early summer cruises (KN195-10 and TN250) were low 

relative to trap POC fluxes along the shelf break (Figs. 2.4, 2.5).  For KN195-10, depth 

averaged 
234

Thtrap and POCtrap were 1047±488 dpm m
-2

 d
-1

 and 30.0±12.6 mmol C m
-2

 d
-

1
, respectively.  Average trap fluxes during TN250 were 1256±751 dpm m

-2
 d

-1
 for 

234
Thtrap and 33.1±27.6 mmol C m

-2
 d

-1
 for POCtrap (Table 2.3).  During HLY0803 in 

July, average 
234

Thtrap fluxes along the shelf break were greater than the early summer, 

while POCtrap fluxes were lower averaging 1595 ± 660 dpm m
-2

 d
-1 

and 13.1±4.7 mmol C 

m
-2

 d
-1

, respectively (Fig. 2.3). 

 At station BL during HLY0902, depth averaged 
234

Thtrap and POCtrap were greater 

than those along the shelf break at 2000±1656 dpm m
-2

 d
-1

 and 44.6±28.1 mmol C m
-2

 d
-

1
, respectively (Fig. 2.4; Table 2.3).   

c. 
234

Th fluxes from 
234

Th-
238

U disequilibrium and 
234

Th-derived POC fluxes 

A one-box model is typically used for the calculation of the 
234

Th flux through the 

upper ocean water column (Savoye et al., 2006): 

                                          
    

  
                          (2.1) 

where the change in activity of 
234

Th over time (dATh/dt) is the balance of 
234

Th 

production from 
238

U decay (AUλ; where   is the 
234

Th decay constant,  = 0.0288 d
-1

), 

decay of 
234

Th (AThλ), vertical sinking flux of 
234

Th on particles (PTh), and the net 

transport of 
234

Th by advection and diffusion (VTh).  Lepore et al. (2007) have shown 
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reasonable agreement to within a factor of 2 between one-dimensional (VTh=0) and three-

dimensional (which considers transport of 
234

Th by advection and diffusion) models over 

the Chukchi Sea shelf; therefore, a one-dimensional model is assumed for the eastern 

Bering Sea.  Moreover, a lack of time-series measurements at all but two locations (see 

below) necessitated the assumption of a steady-state (SS; dATh/dt=0) simplifying Eq. 

(2.1): 

                                                                      (2.2) 

which implies that the vertical flux of 
234

Th is product of  
234

Th deficit in the water 

column (AU-ATh) and the 
234

Th decay constant. Trapezoidal integration of Eq. (2.2) yields 

the flux of 
234

Th at a specified depth horizon:    

                                                                      
 

 
                 (2.3) 

To directly compare sediment trap and 
234

Th-derived POC fluxes, the integration depth of 

the water column 
234

Th and 
238

U profiles correspond to the sediment trap depth.   

 Together with sediment trap fluxes, particle 
234

Th fluxes determined from 
234

Th-

238
U disequilibrium (PTh) are listed in Table 2.3.  Comparing these fluxes through depth 

horizons that correspond with sediment trap depths (PTh/
234

Thtrap) indicates that PTh 

generally agrees with trap 
234

Th fluxes  to within a factor of 1.5-2, which is consistent 

with other studies employing these methods in high-latitude, marginal seas (Lalande et 

al., 2007; Lalande et al., 2008; Moran et al., 2012).  Specifically, along the shelf break 

during early (HLY0802) and late (TN249) spring, the average PTh/
234

Thtrap was 1.02±0.50 

and 0.89±0.32, though absolute fluxes more than double during late spring (Figs. 2.3, 2.5, 
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2.6 a, e; Table 2.3).  For KN195-10 and TN250 in 2009 and 2010, PTh exceeded 
234

Thtrap 

resulting in an average PTh/
234

Thtrap of 1.87±0.88 and 1.63±0.59.  These high ratios 

indicate a potential violation of the steady-state condition; however, the agreement 

between these two methods is still within a factor of 2.  An average PTh/
234

Thtrap of 

0.96±0.38 was determined for HLY0803 in 2008.  The average ratio close to unity 

determined for the mid-summer cruise suggests that the shelf break of the eastern Bering 

Sea may have returned close to steady-state. 

PTh /
234

Thtrap for station BL was 0.99±0.52 (Table 2.3).  However, 
234

Th water 

column fluxes overestimate the trap fluxes early in the bloom (BL2, BL15, BL15-1), 

whereas the opposite occurs during the later stages of the bloom (BL21) when water 

column 
234

Th fluxes are lower than trap fluxes by up to 85%. 

 The 
234

Th-derived POC flux (PPOC) is calculated as the product of PTh and 

POC/
234

Th ratio (POC/
234

Thtrap) on sinking particles determined from sediment traps 

(Buesseler, 1991; Moran et al., 2003): 

                                                            
   

                                 (2.5) 

In this study, the POC/
234

Th ratio ranged widely, from 1 to 282 (25.5±37.6; avg. ± 

1σ) µmol dpm
-1

 throughout the upper 100 m (Table 2.3); such variability tends to be 

characteristic of productive shelf waters (Amiel and Cochran, 2008; Charette et al., 2001; 

Moran et al., 2003).  Higher POC/
234

Th ratios were observed during the summer and in 

areas with greater absolute POC flux from the photic zone (Table 3). Furthermore, during 

summer and in higher flux environments, POC/
234

Th ratios decreased with depth (Figs. 

2.3, 2.4, 2.5), which may reflect a combination of preferential remineralization of POC, 
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decay of particle-bound 
234

Th, or particle aggregation and disaggregation (Buesseler et 

al., 1995; Burd et al., 2000; Lepore and Moran, 2007).   

  PPOC fluxes were determined for each sediment trap location using depth-

specific PTh and POC/
234

Th as a means for comparison with sediment trap derived POC 

fluxes.  Despite a wide range of particle flux values, POC/
234

Th, and PTh, PPOC and 

POCtrap are within a factor of ~2 for most depths and stations for all seasons (Fig. 2.7; 

Table 2.3).  The ratios of PPOC and POCtrap (PPOC/POCtrap; Table 2.3) are nearly identical 

to the PTh/
234

Thtrap ratios suggesting that the same over- or underestimation 

characteristics, relative to trap fluxes, are evident in the PPOC estimates. 

PPOC export fluxes (corresponding with the 40-100 m trap depths) were relatively 

low in early spring (5.7±4.3 mmol C m
-2

 d
-1

) and increased by May and early June 

(17.0±8.8 mmol C m
-2

 d
-1

) (Table 2.3).   As with trap fluxes, PPOC peaked in early 

summer (48.1±17.4 for KN195-10; 57.0±68.4 mmol C m
-2

 d
-1

 for TN250) and decreased 

by a factor of 2 to 3 by late July (14.1±8.0 mmol C m
-2

 d
-1

 for HLY0803) (Table 2.3). 

At station BL in 2009, PPOC averaged 40.5±10.8 mmol C m
-2

 d
-1

 between 40 and 

100 m (Table 2.3).  Trap fluxes generally increased throughout the bloom period, while 

PPOC fluxes increased from BL2 to BL15 and BL15-1 then decreased by BL21.  The 

decrease in PPOC during the latter stages of bloom sampling period occurs because of the 

apparent underestimation of PTh relative to trap derived 
234

Th fluxes at BL21. 

d. Non-steady state 
234

Th fluxes 

 The extended occupation of station BL during HLY0902 in 2009 and three 

separate occupations of MN19 during TN249 and TN250 in 2010 allowed for the 
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comparison of 
234

Th fluxes calculated using non-steady state (NSS; dATh/dt ≠ 0) and SS 

one-dimensional scavenging models.  NSS fluxes take into account changing water 

column inventories of 
234

Th over time, which is likely the case during events of elevated 

particle flux associated with plankton blooms (Buesseler et al., 1992; Savoye et al., 

2006): 

                                      
      

           
         

               (2.6) 

where Δt is the time interval between sampling, ATh1 and ATh2 are the activities of 
234

Th 

for the first and second occupations, respectively, AU is the 
238

U activity of the first 

occupation, and   is the 
234

Th decay constant. The NSS model also assumes that the same 

water mass is sampled repeatedly, which is reasonable in this study due to the weak sub-

tidal flow fields over the southeastern Bering Sea shelf (Schumacher and Kinder, 1983). 

 Here, NSS and SS 234Th fluxes through the 75 m depth horizon are compared.  

As described above, the SS 
234

Th fluxes calculated during the latter stages of the bloom 

underestimate 
234

Th fluxes determined from sediment traps by up to 85% (Table 2.3).  

The incorporation of NSS conditions into the scavenging model accounts for much of the 

discrepancy between SS PTh and 
234

Thtrap at station BL21.  Specifically, NSS PTh/
234

Thtrap 

is 1.28 and 1.04 for occupations 3 to 4 and 1 to 4, respectively, when compared with the 

60 m sediment trap 
234

Th flux at BL21 (Fig. 2.8 a; Table 2.4). 

 Near the shelf break, NSS and SS fluxes are in better agreement during the MN19 

reoccupations (Fig. 2.8b; Table 2.4).  The SS flux decreases from occupation 1 to 2 with 

a concomitant NSS flux smaller than either of the end-member SS fluxes, which may 

reflect a reduction in scavenging or supply of high 
234

Th activity deeper water between 
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occupations.  SS fluxes during occupation 1 and the NSS flux between occupation 1 and 

2 underestimate the trap fluxes by a factor of 2-3.  Trap fluxes of 
234

Th decrease by 

occupations 2 and 3, relative to occupation 1, and 
234

Thtrap and SS fluxes are good 

agreement (Fig. 2.8b; Table 2.4).  In addition, NSS fluxes calculated between occupation 

2 and 3 compare well with the SS fluxes.  Overall, the results of this comparison validate 

the use of the SS assumption at this and other shelf break stations. 

2.4. Discussion 

a. Seasonal succession of NPP, POC export, and the export ratio  

An overarching goal of this study is to quantify the fraction of POC production 

that is exported from the photic zone on a seasonal basis and in relation to sea-ice 

proximity. This objective is central to improving our understanding of carbon cycling and 

the carbon budget for this shelf region.  The exported fraction of primary production from 

the photic zone is traditionally represented as the e-ratio, or ThE, when calculated using 

234
Th-derived POC export (Buesseler, 1998): 

                
          

   
             (7) 

where NPP is photic zone integrated rate of net primary production and POC export 

fluxes are determined from the nearest sediment trap below the photic zone depth or 

calculated at the base of the photic zone using the 
234

Th approach.  Throughout the course 

of this study, rates of NPP were discretely estimated by 
14

C on-deck incubations.  NPP 

results for 2008 and 2009 are presented elsewhere (Lomas et al., 2012).  During the cold 

years of this field program, NPP varied greatly between the Northern and Southern 
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regions and between spring and summer.  The highest rates of primary production were 

typically observed in spring and in areas within the MIZ due to ice-edge blooms.  Briefly, 

ice-edge NPP was dominated by >5 µm cells associated with diatom production (Lomas 

et al., 2012).  During the summer, the northern region was still diatom dominant, 

however the open water stations in the south were characterized by lower rates of primary 

production and the emergence of haptophytes (namely Phaeocystis spp.) and 

microflagellates as major contributors to autotrophic biomass (Moran et al., 2012).  

It is possible that the measured rates of NPP are underestimated in Lomas et al. 

(2012) as they are based solely on the particulate fraction and do not include passive 

autotrophic DOC release.  Reported net community production to gross primary 

production (NCP/GPP) ratios over the eastern Bering Sea shelf during the concurrent 

field program indicate values of ~0.5 during productive bloom conditions in the MIZ and 

~0.3 in post-bloom, open water conditions (M. Prokopenko et al., in review) where other 

algal classes emerge as important contributors to autotrophic biomass.  Autotrophic 

respiration generally consumes ~40% of GPP on a daily timescale.  Thus, correcting 

daily rates of GPP yields rates of ‘NPP’ that are similar to NCP during bloom conditions, 

which suggests a minor contribution by passive DOC release to total NPP.  However, 

during open water conditions, passive DOC release may represent a larger fraction of 

total NPP in summer. While grazing activity may also be higher, it is not possible to 

accurately quantify the contribution of passive DOC release to total daily NPP in this 

study. 

 The temporal and spatial variability in discrete NPP and POC export observations 

made during this study prevent the calculation of a statistically meaningful average 
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export ratio characteristic of the entire eastern Bering Sea region.  However, on a station-

by-station basis both the e-ratio and ThE are typically lower in spring, due mainly to 

elevated levels of NPP (Fig. 2.9; Table 2.5).  Such low export efficiency early in the 

growing season in high-latitude seas has been previously observed in the Arctic (Lepore 

et al., 2007; Moran et al., 2005).  In this study, spring e-ratio and ThE estimates are 

below ~0.25 for all but two stations (NP15 in 2008 and NZ11.5 in 2010), which had 

relatively low rates of NPP (Table 2.5). 

   As noted previously, nine spring sediment trap deployments were made within 

~140 km of the ice-edge (Table 2.2).  With the exception of station BL, spring stations 

nearer the ice pack were characterized by lower fluxes of POC from 40–100 m (Fig. 

2.10a).  Therefore, the relatively low export ratios in the spring are the result of a 

combination of higher spring NPP and lower export production (Figs. 2.9, 2.10b).  As 

with POC export fluxes, export ratios nearer the ice-edge are low relative to the open 

water and summer estimates (Fig. 2.10b).  Furthermore, the lowest calculated export 

ratios are evident for station BL (Fig. 2.10b; Table 2.5) though POC export is relatively 

high at this location.  This is because the export ratio is more dependent on the rates of 

NPP, which exhibit greater variability relative to export production.  These low export 

ratios associated with high rates of NPP are consistent with an inverse relationship 

between NPP and export efficiency, which has been observed in the Southern Ocean 

(Maiti et al., 2013).  There is a general increase in POC fluxes for most open water 

stations relative to traps near the ice-edge, though there is considerable variability 

between those estimates (Fig. 10a).  In fact, during the summer, POC export often 

exceeded coincident rates of NPP along the shelf break (Figs. 2.9, 2.10b; Table 2.5).  



69 
 

Export ratios >1 are attributed to a temporal decoupling, or offset, between primary 

production in spring and subsequent export as POC early in summer.  

The results of this study reveal a clear seasonal succession in both sub-photic 

POC export and the export ratio, though with no apparent connection between these 

estimates and proximity to sea-ice.  Specifically, considering station BL as an anomaly, 

both POC export and export ratios peak in early summer (KN195-10 and TN250) based 

on cruise average export fluxes and individual export ratios (Fig. 2.11).  Changes in the 

composition of exported material may provide insight into seasonal variations in export 

production and the e-ratio.  Photopigment analysis of exported material reveals that 

diatoms are the major algal class exported during the early summer (Baumann et al.; 

Lomas et al., in preparation).  In addition, during the late spring (TN249) and early 

summer, high concentrations of degradation pigments (pheophytin a + pheophorbide a) 

in trap collected particles indicates the prevalence of sinking senescent cells, or cells that 

have been repackaged as fecal pellets produced by zooplankton grazing of spring primary 

production (Baumann et al.; Lomas et al., in preparation).  Therefore, export during this 

period in the seasonal cycle may be driven by the sinking of the enhanced spring PP 

typically characterized by larger cells (Lomas et al., 2012; Moran et al., 2012) and, 

perhaps, by increased zooplankton grazing of the spring primary producers.  Both of 

these mechanisms may also contribute to the apparent temporal offset between primary 

and export production, leading to the elevated export ratios observed in the summer.             

The observed seasonal shift in associated particle export and e-ratio is consistent 

with the revised OCH, which suggests bottom up control on age-0 walleye pollock 

recruitment during cold years (Hunt et al., 2011).  Recent evidence indicates large spring 
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phytoplankton blooms associated with the MIZ of sea-ice retreat during cold years favor 

the production of large crustacean zooplankton, such as Calanus marshallae and 

euphausiids, a common prey of juvenile and adult pollock, while the abundance of 

smaller copepods is independent of the type of spring bloom (Hunt et al., 2011; Ohashi et 

al., 2013).  Furthermore, in cold years average energy densities in first year pollock are 

33% greater in fall than during warms years, most likely attributed to abundant large 

zooplankton as a primary diet source (Heintz et al., 2013; Ohashi et al., 2013; Siddon et 

al., 2013).  In the absence of large, lipid-rich zooplankton and euphausiids during warm 

years, juvenile and adult pollock change their diet to age-0 pollock.  Therefore, large 

zooplankton and euphausiids exert a control on age-0 pollock success in late summer and 

fall by providing an alternate food source for older pollock year classes.  In addition to 

regulating the flow of carbon to economically important pelagic organisms, large 

zooplankton may facilitate the elevated flux of POC from the photic zone by generating 

large, rapidly sinking fecal pellets in late spring and early summer during cold years.   

The difference in timing between enhanced spring primary production and the 

emergence of large zooplankton may be an important control on the temporal offset 

between primary and export production in this region.  Moreover, it is possible that large 

copepods and euphausiids may be important in the transfer of POC to the benthos and/or 

off the shelf.  It remains uncertain how future changes in seasonal sea-ice extent and 

duration will affect overall NPP, secondary production, POC export, and the export ratio 

in the eastern Bering Sea, which may impact the structure of the ecosystem.  For 

example, based on historical literature, Lomas et al. (2012) suggests that a warmer Bering 

Sea may favor a regime characterized by reduced annual primary production.  Conversely  
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Brown et al. (2011) and Brown and Arrigo (2013) estimate that in years with early sea-

ice retreat there is 40-50% more annual primary production relative to years with late sea-

ice retreat, though these two studies do not comment on autotrophic community 

composition or POC export. 

The temporal offset of primary and export production observed in this study has 

been reported in other high-latitude oceanic systems.  As with the eastern Bering Sea, 

such regions are characterized by extensive spring MIZ blooms, which are responsible 

for a large fraction of annual new primary production.  Table (2.6) provides a summary 

of results from this study and prior studies relating contemporaneous measurements of 

primary and export production in polar systems.  In particular two studies in Antarctic 

waters have characterized the succession of the spring bloom at the ACC Polar Front 

(Rutgers van der Loeff et al., 1997) and over the Ross Sea shelf (Sweeney et al., 2000).  

The spring blooms in these regions are typically comprised of diatoms, although the 

central Ross Sea is marked by a prevalence of haptophytes (Asper and Smith, 1999; 

Dunbar et al., 1998; Rutgers van der Loeff et al., 1997).  These studies report very little 

export production during the onset of the spring bloom. As the bloom progressed, export 

fluxes increased relative to primary production and were attributed to a temporal lag 

between the elevated rates of production and subsequent export as POC.  The enhanced 

export during the latter stages of the bloom may be attributed to the aggregation and 

sinking of cells, and a delay in the development of the grazing community. The temporal 

succession noted in these studies is consistent with the above proposed mechanism that 

results in export ratios >1 in the eastern Bering Sea (Figs. 2.9, 2.11).  Similarly, recent 

studies conducted in the Chukchi Sea (Lepore et al., 2007; Moran et al., 2005) report 



72 
 

seasonal POC export and NPP values within the range of those measured in the eastern 

Bering Sea (Figs. 2.9, 2.10, 2.11; Tables 2.3, 2.5).  Specifically, average spring export 

ratios in the Chukchi are 0.15 and 0.16 for 2002 and 2004, respectively, and increase to 

0.32 and 0.22 by summer for those years along the shelf-edge and shelf break (Table 2.6).  

Though both years exhibited an increase in the average export ratio from spring to 

summer, results from 2002 showed a relative increase in summer POC export relative to 

NPP. Conversely, in 2004 NPP decreased from spring to summer and POC export 

remained the same as spring (Table 2.6). 

b. Significance of carbon export from the Outer shelf to the deep ocean 

Because of the apparent temporal offset between net primary and export 

production and the progressive increase in export efficiency of this system over the 

seasonal cycle, an important question concerns the magnitude of POC that may be 

exported off-shelf.  In this regard, 
234

Th can be used as a tracer to constrain the flux of 

POC from the shelf to the deep ocean during spring and summer.  A water column-

sediment budget of 
234

Th based on in-situ production, decay, sediment burial, and off-

shelf export of 
234

Th for the Outer and Middle domains of the eastern Bering Sea shelf 

indicates that 29% of 
234

Th produced in the water column (equivalent to 1740±3480 dpm 

m
-2

 d
-1

) may be exported from the shelf (Baumann et al., 2013).  This water column-

sediment 
234

Th budget is re-evaluated here using the same data from 2009 and 2010; 

however, in this case only for the Outer shelf.  These results yield a slightly lower 

estimate for off-shelf export of 24% of the total water column production of 
234

Th 

(2160±2700 dpm m
-2

 d
-1

).  Using this off-shelf export flux for 
234

Th and assuming an 

average POC/
234

Th ratio of 11±9 µmol dpm
-1

 (Table 2.3), an upper estimate of the off-
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shelf export of POC (calculated as the product of the off-shelf 
234

Th flux multiplied by 

the POC/
234

Th ratio) is 24±35 mmol C m
-2

 d
-1

(Fig. 2.12). It must be emphasized that this 

is an upper estimate because it is entirely possible that some fraction of this POC is lost 

to grazing and/or preferential remineralization over the shelf.  

By comparison, a recent carbon budget for the Outer Domain developed as part of 

BEST-BSIERP reports that on an annual basis, ~30% (~100 g C m
-2

 y
-1

) of total NPP 

(331 g C m
-2

 y
-1

) is lost due to lateral transport from this shelf region (J. N. Cross et al., in 

review).  Using the same analytical approach described by Cross et al. (in review), we 

extrapolate the daily flux of 24±35 mmol C m
-2

 d
-1

 to an annual off-shelf POC flux of 

66±96 g C m
-2

 y
-1 

(270 d year; no winter export).  Despite the relatively large 

uncertainties in these calculations, off-shelf POC export is within a factor of ~2 of the 

estimated export by lateral transport from this region and ~20% of the total NPP.  An 

additional sink for exported POC is benthic consumption and/or burial of sinking POC 

over the shelf.  However, the measured benthic carbon consumption and estimated 

sediment burial for the southern Outer Domain represents a relatively small sink for 

annual NPP of 7±2% (23±7 g C m
-2

 y
-1

) and 6±3% (19±11 g C m
-2

 y
-1

), respectively (J. 

N. Cross et al., in review).  Taken together, these results imply that the estimated spring 

and summer off-shelf POC flux may represent a significant fraction (~20%) of the 

reported annual NPP for the Outer Domain, and compares reasonably well with the 

annual loss of POC due to lateral transport from this region of the shelf.  

 Daily rates of NPP measured over the Outer shelf during this study period range 

from 17-541 (mean: 304±225) mmol C m
-2

 d
-1

 for spring and 47-246 (mean: 111±98) 

mmol C m
-2

 d
-1

 for summer (Lomas et al., 2012).  Using these seasonal average rates of 



74 
 

NPP during, an off-shelf e-ratio of 0.07 and 0.21 is determined for the Outer Domain 

during spring and summer, respectively; however, it should be noted that these average 

NPP estimates (Lomas et al., 2012) represent only a few measurements for the Outer 

Domain.  Rho and Whitledge (2007) report monthly mean rates of daily primary 

production from 1978-1981 and 1997-2001 using 
14

C and 
13

C incubations, respectively.  

For the growing season of March-June, monthly mean rates of primary production range 

from 45±25 (June) to 139±106 (May) mmol C m
-2

 d
-1

 for the Outer shelf, which results in 

an off-shelf e-ratio of  0.17 and 0.52 for May and June, respectively.  Interestingly, these 

values bracket the fraction of POC production that is annually exported from the Outer 

shelf of 49% based on an earlier assessment of the carbon budget for the eastern Bering 

Sea by Walsh (1988) (Fig. 2.11).  Notwithstanding the estimated uncertainties in the 

present data set and the historical comparison, this analysis suggests that seasonal off-

shelf export of POC from the eastern Bering Sea shelf may represent a significant 

seasonal sink in the carbon budget, as originally postulated by Walsh et al. (1981).  

2.5. Conclusions  

Based on a detailed seasonal field study conducted over three consecutive years in 

the eastern Being Sea, we conclude that temporal decoupling exists between elevated 

rates of spring NPP and subsequent export as POC in early summer, as evidenced by 

measured e-ratios >1 in summer.  While the measured POC export fluxes and estimates 

of the export ratio exhibit a seasonal cycle during 2008-2010, there is no apparent 

connection between these observations and proximity to sea-ice.  Elevated rates of export 

in the summer may be attributed to sinking of the senescent spring bloom and increased 

fecal pellet production, the latter of which is consistent with the early summer emergence 
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of abundant large zooplankton and euphausiids during cold years (Hunt et al., 2011).  In 

relation to the OCH, in the absence of large zooplankton, which is a common feature 

during warm years, juvenile and adult pollock feed on age-0 walleye pollock and thereby 

threaten the success of this economically important higher trophic species.  Thus, an 

implication of this lower trophic carbon study is that during cold years, populations of 

large crustacean zooplankton and euphausiids not only facilitate the transfer of carbon to 

higher trophic animals, but may be important drivers in the enhanced summer export flux 

of POC, either to the benthos or off-shelf.   

A further implication of the apparent temporal offset between primary and export 

production is the potential for a significant off-shelf transfer of POC on a seasonal basis.  

Based on a 
234

Th budget for the Outer shelf, we report an upper estimate for off-shelf 

POC export of 24±35 mmol C m
-2

 d
-1 

in spring and summer for this region.  When 

extrapolated to an annual flux, off-shelf POC export may represent a significant fraction 

(~20%) of the total annual NPP in this region (J. N. Cross et al., in review).  Moreover, 

for the spring and summer seasons off-shelf e-ratios of 0.07 and 0.21 using 

contemporaneous NPP rates and 0.17 and 0.52 based on historical measurements of NPP 

are determined for the Outer shelf (Lomas et al., 2012; Rho and Whitledge, 2007).  The 

high e-ratios suggest that the off-shelf export of spring PP in the eastern Bering Sea, and 

perhaps other Arctic shelf regions, may represent an important seasonal sink for CO2 in 

polar shelf carbon budgets.  Because Arctic waters are predicted to warm in the coming 

years, the timing of physical and biological processes may further alter the carbon cycle 

and impact the seasonal net sink for off-shelf carbon.  
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Table 2.1.  Spring and summer cruises during the 2008-2010 NSF-NPRB BEST- 

 

BSIERP field program.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Season Cruise Vessel Dates

Spring 2008 HLY 0802 USCGC Healy March 29 - May 6, 2008

Summer 2008 HLY 0803 USCGC Healy July 3 - July 31, 2008

Spring 2009 HLY 0902 USCGC Healy March 31 - May 12, 2009

Summer 2009 KN195-10 R/V Knorr June 14 - July 13, 2009

Spring 2010 TN249 R/V Thompson May 9 - June 14, 2010 

Summer 2010 TN 250 R/V Thompson June 16 - July 13, 2010
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Table 2.2.  Sediment trap deployments from 2008-2010. 

 

 

 

 

Deployment Collection

Trap Station Deploy Date Latitude Longitude Latitude Longitude Duration Dist. to Ice Edge

(°N) (°W) (°N) (°W) (d) (km)

Spring 2008

NP15 3/31/2008 56.23 171.07 56.43 171.40 1.15 51.8

P14-4 4/22/2008 57.76 174.91 57.68 174.71 0.96 137.4

ZZ15 4/25/2008 58.59 176.62 58.59 176.60 1.10 64.5

Summer 2008

PIT1 7/6/2008 55.29 167.94 55.22 168.04 1.00

PIT2 7/15/2008 56.24 171.11 56.28 171.24 1.01

PIT3 7/21/2008 58.42 174.47 58.47 174.57 1.04

Spring 2009

ST1 4/23/2009 56.26 171.08 56.33 171.03 0.77 88.1

BL2 4/26/2009 59.51 175.10 59.55 175.15 1.03 52.1

BL15 4/29/2009 59.55 175.16 59.56 175.28 0.44 58.4

BL15-1 4/30/2009 59.57 175.28 59.61 175.32 0.61 52.9

BL21 5/1/2009 59.44 174.22 59.44 174.22 0.23 24.7

Summer 2009

CN17 6/19/2009 55.43 168.06 55.47 168.19 1.06

NP15 6/23/3009 56.05 171.30 55.88 171.22 0.95

P14-7 6/25/2009 58.23 174.57 58.27 174.56 0.99

MN19 7/3/2009 59.90 178.79 59.99 178.80 0.95

Spring 2010

MN19 5/19/2010 59.90 178.91 59.98 178.90 0.93

NZ11.5 5/21/2010 58.21 174.25 58.22 174.35 0.91 38.5

CN17 5/28/2010 55.44 168.06 55.43 168.12 0.90

MN19-2 6/6/2010 59.89 178.90 60.61 178.67 0.91

NP14 6/12/2010 56.26 171.11 56.30 171.15 0.70

Summer 2010

CN17 6/21/2010 55.43 168.06 55.54 165.40 1.02

NP14 6/26/2010 56.26 171.12 56.34 171.47 0.85

P14N-7 6/28/2010 58.26 174.56 58.37 174.81 0.90

MN19 7/4/2010 59.90 178.86 59.98 178.88 0.76
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Table 2.3.  
234

Th fluxes (
234

Thtrap Flux), POC fluxes (POCtrap Flux) and POC/
234

Th 

ratios (POC/
234

Thtrap) determined using sediment traps  together with  
234

Th fluxes from 

234
Th-

238
U disequilibrium (

234
Thsv Flux), 

234
Th-derived POC fluxes (PPOC) and 

PPOC/POCtrap. 

 

 

 

 

 

 

 

Trap Station Depth
234

Thtrap Flux POCtrap Flux POC/
234

Thtrap PTh PPOC PPOC/POCtrap

m (dpm m
-2

 d
-1

) (mmol m
-2

 d
-1

) (mmol dpm
-1

) (dpm m
-2

 d
-1

) (mmol m
-2

 d
-1

)

Spring 2008

NP-15 25 1011 ± 84 1.92 ± 0.13 0.002 404 ± 77 0.76 ± 0.16 0.40 ± 0.09

40 801 ± 69 1.67 ± 0.12 0.002 700 ± 122 1.48 ± 0.30 0.89 ± 0.19

50 1071 ± 88 4.94 ± 0.35 0.005 915 ± 151 4.19 ± 0.79 0.85 ± 0.17

60 1120 ± 90 2.02 ± 0.14 0.002 1069 ± 184 1.91 ± 0.38 0.95 ± 0.20

100 1028 ± 84 4.05 ± 0.28 0.004 1440 ± 333 5.60 ± 1.40 1.38 ± 0.36

P14-4 25 378 ± 38 7.58 ± 0.53 0.020 148 ± 99 2.97 ± 2.03 0.39 ± 0.27

40 483 ± 48 3.03 ± 0.21 0.006 229 ± 162 1.42 ± 1.02 0.47 ± 0.34

50 535 ± 52 5.20 ± 0.36 0.010 277 ± 205 2.70 ± 2.01 0.52 ± 0.39

60 498 ± 48 3.39 ± 0.24 0.007 320 ± 247 2.19 ± 1.71 0.65 ± 0.51

100 457 ± 45 4.22 ± 0.30 0.009 441 ± 421 4.05 ± 3.89 0.96 ± 0.92

ZZ15 25 681 ± 85 8.91 ± 0.62 0.017 787 ± 55 13.75 ± 2.61 1.15 ± 0.23

40 736 ± 70 7.67 ± 0.54 0.010 1163 ± 97 12.17 ± 1.66 1.59 ± 0.24

50 698 ± 66 7.37 ± 0.52 0.011 1258 ± 134 13.33 ± 2.03 1.81 ± 0.30

60 864 ± 80 6.21 ± 0.43 0.007 1297 ± 175 9.31 ± 1.59 1.50 ± 0.28

100 819 ± 77 5.36 ± 0.37 0.007 1466 ± 341 9.67 ± 2.48 1.81 ± 0.48

Summer 2008

PIT1 25 1354 ± 127 36.81 ± 2.58 0.027 801 ± 59 21.76 ± 2.81 0.64 ± 0.09

40 1073 ± 104 22.30 ± 1.56 0.021 1184 ± 104 24.61 ± 3.45 1.19 ± 0.19

50 1066 ± 102 16.30 ± 1.14 0.015 1301 ± 141 19.89 ± 3.04 1.32 ± 0.22

60 887 ± 84 14.43 ± 1.01 0.016 1409 ± 181 22.87 ± 3.82 1.71 ± 0.31

100 1075 ± 103 19.14 ± 1.34 0.018 1677 ± 351 29.80 ± 7.04 1.68 ± 0.41

PIT2 25 1461 ± 131 12.70 ± 0.89 0.009 862 ± 54 7.49 ± 0.89 0.59 ± 0.08

40 1445 ± 129 9.00 ± 0.63 0.006 1064 ± 109 6.62 ± 0.97 0.74 ± 0.12

50 1369 ± 123 8.09 ± 0.57 0.006 1197 ± 148 7.08 ± 1.14 0.88 ± 0.15

60 1363 ± 121 9.57 ± 0.67 0.007 1320 ± 186 9.30 ± 1.62 0.98 ± 0.18

100 1233 ± 114 8.17 ± 0.57 0.007 1717 ± 344 11.42 ± 2.58 1.41 ± 0.33

PIT3 25 1478 ± 130 17.43 ± 1.22 0.012 913 ± 47 10.74 ± 1.13 0.62 ± 0.08

40 2605 ± 208 14.52 ± 1.02 0.006 1559 ± 91 8.68 ± 0.96 0.60 ± 0.08

50 2566 ± 209 14.76 ± 1.03 0.006 1565 ± 126 9.02 ± 1.12 0.61 ± 0.09

60 2703 ± 217 13.44 ± 0.94 0.005 1696 ± 165 8.41 ± 1.15 0.63 ± 0.10

100 1753 ± 152 7.98 ± 0.56 0.005 2391 ± 315 10.91 ± 1.80 1.38 ± 0.25
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Spring 2009

ST1 25 1043 ± 106 9.64 ± 0.68 0.009 352 ± 146 3.26 ± 1.40 0.34 ± 0.15

40 1699 ± 162 10.91 ± 0.76 0.006 601 ± 142 3.86 ± 1.00 0.35 ± 0.09

50 1710 ± 160 10.52 ± 0.74 0.006 781 ± 177 4.81 ± 1.20 0.46 ± 0.12

60 1837 ± 172 10.99 ± 0.77 0.006 927 ± 213 5.55 ± 1.41 0.51 ± 0.13

100 2309 ± 215 11.00 ± 0.77 0.005 1453 ± 362 6.93 ± 1.88 0.63 ± 0.18

BL2 25 2136 ± 186 46.56 ± 3.26 0.022 653 ± 69 14.24 ± 2.08 0.31 ± 0.05

40 947 ± 94 18.57 ± 1.30 0.020 1109 ± 108 21.76 ± 3.22 1.17 ± 0.19

50 941 ± 92 17.07 ± 1.20 0.018 1365 ± 138 24.76 ± 3.70 1.45 ± 0.24

60 1091 ± 105 19.41 ± 1.36 0.018 1578 ± 171 28.08 ± 4.31 1.45 ± 0.24

100 1948 ± 149 28.55 ± 2.00 0.015 2229 ± 317 32.68 ± 5.52 1.14 ± 0.21

BL15 25 1843 ± 185 66.30 ± 4.64 0.036 809 ± 60 29.08 ± 3.92 0.44 ± 0.07

40 923 ± 104 42.53 ± 2.98 0.046 1200 ± 104 55.32 ± 8.33 1.30 ± 0.22

50 999 ± 111 36.46 ± 2.55 0.036 1388 ± 139 50.64 ± 8.00 1.39 ± 0.24

60 1207 ± 131 26.93 ± 1.89 0.022 1551 ± 176 34.61 ± 5.71 1.28 ± 0.23

100 1802 ± 171 40.89 ± 2.86 0.023 2335 ± 316 52.97 ± 9.15 1.30 ± 0.24

BL15-1 25 1502 ± 152 60.71 ± 4.25 0.040 809 ± 60 32.68 ± 4.42 0.54 ± 0.08

40 993 ± 106 34.16 ± 2.39 0.034 1200 ± 104 41.31 ± 6.05 1.21 ± 0.20

50 752 ± 83 28.74 ± 2.01 0.038 1388 ± 139 53.00 ± 8.34 1.84 ± 0.32

60 844 ± 92 22.14 ± 1.55 0.026 1551 ± 176 40.69 ± 6.72 1.84 ± 0.33

100 2138 ± 184 44.22 ± 3.10 0.021 2335 ± 316 48.28 ± 8.12 1.09 ± 0.20

BL21 25 5085 ± 492 272.91 ± 19.10 0.054 816 ± 59 43.81 ± 5.72 0.16 ± 0.02

40 3830 ± 374 86.18 ± 6.03 0.023 1321 ± 96 29.73 ± 3.91 0.34 ± 0.05

50 2939 ± 311 77.64 ± 5.44 0.026 1616 ± 125 42.69 ± 5.98 0.55 ± 0.09

60 3736 ± 372 81.52 ± 5.71 0.022 1884 ± 155 41.11 ± 5.70 0.50 ± 0.08

100 6905 ± 562 108.15 ± 7.57 0.016 3201 ± 257 50.14 ± 6.26 0.46 ± 0.07

Summer 2009

CN17 25 414 ± 61 42.10 ± 2.95 0.102 642 ± 74 65.27 ± 12.99 1.55 ± 0.33

40 677 ± 93 40.27 ± 2.82 0.059 1163 ± 111 69.20 ± 12.52 1.72 ± 0.33

50 955 ± 125 40.64 ± 2.84 0.043 1370 ± 147 58.32 ± 10.67 1.43 ± 0.28

60 1091 ± 147 45.31 ± 3.17 0.042 1535 ± 184 63.74 ± 12.31 1.41 ± 0.29

100 1436 ± 178 38.54 ± 2.70 0.027 2014 ± 341 54.04 ± 11.96 1.40 ± 0.33

NP15 25 596 ± 71 25.31 ± 1.77 0.042 899 ± 56 38.15 ± 5.50 1.51 ± 0.24

40 1072 ± 132 42.34 ± 2.96 0.039 1324 ± 101 52.31 ± 8.00 1.24 ± 0.21

50 1186 ± 142 48.12 ± 3.37 0.041 1549 ± 134 62.82 ± 9.78 1.31 ± 0.22

60 1208 ± 141 39.96 ± 2.80 0.033 1743 ± 170 57.67 ± 9.25 1.44 ± 0.25

100 1613 ± 193 29.60 ± 2.07 0.018 2171 ± 333 39.86 ± 8.00 1.35 ± 0.29

P14-7 25 610 ± 67 20.58 ± 1.44 0.034 1109 ± 41 37.41 ± 4.72 1.82 ± 0.26

40 998 ± 104 25.20 ± 1.76 0.025 1660 ± 77 41.93 ± 5.24 1.66 ± 0.24

50 1111 ± 113 21.89 ± 1.53 0.020 1877 ± 113 36.98 ± 4.75 1.69 ± 0.25

60 1330 ± 135 16.06 ± 1.12 0.012 2036 ± 152 24.58 ± 3.33 1.53 ± 0.23

100 2122 ± 201 23.11 ± 1.62 0.011 2646 ± 309 28.82 ± 4.57 1.25 ± 0.22

MN19 25 117 ± 18 26.57 ± 1.86 0.227 532 ± 98 120.91 ± 29.55 4.55 ± 1.16

40 294 ± 37 32.83 ± 2.30 0.112 740 ± 148 82.63 ± 19.94 2.52 ± 0.63

50 319 ± 38 12.51 ± 0.88 0.039 848 ± 189 33.29 ± 8.60 2.66 ± 0.71

60 291 ± 36 11.70 ± 0.82 0.040 1098 ± 220 44.13 ± 10.61 3.77 ± 0.94

100 1048 ± 106 12.48 ± 0.87 0.012 1656 ± 371 19.73 ± 4.94 1.58 ± 0.41
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Spring 2010

MN19 25 2446 ± 207 73.71 ± 5.16 0.030 1132 ± 35 34.13 ± 3.89 0.46 ± 0.06

40 3153 ± 254 37.84 ± 2.65 0.012 1731 ± 65 20.77 ± 2.35 0.55 ± 0.07

50 3270 ± 262 43.50 ± 3.04 0.013 1941 ± 99 25.83 ± 3.04 0.59 ± 0.08

60 3319 ± 263 30.55 ± 2.14 0.009 2082 ± 136 19.16 ± 2.38 0.63 ± 0.09

100 3790 ± 295 48.07 ± 2.40 0.013 2551 ± 291 32.35 ± 4.75 0.67 ± 0.10

NZ11.5 25 1308 ± 125 19.35 ± 1.35 0.015 988 ± 46 14.61 ± 1.86 0.76 ± 0.11

40 1628 ± 149 23.82 ± 1.19 0.015 1479 ± 84 21.64 ± 2.57 0.91 ± 0.12

50 1479 ± 135 20.29 ± 1.42 0.014 1737 ± 114 24.83 ± 3.16 1.22 ± 0.18

60 2065 ± 185 14.39 ± 1.01 0.007 1980 ± 145 13.80 ± 1.87 0.96 ± 0.15

100 2946 ± 250 11.55 ± 0.81 0.004 2688 ± 284 10.54 ± 1.61 0.91 ± 0.15

CN17 25 2699 ± 227 39.47 ± 2.76 0.015 1004 ± 46 14.68 ± 1.74 0.37 ± 0.05

40 2631 ± 221 29.63 ± 2.07 0.011 1528 ± 83 17.21 ± 2.10 0.58 ± 0.08

50 2101 ± 183 15.27 ± 1.07 0.007 1991 ± 283 14.47 ± 2.62 0.95 ± 0.18

60 1933 ± 171 7.88 ± 0.55 0.004 2007 ± 144 8.18 ± 2.62 1.04 ± 0.34

100 1937 ± 177 2.71 ± 0.19 0.001 2476 ± 302 3.46 ± 1.09 1.28 ± 0.41

MN19-2 25 971 ± 96 15.48 ± 1.08 0.016 832 ± 64 13.27 ± 0.58 0.86 ± 0.07

40 1103 ± 110 33.49 ± 2.34 0.030 1083 ± 125 32.91 ± 5.52 0.98 ± 0.18

50 1122 ± 109 15.75 ± 1.10 0.014 1332 ± 158 18.70 ± 3.15 1.19 ± 0.22

60 998 ± 97 14.96 ± 1.05 0.015 1553 ± 194 23.29 ± 4.02 1.56 ± 0.29

100 1357 ± 129 13.58 ± 0.95 0.010 2111 ± 344 21.12 ± 4.26 1.56 ± 0.33

NP14 25 2642 ± 231 24.62 ± 1.72 0.009 1135 ± 37 10.58 ± 1.23 0.43 ± 0.06

40 2012 ± 184 15.71 ± 1.10 0.008 1590 ± 80 12.41 ± 1.56 0.79 ± 0.11

50 2078 ± 189 2.08 ± 0.10 0.001 1863 ± 111 1.86 ± 0.22 0.90 ± 0.12

60 2030 ± 178 12.50 ± 0.87 0.006 2107 ± 142 12.97 ± 1.70 1.04 ± 0.15

100 2478 ± 223 4.71 ± 0.24 0.002 2695 ± 291 5.12 ± 0.76 1.09 ± 0.17

Summer 2010

CN17 25 403 ± 50 113.45 ± 7.94 0.282 1023 ± 45 288.21 ± 43.03 2.54 ± 0.42

40 688 ± 75 114.97 ± 8.05 0.167 1679 ± 73 280.66 ± 38.29 2.44 ± 0.37

50 1020 ± 99 81.04 ± 5.67 0.079 2093 ± 93 166.33 ± 21.25 2.05 ± 0.30

60 - - - - - -

100 1974 ± 172 69.12 ± 4.84 0.035 3737 ± 219 130.86 ± 16.52 1.89 ± 0.27

NP14 25 809 ± 92 30.64 ± 2.15 0.038 762 ± 63 28.87 ± 4.54 0.94 ± 0.16

40 874 ± 95 26.02 ± 1.82 0.030 1103 ± 113 32.84 ± 5.42 1.26 ± 0.23

50 1055 ± 110 30.50 ± 2.14 0.029 1294 ± 149 37.42 ± 6.37 1.23 ± 0.23

60 1311 ± 128 27.33 ± 1.91 0.021 1456 ± 185 30.34 ± 5.31 1.11 ± 0.21

100 3730 ± 286 39.58 ± 2.77 0.011 2122 ± 327 22.52 ± 4.19 0.57 ± 0.11

P14N-7 25 498 ± 62 21.72 ± 1.52 0.044 909 ± 53 39.61 ± 6.10 1.82 ± 0.31

40 807 ± 89 15.03 ± 1.05 0.019 1392 ± 92 25.93 ± 3.79 1.73 ± 0.28

50 833 ± 89 15.48 ± 1.08 0.019 1717 ± 118 31.9 ± 4.62 2.06 ± 0.33

60 1019 ± 101 17.08 ± 1.20 0.017 1996 ± 148 33.46 ± 4.75 1.96 ± 0.31

100 971 ± 101 19.11 ± 1.34 0.020 2652 ± 296 52.18 ± 8.75 2.73 ± 0.50

MN19 25 692 ± 82 24.89 ± 1.74 0.036 766 ± 65 27.55 ± 4.45 1.11 ± 0.19

40 880 ± 98 15.60 ± 1.09 0.018 1155 ± 111 20.47 ± 3.34 1.31 ± 0.23

50 1111 ± 116 17.26 ± 1.21 0.016 1405 ± 142 21.83 ± 3.53 1.26 ± 0.22

60 1352 ± 134 17.78 ± 1.24 0.013 1595 ± 178 20.98 ± 3.46 1.18 ± 0.21

100 1213 ± 125 11.83 ± 0.83 0.010 2261 ± 327 22.06 ± 4.21 1.86 ± 0.38
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Table 2.4.  Comparison of steady state (SS) and non-steady state (NSS) 
234

Th fluxes 

(dpm m
-2

 d
-1

) at BL (a in Fig. 8) and MN19 (b) for the upper 75 m. 

 

 

 

 

 

 

 

 

 

 

 

Station Δt SS 
234

Th Flux NSS 
234

Th Flux

(d) (dpm m
-2

 d
-1

) (dpm m
-2

 d
-1

)

Bloom Station

1. 4/26/2009  20:52 1834 ± 224

Δt from 1 to 2 0.67 -808 *

2. 4/27/2009  12:59 1783 ± 232

Δt from 2 to 3 2.00 1897 *

3. 4/29/2009  13:01 1790 ± 231

Δt from 3 to 4 7.07 4772 ± 1638

4. 5/6/2009  14:44 2339 ± 196

Total Δt from 1 to 49.74 3899 ± 1033

Average 1937 ± 269

MN19 Revisits

1. 5/19/2010  4:42 2273 ± 194

Δt from 1 to 2 18.94 965 ± 598

2. 6/7/2010  3:14 1644 ± 259

Δt from 2 to 3 27.16 1990 ± 592

3. 7/4/2010  7:07 1833 ± 233

Average 1917 ± 323

*Short Δt results in error larger than flux
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Table 2.5.  Export ratios determined from 
14

C-derived NPP (mmol C m
-2

 d
-1

) and 

234
Th-derived (ThE) and sediment trap (e-ratio) POC fluxes.  Rates of NPP are from 

Lomas et al. (2012). 

 

NPP Station Photic Zone NPP ThE * e -ratio
†

(m) (mmol C m
-2

 d
-1

)

Spring 2008

1-NP15 100 16.49 0.34 0.24

93-ZZ14 26 96.77 0.22 0.19

Summer 2008

21-PIT1 38 67.01 0.36 0.33

Spring 2009

60-ST 40 21.51 0.18 0.51

69-BL1 46 459.40 0.05 0.04

73-BL4 38 455.96 0.05 0.04

85-BL15 38 537.73 0.10 0.08

115-BL21 33 504.53 0.05 0.17

Summer 2009

113-MN19 23 231.58 0.46 0.11

Spring 2010

49-MN19 75 2284.33 0.01 0.01

55-NZ11.5 60 13.30 1.04 1.08

84-CN17 32 226.12 0.08 0.17

163-MN19 52 121.31 0.20 0.13

Summer 2010

53-TD2 33 15.77 1.80 1.65

63-P14N-7 38 11.25 1.65 1.34

100-TD4 46 14.69 1.39 1.18

* 
234

Th profiles integrated to the base of the photic zone and multiplied by 

POC/
234

Th ratio from the nearest depth sediment trap.
†
Sediment trap POC flux from traps closest to the base of the photic zone.
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Table 2.6.  Summary of POC export and export ratios in high latitude systems. 
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Figure 2.1.  Map of the eastern Bering Sea study area.  The black circles indicate the 

stations where drifting sediment traps were deployed.  Several locations are stations in 

which multiple deployments occurred throughout the field program.  Solid and dashed 

lines represent the maximum and minimum ice-edge extent, respectively, during spring 

sampling periods.  Colors: red (2008), blue (2009) and green (2010).  Specific dates are 

listed on the figure.  
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Figure 2.2.  Temperature (°C) – salinity (psu) plots at sediment traps stations.  Points 

are 1 m averaged values from the CTD for the upper 150 m (or surface to bottom if 

shallower than 150 m) of the water column.  Panels: spring 2008 (a), summer 2008 (b), 

spring 2009 (c), summer 2009 (d), spring 20010 (e) and summer 2010 (f).  Data from 

UCAR EOL archive: http://catalog.eol.ucar.edu/best/. 
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Figure 2.3.  Depth profiles of sediment trap 
234

Th fluxes (
234

Thtrap Flux; dpm m
-2

 d
-1

), 

POC fluxes (POCtrap Flux; mmol C m
-2

 d
-1

), POC/
234

Th ratios (POC/
234

Thtrap; µmol dpm
-

1
), 

234
Th fluxes calculated from 

234
Th-

238
U disequilibrium (PTh), and 

234
Th-derived POC 

export (PPOC) for spring (top) and summer (bottom) of 2008.   

 

 

 

 

 

 

 

 



100 
 

 

Figure 2.4.  Depth profiles of sediment trap 
234

Th flux (
234

Thtrap Flux; dpm m
-2

 d
-1

), 

POC flux (POCtrap Flux; mmol C m
-2

 d
-1

), POC/
234

Th ratios (POC/
234

Thtrap; µmol dpm
-1

), 

234
Th fluxes calculated from 

234
Th-

238
U disequilibrium (PTh), and 

234
Th-derived POC 

export  (PPOC) for spring (top) and summer (bottom) of 2009.   
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Figure 2.5.  Depth profiles of sediment trap 
234

Th flux (
234

Thtrap Flux; dpm m
-2

 d
-1

), 

POC flux (POCtrap Flux; mmol C m
-2

 d
-1

), POC/
234

Th ratios (POC/
234

Thtrap; µmol dpm
-1

), 

and 
234

Th fluxes calculated from 
234

Th-
238

U disequilibrium (PTh), and 
234

Th-derived POC 

export (PPOC) for spring (top) and summer (bottom) of 2010.   
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Figure 2.6.  Seasonal comparison of 
234

Th fluxes (dpm m
-2

 d
-1

) at sediment trap 

stations determined by 
234

Th-
238

U disequilibrium (PTh) and by sinking particles collected 

in sediment traps (
234

Thtrap Flux).  Water column profiles integrated to depth of 

corresponding sediment traps (25, 40, 50, 60 and 100 m). Panels: spring 2008 (a), 

summer 2008 (b), spring 2009 (c), summer 2009 (d), spring 20010 (e) and summer 2010 

(f).  Note that the scale varies from season to season.  Two points from spring 2009 (c) 

are off-scale (listed in Table 1.3). 
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Figure 2.7.  Seasonal comparison of POC export (mmol C m
-2

 d
-1

) determined by the 

234
Th method (PPOC) and sediment traps (POCtrap Flux).  Panels: spring 2008 (a), summer 

2008 (b), spring 2009 (c), summer 2009 (d), spring 20010 (e) and summer 2010 (f).  Note 

that the scale varies from season to season.  One point from spring 2009 (c) is off scale 

(listed in Table 1.3). 
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Figure 2.8.  Comparison of steady state (SS; ∂ATh/∂t = 0) and non-steady state (NSS; 

∂ATh/∂t ≠ 0) 
234

Th fluxes at two locations: Bloom station (BL) in 2009 (a) and MN19 in 

2010 (b).  Profiles were integrated to 75 m in both cases.  Water column depths were 

~125 and ~160 m at BL and MN19, respectively. 
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Figure 2.9. Photic zone integrated rate of net primary production (NPP; mmol C m
-2

 d
-

1
) from 

14
C incubations versus POC fluxes derived from the 

234
Th approach (a; ThE) and 

sediment traps (b; e-ratio).  
234

Th integrations extend to the base of the photic zone and 

sediment trap POC fluxes and POC/
234

Th are from the nearest in depth array.  Lines of 

50, 25 and 10% have been drawn for comparison of the data.  
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Figure 2.10.  (a) Average POC fluxes from 40–100 m for individual sediment trap 

deployments in relation to the distance from the ice-edge (<8/10ths ice cover).  The break 

separates near-ice stations from open water stations, which are grouped together.  

Dark/open circles and squares represent spring/summer POCtrap and PPOC average fluxes 

(± 1σ), respectively. (b) Same as (a) but for export ratios calculated according to Eq. 

(2.7).  Dark/open circles and squares represent spring/summer e-ratio and ThE, 

respectively.   
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Figure 2.11.  (a) POC fluxes below 40 m average by cruise and plotted at the ~mid-

point of the expedition.  Dark/open circles and squares represent spring/summer POCtrap 

and PPOC average fluxes (± 1σ), respectively.  (b) Individual export ratios plotted by 

cruise at the ~mid-point of the expedition.  Dark/open circles and squares represent 

spring/summer e-ratio and ThE, respectively.    
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Figure 2.12.  Average spring-summer POC export based on a 
234

Th budget for the Outer 

Domain of the eastern Bering Sea adapted from Baumann et al. (2013)  The off-shelf 

export flux of 
234

Th was converted to POC using a POC/
234

Th ratio of 11 ± 9 µmol dpm
-1

.  

POC export units are mmol C m
-2

 d
-1

.  The vertical arrow represents minimum and 

maximum averages of PPOC for late spring and early summer.  Primary production values 

are from Rho and Whitledge (2007). 
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Manuscript III, titled “Diatom control of the autotrophic community and particle export 
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MANUSCRIPT III 

 

DIATOM CONTROL OF THE AUTOTROPHIC COMMUNITY AND 

PARTICLE EXPORT IN THE EASTERN BERING SEA DURING THE RECENT 

COLD YEARS (2008-2010) 

Abstract  

 During the recent cold years (2008-2010) in the eastern Bering Sea, a total of 79 

water column and 24 sediment trap profiles were collected over the shelf and shelf break 

and analyzed for autotrophic pigment concentrations and elemental (carbon, nitrogen, 

phosphorus) concentrations in suspended and exported organic material.  These results 

are used to establish the seasonal succession of the autotrophic community and the 

control that both phytoplankton and zooplankton exert on export production.  In spring, 

total chlorophyll a concentrations are generally low; however, localized phytoplankton 

blooms near the marginal ice zone (MIZ) lead to elevated spring average chlorophyll a 

concentrations, relative to summer, over the shelf and at the shelf break.  Diatoms 

represent the greatest contribution to total chlorophyll a in spring and summer of cold 

years.  This algal class also represents the majority of total chlorophyll a in particles 

sinking through the water column.  Further, the relatively high proportion of 

pheophorbide a in sediment trap material indicates that sinking of zooplankton fecal 

pellets facilitates the export of particles through the water column.  In cold years, the 

emergence of large diatom blooms in the spring MIZ supports the production of abundant 

large zooplankton.  Large zooplankton are a primary food source for juvenile pelagic 

fishes of economically important species.  Therefore, these cold year specific processes 
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may be essential for the transfer of POC from the surface waters and the success of the 

economically important pelagic fishery.  A consequence of a warmer Bering Sea in the 

coming decades is a reduction in seasonal sea-ice extent and duration.  A change in sea-

ice cover may alter the timing and magnitude of spring primary production and the flow 

of energy through the lower trophic levels.   

3.1. Introduction 

The eastern Bering Sea is characterized by some of the highest annual rates of 

primary production (PP) in the world ocean (Springer et al., 1996).  Such high levels of 

primary production over the broad (~500 km wide) and vast (~10,000 km
2
) shelf support 

one of the largest fisheries in the United States in terms of fish catch revenue (National 

Marine Fisheries Service).  The seasonal extent and duration of sea-ice represents the 

most important constraint on the location, timing, and magnitude of spring primary 

production (Alexander and Niebauer, 1981; Stabeno et al., 2010) and the composition of 

the autotrophic community (Schandelmeier and Alexander, 1981).  The lowest trophic 

levels of the ecosystem exhibits marked variability in distribution and abundance in 

response to changes in sea-ice in this region (e.g., Napp and Hunt, 2001; Stabeno et al., 

2012a; Stabeno et al., 2012b).  Because the physical regime exerts a strong control on the 

spring bloom and carbon flow through phytoplankton and zooplankton (Lovvorn et al., 

2005), changes in seasonal sea-ice extent and duration are predicted to affect the 

distribution and abundance of higher trophic level and economically important organisms 

in both the southeastern and northern regions of the shelf (Cooper et al., 2013; Grebmeier 

et al., 2006b; Hunt et al., 2002).   
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 During cold years characterized by late sea-ice retreat in the eastern Bering Sea, 

spring phytoplankton production is often dominated by intense diatom blooms 

(Schandelmeier and Alexander, 1981).  These diatom blooms are initiated by increasing 

stability of the upper water column that is induced by stratification from melt water 

released from the retreating ice edge in the adjacent waters, which is more commonly 

known as the marginal ice zone (MIZ) (Alexander and Niebauer, 1981; Schandelmeier 

and Alexander, 1981).  More than half of the annual primary production occurs between 

May and July in this region, a seasonal pulse that is largely controlled by the annual 

retreat of sea-ice (Brown et al., 2011).  Ice-edge blooms are terminated by nutrient 

limitation (Niebauer et al., 1995), with the phytoplankton community shifting from 

diatoms to smaller cells, including flagellates, dinoflagellates, and haptophytes (namely 

Phaeocystis pouchetti) (Fujiki et al., 2009; Lomas et al., 2012; Moran et al., 2012; 

Suzuki et al., 2002b).  Important questions relate to how newly formed organic carbon 

from primary production is removed from the surface waters, and whether exported 

phytoplankton material reflects the actively growing population in the photic zone.  Both 

of these questions bear on carbon linkages between the lower trophic levels and the 

pelagic and benthic ecosystems, and the control that the physical regime may have on 

economically significant animals.   

The presence of the intense MIZ spring bloom during mid-spring, a characteristic 

of cold years and late sea-ice retreat, largely supports the production of abundant large 

copepods and euphausiids that are less prevalent during warm years (Hunt et al., 2011).  

Large zooplankton constitute a lipid rich prey source for young age classes of walleye 

pollock (Theragra chalcogramma), and the presence of these secondary producers is 
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necessary for the success of the age-0 year class (Heintz et al., 2013; Hunt et al., 2011; 

Siddon et al., 2013) and other pelagic consumers.  Primary production may be exported 

to deeper waters, to the benthos as particulate organic carbon by the sinking of intact 

algal cells (Cooper et al., 2012; Grebmeier et al., 2006a), or subject to heterotrophic 

grazing and fecal pellet production by zooplankton (Juul-Pedersen et al., 2006; 

Wassmann et al., 2006).  The sinking flux of fecal pellets represents an important 

pathway for the transfer of POC from the surface waters in high-latitude shelf systems 

(Gleiber et al., 2012; Juul-Pedersen et al., 2010).  Therefore, in cold years abundant large 

zooplankton not only support young age classes of economically important animals, they 

exert an important control on the export flux of particulate organic carbon (POC) from 

the upper water column.   

This study investigates the seasonal succession of the autotrophic community and 

the controls that both phytoplankton and zooplankton have on the export of particulate 

organic matter (POM) during the recent cold years (2008-2010) in the eastern Bering Sea. 

The specific objectives of this study are to (1) characterize the seasonal evolution of the 

autotrophic community over the shelf and shelf break using total chlorophyll a (TChl a) 

concentrations and algal class specific indicator pigment ratios (pigment:TChl a), and (2) 

determine the essential nutrient composition of the POM sinking from the photic zone 

along the shelf break and the influence that zooplankton exert on particle export using 

degraded chlorophyll a (Σpheopigments) and C:N:P flux ratios.  These objectives address 

two central hypotheses.  First, particulate matter export is composed primarily of diatoms 

in spring and summer, despite the autotrophic community shifting from a diatom 

dominant system in spring to a more heterogeneous phytoplankton assemblage in 
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summer.  Second, during such cold years, the presence of zooplankton fecal pellets in 

exported material implies that large secondary producers are an important component of 

the particle export flux.   

3.2. Methods 

Sediment trap and water column samples were collected in the eastern Bering Sea 

during spring and summer cruises from 2008-2010 as part of the BEST-BSIERP (Bering 

Ecosystem Study-Bering Sea Integrated Ecosystem Research Project) field program 

(Table 3.1).  For the purpose of this study, the regions of the Bering Sea Exclusive 

Economic Zone of the United States (marine regions of the Bering Sea; 

http://bsierp.nprb.org/) are grouped into seven geographically larger Regions (Fig. 3.1; 

Table 3.2).  Additionally, data were further binned into spring (HLY0802, HLY0902, and 

TN249) and summer (HLY0803, KN195-10, and TN250) seasons. 

a. Upper water column POC, PON, POP, bSi, and autotrophic pigments 

Concentrations of suspended POC, particulate organic nitrogen (PON) and 

particulate organic phosphorus (POP) in the water column were measured in 0.2 L 

samples collected from the CTD-rosette.  Samples were vacuum filtered onto pre-

combusted (4 h at 450°C) 25 mm glass fiber filters (GF/F; 0.7 µm nominal pore size).  

Biogenic silica (bSi) concentrations were measured in 0.25 L samples and vacuum 

filtered onto 47 mm, 0.4 µm polycarbonate membrane filters.  Total (>0.7µm) water 

column pigments were measured in 1 L samples and vacuum filtered onto a 47 mm GF/F. 

All samples were frozen prior to analysis.  POC, PON, POP, and bSi samples were frozen 

at -20°C until analysis and pigment samples were stored at -80°C.  
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b. Sediment trap sampling 

Surface tethered, floating particle trap arrays (KC Denmark, Silkeborg, Denmark) 

were deployed near the shelf break (Fig. 3.1; z = >150 m; n = 3 in spring and n= 3 in 

summer of 2008; n = 5 in spring and n = 4 in summer of 2009 and 2010).  Trap 

deployments were ~24 h in duration at trap depths of 25, 40, 50, 60, and 100 m (4 trap 

tubes per depth; 72 mm mouth diameter x 450 mm tube length).  Sediment traps were 

filled with non-poisoned, 0.4 µm filtered brine (S = ~85 ‰) prior to deployment to 

isolate swimmers and suspended particulate matter from passively sinking material.  

After recovery, the upper seawater layer was siphoned down to the seawater-brine 

interface, which was indicated by the discontinuity between the layers. Two trap tubes 

were vacuum filtered onto a pre-combusted 25 mm GF/F.  A stainless steel arc-punch 

was used to generate a 10 mm diameter subsample from each GF/F, which was then 

frozen at -20°C.  The subsample was used for analysis of POC and PON, with the 

remaining filter material analyzed for 
234

Th (Moran et al., 2012).  One full sediment trap 

per depth was used for HPLC pigment analysis of sinking material.  For both 2010 

cruises, a single trap was split into subsamples for POP and bSi analysis. 

c. Analysis of POC, PON, POP, and bSi 

The subsamples for POC and PON were dried at 60°C in a drying oven, fumed in 

a desiccator containing concentrated hydrochloric acid for 24 h to oxidize inorganic 

carbon, and dried again for 24h at 60°C.  POC and PON were measured using a Carlo 

Erba-440 Elemental Analyzer (Exeter Analytical, Inc., North Chelmsford, MA, USA) 

(Pike and Moran, 1997).  Field blanks were prepared for each set of samples by filtering 
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200 mL of filtered brine. An average blank for each cruise was subtracted from the gross 

POC and PON concentrations. 

Concentrations of POP in both sediment trap and water column samples were 

measured using the ash-hydrolysis method, followed by orthophosphate measurement 

using the molybdate technique (Lomas et al., 2013; Lomas et al., 2010; Solorzano and 

Sharp, 1980).   

Biogenic silica samples were analyzed by NaOH digestion (Brzezinski and 

Nelson, 1995; Paasche, 1973); Teflon tubes were used for these analyses to achieve low 

and consistent blanks (Krause et al., 2009).  The optical absorption of each sample was 

measured at 810 nm following the procedure of Strickland and Parsons (1968).  

Lithogenic silica (e.g., mineral dust, clays and sands) was not measured.  

d. Pigment analysis by HPLC 

Autotrophic pigment analysis of sediment trap and water column samples was 

conducted at the University of Maryland Horn Point Laboratory by HPLC analysis (Van 

Heukelem and Thomas, 2001).  Briefly, samples were extracted using HPLC grade (90-

100%) acetone and chilled while sonicated (model 450, Branson Ultrasonics, Danbury, 

CT, USA).  The extracts were clarified using a 0.45 µm, PTFE HPLC syringe cartridge 

filter fitted with a GF/F pre-filter (Scientific Resources Inc., Eatontown, NJ, USA).  

Samples were analyzed using a Hewlett-Packard (HP, Waldbronn, Germany) series 1100 

HPLC equipped with a 900 µL syringe head autoinjector.  Pigments were identified 

based on retention times of pure pigment standards or pigments isolated from algal 

monocultures. 
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e. Pigment analysis by CHEMTAX 

The abundance of specific phytoplankton groups was estimated from indicator 

pigment concentrations relative to total chlorophyll a (TChl a) using the CHEMTAX 

program (Mackey et al., 1996).  The initial matrix was adapted from two previous studies 

that characterized relative phytoplankton abundance in the subarctic North Pacific (Fujiki 

et al., 2009; Suzuki et al., 2002a).  They determined pigment:TChl a ratios for the seed 

matrix by averaging minimum and maximum values listed in Mackey et al., (1996), 

except for diatoms in which they applied a fucoxanthin:TChl a ratio of 0.75 based on 

observations from a  previous study (Obayashi et al., 2001).  In this study, the same 

initial matrix was used for all water column data collected within the photic zone and for 

pigment fluxes.  Based on a limited number of previous studies that relate accessory 

pigments to algal functional group in the eastern Bering Sea (Fujiki et al., 2009; Suzuki 

et al., 2002a), this study focuses on three phytoplankton groups (diatoms, chlorophytes 

and prymnesiophytes).  However, the CHEMTAX program provides relative abundances 

for eight algal classes (pelagophytes, prasinophytes, cryptophytes, dinoflagellates, and 

cyanobacteria).   

 For most algal classes, the pigment:chlorophyll a ratios used in the initial matrix 

generally agree to within a factor of ~2 with those calculated in the final matrix for both 

the water column and trap CHEMTAX analyses (Appendix A.1).  By comparison, the 

final matrix ratios for the water column and sediment trap data fall within range of values 

reported by Mackey et al., (1996) for the Southern Ocean.  A sensitivity analysis was 

conducted using fucoxanthin to chlorophyll a ratios of 0.35 and 1.1 for diatoms as a 

means to evaluate the consistency of both the final matrix and the autotrophic 
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percentages of total chlorophyll a for the water column samples (Appendix A.2).  For the 

major pigments and autotrophic groups, the final matrix pigment ratios for the three 

analyses (diatom fuco:TChl a ratios of 0.35, 0.75, and 1.1) are generally ~99% similar.  

The final autotrophic percentages for the individual samples are also ~99% for the three 

analyses with varying fuco:TChl a ratios for diatoms. 

 

3.3. Results 

a. Mixed layer hydrography  

For the geographic regions assigned in this study, the average mixed layer depth 

(MLD) is greatest in spring (Table 3.3).  The mixed layer is also consistently colder 

during spring, while average salinity values are indistinguishable between spring and 

summer (Table 3.3).  The warmer surface water temperatures lead to a more buoyant 

upper water column in summer.  Dissolved oxygen (DO) average concentrations in the 

mixed layer are also greater in spring. The northern and coastal Regions (1, 3 and 4) are 

undersaturated with respect to dissolved oxygen in spring, most likely due to the recent 

ice cover.  Region 2, encompassing the northern outer shelf and St. Matthew Island, is 

slightly oversaturated (Table 3.3), which may be attributed to the enhanced primary 

production observed during HLY0902 in this area.   Average percent ice cover at a given 

station is estimated as the seven day mean ice cover for the period of time preceding the 

sampling day.   For the shelf Regions (1-5), percent ice cover, averaged by cruise, ranges 

from open water conditions (no ice) to 69±48% ice cover.   For the spring cruises, many 

of the ice covered stations were occupied during HLY0802 (2008) and HLY0902 (2009), 

while most were ice free during TN249 (2010) as this cruise occurred in late spring.   
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b. Water column pigment and POM concentrations 

Average concentrations of total chlorophyll a (TChl a) are greater in spring for all 

Regions.  The exception is Region 3, which may be the result of limited sampling and 

~98% ice cover during the collection of one of the two profiles in this Region (Tables 

3.3, 3.4).  The highest TChl a concentrations were consistently observed in Region 2 

during the spring, where an intense  marginal ice zone (MIZ) bloom occurred in 2009 

(HLY0902) (Lomas et al., 2012). 

 Approximately 35% of all TChl a measurements exceed a concentration of 1 µg 

L
-1

,
 
and more than 90% of those occurred during spring.  At only four stations during this 

field program does the depth averaged concentration of TChl a exceed 5 µg L
-1 

(Fig. 

3.2a), which signifies a bloom condition.  These stations are BL (Region 2), which was 

sampled multiple times during HLY0902, MN19 (Region 6), NP14 (Region 5), and 

HBR1 (Region 4) during TN249. These bloom stations are responsible for the overall 

high TChl a averages in these regions (Table 3.4).  The most abundant indicator pigment 

associated with the chlorophyll a measurements is fucoxanthin, which is a primary 

marker of diatoms.  As with TChl a concentrations, the spatial distribution of fucoxanthin 

demonstrates substantial variability, ranging from negligible to greater than 15 µg L
-1

.  

Fucoxanthin concentrations that exceed 1 µg L
-1 

are generally associated with the spring 

bloom stations (Fig. 3.2b).  Fucoxanthin concentrations are highly correlated with TChl a 

concentrations (m = 0.401x; r
2 

= 0.978; p<0.001, Fig. 3.3a).  There is greater variability 

in the relationship at stations exhibiting lower TChl a concentrations, particularly in 

summer. No relationship exists between TChl a and either total chlorophyll b (TChl b, 

marker of chlorophytes), or 19’-Hexanoyloxyfucoxanthin (19’-Hex, marker of 
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prymnesiophytes); however, both of these accessory pigments are present at relatively 

higher concentrations when TChl a is low.  Total pheopigment (Σpheopigments) 

concentrations for particles in the upper water column are low, typically present at levels 

an order of magnitude less than TChl a.   

   On a station by station basis, average upper water column POC and PON range 

from less than 7 to greater than 120 µmol C L
-1

 and 1 to 11 µmol N L
-1

 during spring 

(Table 3.5).  During summer, depth averaged POC and PON concentrations are 

considerably lower ranging from 6 to 17 µmol C L
-1 

and 1 to 3 µmol N L
-1

 (Table 3.5).  

In both spring and summer of 2010, average POP concentrations are less than 0.7 µmol 

L
-1

 at all stations.  Included with data from 2010, average bSi concentrations from the 

bloom station (BL) in 2009 are compared with the 2010 values (Table 3.5).  Highest 

average bSi concentrations are consistently observed at stations with bloom condition 

levels of TChl a and elevated POC and PON concentrations.   

c. Pigment and particulate organic matter fluxes       

The geographic patterns observed in the magnitude of the TChl a flux (mg m
-2

 d
-

1
) are similar to that of pigments in the overlying water column (Table 3.6). Specifically, 

the highest TChl a fluxes are associated with geographic areas of the highest chlorophyll 

a standing stock in the spring, such as those observed at station BL during HLY0902 and 

MN19 during TN249.  While fluxes of TChl a at times exceed 120 mg m
-2

 d
-1

 at bloom 

stations, vertical fluxes over the upper 100 m are generally less than 2 mg m
-2

 d
-1

 at non-

bloom stations in both spring and summer.  As with water column accessory pigments, 

fucoxanthin is the most abundant indicator pigment in vertically exported particulate 
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material, and this export flux is greatest at stations exhibiting elevated water column 

concentrations and vertical fluxes of TChl a (Table 3.6).  The linear regression of 

fucoxanthin and TChl a in sinking particles (m = 0.259x; r
2 

= 0.863; p<0.001, Fig. 3.3b) 

demonstrates a lower slope than the water column suspended particles.  However, the 

mean ratios (mean: 0.31 for water column particles; 0.35 for sinking particles) are 

statistically similar, which suggests that material sinking from the photic zone is similar 

in composition to the autotrophic community with respect to fucoxanthin containing 

POM (Fig. 3.3b).  The presence of TChl b and 19’Hex is occasionally detected in settling 

material, though typically to a lesser extent relative to the overlying water column (Table 

3.6).   The ratio of Σpheopigments to TChl a in sinking particles is usually greater than 

one, indicating that material sinking through the water column is at least partly degraded 

due to the presence of senescent cells or zooplankton fecal pellets (Table 3.6).  

 Sediment trap POC fluxes determined during this field campaign have been 

presented elsewhere (Baumann et al., in press; Moran et al., 2012).  A subset of values 

used for the present analysis is listed in Table 3.6. Briefly, POC fluxes along the shelf 

break and in open water in the MIZ during early spring (HLY0802 and NP15 during 

HLY0902) are relatively low, while those over the outer shelf at station BL represent 

some of the highest fluxes measured in this study.  POC fluxes increase in late spring 

(TN249) and early summer (KN195-10 and TN250), and decrease by mid-summer 

(HLY0803).  The seasonal succession of the PON flux shows a similar temporal 

progression as POC export, with low early spring fluxes that increase throughout the 

growing season (Table 3.6).  POP fluxes are typically <1 mmol m
-2

 d
-1

, with the higher 

fluxes associated with the higher rates of POC and PON export (Table 3.6).  No 
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correlation exists between the flux of bSi with either POC or TChl a export; however, the 

highest bSi fluxes occur at bloom stations BL (HLY0902) and MN19 (TN249). 

3.4. Discussion 

a. Characterization of the autotrophic community and vertical export  

The observation of a predominantly diatom autotrophic community in the spring 

and in the MIZ is consistent with previous studies of the ice-edge population (Moran et 

al., 2012; Schandelmeier and Alexander, 1981) and the presence of abundant resting 

stage cells in the underlying sediment in this region (Tsukazaki et al., 2013).  In 

particular, in spring, diatoms consistently represent the greatest contribution to TChl a 

over the shelf and along the shelf break.  Over the shelf, diatoms represent a range of 

71.5±10.8 % to 95.7±2.1% (regional mean ± 1σ) of the total chlorophyll a concentration 

for Regions 1-5.  The contribution of diatoms in the northern (Region 6) and southern 

(Region 7) regions of the shelf break are on average 80.0±18.6% and 65.8±26.5% of the 

TChl a concentration, respectively (Table 3.7).  Throughout the shelf and shelf break, 

other algal classes, namely prymnesiophytes, chlorophytes and cryptophytes, are present, 

but to a much lesser degree relative to diatoms in spring (Table 3.7).  Smaller cells, such 

as cyanobacteria, also contribute minimally to the autotrophic community in this 

subarctic shelf system.   

 A seasonal shift in the autotrophic community is also apparent from the water 

column pigment distribution..  In spring, the autotrophic community is dominated by 

diatoms and characterized by localized blooms and high levels of standing stock 

chlorophyll a, whereas in summer the shelf and shelf break exhibit lower TChl a levels 
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and a heterogeneous phytoplankton assemblage.  Specifically, as the concentration of 

TChl a markedly decreases in the upper water column in summer, the contribution of 

diatoms to total chlorophyll a also decreases throughout the system.  Algal classes 

present in relatively smaller proportions during spring are key contributors to total 

chlorophyll a in early summer (Table 3.7).  In particular, prymnesiophytes emerge along 

the shelf break comprising 54.5±32.3% and 27.1±23.2% of the total chlorophyll a in 

Regions 6 and 7, respectively.  Together with prymnesiophytes, chlorophytes and 

cryptophytes also become important contributors to the total chlorophyll a in the shelf 

break regions and over the shelf as well (Table 3.7).   

Diatoms are primarily responsible for the elevated levels of total chlorophyll a 

(e.g., >5 µg L
-1

) in the spring and particularly at the bloom stations (Fig. 3.4a), while 

chlorophytes and prymnesiophytes are typically not present during this period (Fig. 

3.4b,c).  Interestingly, at lower concentrations of TChl a (e.g., <1 µg L
-1

), in both spring 

and summer, diatoms frequently still represent the major autotrophic contribution (Figs. 

3.4a, 3.5a,b, 3.6).  However, when the relative contribution of diatoms is low during the 

summer, chlorophytes and prymnesiophytes dominate the autotrophic community (Figs. 

3.4b,c, 3.5a,b).  Key differences with respect to the autotrophic community are evident in 

the early summer autotrophic communities between 2009 (KN195-10) and 2010 

(TN250).  In particular, a number of stations in 2009, especially in Regions 6 and 7, are 

primarily characterized by high contributions of prymnesiophytes to the total chlorophyll 

a (Figs. 3.5b, 3.6; Table 3.7).  By contrast in 2010, the autotrophic community is 

primarily composed of diatoms and chlorophytes, while there is little contribution from 

prymnesiophytes at these same stations along the shelf break (Fig. 3.5c).  It is not known 
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what factors may be responsible for the differences in the phytoplankton community 

structure between 2009 and 2010 because sampling dates, average mixed layer depths, 

dissolved oxygen concentrations, upper water column temperature, and TChl a 

concentrations show little interannual variability.  

  As with the geographic distribution of the phytoplankton assemblage in the water 

column, diatoms are also typically the dominant algal class exported in sinking particles 

from the photic zone along the shelf break (Figs. 3.6, 3.7).  On a station by station basis, 

there is little vertical variability in the percent composition of the major algal classes. 

However, both TChl a and POC fluxes vary substantially over the upper 100 m (Table 

3.8), suggesting non-preferential consumption and remineralization of sinking particles.  

At three locations, all of which are in Region 6 (PIT1-HLY0803) or the southern reach of 

Region 7 (T1-HLY0802 and NP15-HLY0902), the average composition of the vertical 

flux is less than 50% diatoms.  The relatively low diatom contribution at stations T1 and 

NP15 are associated with low TChl a and POC fluxes (Table 3.8).  Interestingly, the 

average POC flux at PIT1 is the highest observed in summer 2008, whereas the average 

TChl a flux at that station is the lowest observed during the entire field program.  At 

these stations, other algal classes, namely chlorophytes, pelagophytes, and 

dinoflagellates, represent the largest fraction of the sinking phytoplankton assemblage.  

Apart from these few stations, the observed shift in the autotrophic community in the 

water column is not reflected in the phytoplankton composition of exported particles 

(Fig. 3.7; Tables 3.7, 3.8).  For all other stations in Regions 2 (BL), 6 and 7, diatoms 

represent at least 70% of the vertical flux of TChl a.  This indicates that, regardless of the 
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total chlorophyll a and POC flux from the photic zone, diatoms are the primary algal 

class exported from the photic zone (Fig. 3.7).  

   The magnitude and seasonal progression of POC export flux, combined with 

differences in the ratio of pheopigments to TChl a between the upper water column and 

in sinking particles, provides important insights into the mechanisms controlling the 

export of diatoms from the photic zone.  With regard to the export flux of POC along the 

shelf break, this region exhibits a progressive increase in the magnitude of particle flux 

from early spring to late spring and early summer, as noted above (Table 3.6).  Based on 

the observation that the POC flux increases from spring to summer, and that the export 

population is primarily diatoms (Fig. 3.7), it has been suggested that export in early 

summer may be characterized by the sinking of spring and MIZ primary production in 

this system (Baumann et al., in press).  A temporal lag in the export of spring primary 

production as POC in summer has also been observed in other high-latitude systems 

(Asper and Smith, 1999; Dunbar et al., 1998; Rutgers van der Loeff et al., 1997; Thibault 

et al., 1999).  The average ratio of the sum of pheopigments to total chlorophyll a 

(Σpheo:TChl a) is >1 in material exported below the photic zone in late spring and early 

summer (Table 3.6; 50 m sediment traps).  In contrast, the Σpheo:TChl a ratio in 

phytoplankton derived from integrated pheopigment and total chlorophyll a stocks in the 

photic zone averages ~0.1.  The low ratio of the autotrophic population indicates an 

actively growing phytoplankton community (Bianchi et al., 2002).  In comparison to 

phytoplankton in the photic zone, the Σpheo:TChl a ratio in sinking particles at 50 m is 

~8-75 times greater than in the overlying water column on a station by station basis 

(Tables 3.4, 3.6).  That the Σpheo:TChl a ratio in sinking particles is much greater than 
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those in the upper water column indicates that sinking POM is composed of substantially 

degraded chlorophyll a and consists of a combination of senescent cells and zooplankton 

fecal pellets. 

 Pheophorbide a, the degradation pigment resulting from metazoan digestion, 

represents ~80% of the total pheopigment concentration in sinking particles (Table 3.6).  

This observation suggests that zooplankton grazing of spring primary production and 

subsequent sinking of fecal pellets is an important control on the vertical export of POC 

along the shelf break in this region.  While microzooplankton abundance and grazing 

pressure has been reported to be largely unaffected by climate variability (Sherr et al., 

2013; Stabeno et al., 2012b), cold years in the eastern Bering Sea, such as during this 

study, favor the production of abundant large crustacean zooplankton and euphausiids 

(Hunt et al., 2011).   Therefore, the export of fecal pellets produced by abundant large 

zooplankton may be an important mechanism controlling the vertical flux of POC from 

the photic zone along the shelf break in late spring and early summer during cold years.  

 Assuming that pheopigment fluxes are attributed to zooplankton fecal pellets, and 

that fucoxanthin fluxes are representative of sinking diatoms, inferences in preferential 

export of zooplankton fecal pellets and diatoms can be made from the differential loss 

rates of these pigments compared to those for POC and TChl a.  Sinking loss rates for 

these exported constituents are estimated as the ratio of the measured flux at 50 m 

compared to the standing stock in the water column (Thibault et al., 1999).  At all trap 

locations, the loss of fucoxanthin and Σpheopigments from the photic zone represents a 

larger fraction of the standing stock than for either POC for TChl a (Table 3.9).  

Specifically, fucoxanthin and Σpheopigment loss rates range from 14-83% and 5-100% 
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per day, respectively.  By comparison, loss rates of TChl a and POC are less than ~7% d
-1

 

(Table 3.9).  Because fucoxanthin and pheopigment loss rates greatly exceed those for 

POC and TChl a, it follows that diatoms are preferentially transported to depth via 

zooplankton grazing and subsequent sinking of fecal pellets.  It must be noted that 

because the autotrophic community is actively growing, pheopigment concentrations are 

low, relative to chlorophyll a, which leads to relatively large pheopigment loss rates.   

However, the implication of the high loss rates is that almost all degraded chlorophyll a is 

being rapidly removed by the sinking of zooplankton fecal pellets.  

 The POC associated with TChl a and pheopigment export can be estimated using 

generalized POC:TChl a and POC:pheopigment ratios of 50:1 and 15:1 (Thibault et al., 

1999).  A POC:pheopigment ratio of 15:1 assumes a 70% carbon assimilation efficiency 

by zooplankton (Thibault et al., 1999). POC fluxes associated with TChl a and 

pheopigment export range from 5-100% and 1.6-44% of the total POC flux at 50 m, 

respectively (Table 3.9).  The total carbon export by zooplankton is likely underestimated 

because respiration and excretion below the photic zone during daily vertical migration 

by mesozooplankton represents a significant component of the total C flux (Hannides et 

al., 2009).  In addition, ~20% of the POC associated with fecal pellets is likely released 

below the photic zone or below the deepest sediment trap in this study (Durbin et al., 

1995).  These results support the hypothesis that the export of zooplankton fecal pellets 

represents an important component of POC export along the shelf break in this region. 

b. Elemental composition of phytoplankton and zooplankton controlled export  
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As described above, autotrophic biomass in the eastern Bering Sea during this 

study is composed predominantly of diatoms, and export of this algal group is largely 

controlled by sinking zooplankton fecal pellets in spring and early summer.  A 

quantitative understanding of the C:P and N:P ratio of phytoplankton in the photic zone 

and in sinking particles can be used to make further inferences into the degree of 

zooplankton assimilation of these macronutrients, the efficiency of zooplankton 

controlled particle export, and the potential stoichiometric ratios resulting from 

respiration and inorganic and organic excretion by zooplankton (e.g., Martiny et al., 

2013).       

On average, phytoplankton in the photic zone are rich in phosphorus relative to 

both carbon and nitrogen (Fig. 3.8; Table 3.5).  For the eastern Bering Sea in 2010, the 

average particulate C:P and N:P ratio in the upper water column was 87±44 and 12±5.1, 

respectively, both of which are less than the Redfield stochiometric relationship of 

106:16:1 for C:N:P.  Collectively, 86% and 92% of all measurements from 2010 exhibit 

ratios lower than Redfield for C:P and N:P, respectively (Fig. 3.8);  note that C:P and N:P 

ratios of phytoplankton are plotted against absolute and relative fucoxanthin (i.e., 

fuco:TChl a) concentrations.  While stoichiometric ratios of phytoplankton cannot be 

differentiated between spring and summer, the C:P and N:P ratio of suspended particles is 

invariant with the concentration of fucoxanthin and the fuco:TChl a ratio, suggesting that 

C:P and N:P do not vary with changing diatom biomass or autotrophic community 

composition (Fig. 3.8).  In addition, the collective average ratios of C:P and N:P for 

spring-early summer phytoplankton are below the global mean and consistent with fast 

growing cells in nutrient-rich, high-latitude systems (Martiny et al., 2013).  Moreover, 
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suspended particles in the Bering Sea are enriched in phosphorus by a factor of ~2, 

relative to POC compared to phytoplankton in warm, nutrient depleted oligotrophic 

systems (Hannides et al., 2009).   

The limited number of elevated N:P ratios at relatively low fucoxanthin 

concentrations (Fig. 8a).  Each of these elevated N:P ratios are greater than 20 and 

observed in different profiles collected during TN250.  These few values are not 

consistent with other ratios from the same profiles and may not be representative of the 

water column at those locations.  However, elevated C:P ratios are present at higher 

fucoxanthin concentrations and fuco:TChl a ratios (Fig. 3.8c,d).  These high C:P ratios 

are found consistently at three stations (TN249; NZ4.5, HBR1 and 70M26), all of which 

are in Region 4, near the ice-edge, and have low surface dissolved PO4
3-

 concentrations 

(EOL data archive: http://catalog.eol.ucar.edu/best_tn249/).  The relatively high biomass 

at these stations is characterized by an autotrophic composition consisting of >90% 

diatoms and high concentrations of TChl a and bSi, similar to the range values measured 

at the bloom station (BL) in spring 2009.  Thus, the diatom community at these stations 

may be attributed to a post-bloom population growing under phosphorus limitation 

(Arrigo, 2005). 

 Elemental ratios in sinking particles are substantially higher than those of water 

column suspended particles, suggesting either carbon enrichment or phosphorus depletion 

of sinking zooplankton fecal pellets, relative to suspended particles.  Sinking particles 

(40-100 m traps) exhibit average C:P ratios of 107±71 (TN249) and 156±67 (TN250) and 

average N:P ratios of 24±14 (TN249) and 14±8 (TN250) for spring and summer in 2010 

(Fig. 3.9; Table 3.6).   By comparison, fuco:TChl a ratios are similar in both 
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phytoplankton and trap fluxes.  For all six cruises, the average C:N of sinking particles 

was 7.3±2.8 (Table 3.6). The average C:N ratio is consistent with the Redfield ratio of 

7.8, which indicates that phosphorus depletion is likely responsible for the high C:P and 

N:P values of sinking particles along the shelf break.  An alternative explanation for the 

elevated C:P and N:P ratios is that the processes of inorganic and organic excretion by 

zooplankton may release relatively high proportions of phosphorus relative to carbon and 

nitrogen.     

Zooplankton in this region demonstrate elemental stoichiometric homeostasis, 

meaning that their C:N:P stoichiometry does not vary as a function of food source.  

Weighted average C:P and N:P ratios of three subarctic copepods (Calanus glacialis, 

Eucalanus sp., and Metridia pacifica) and an euphausiid (Thysanoessa raschii) are 

slightly higher (C:P of 176 ±52 and N:P of 35±9; Lomas et al. unpublished data) than in 

the passively sinking particles these organisms produce.  Though the standard deviations 

of these data sets are large, that the average C:P and N:P of these consumers is greater 

than the averages of both passively sinking particles and the phytoplankton in the water 

column suggests that the processes of excretion and respiration by zooplankton are likely 

enriched in phosphorus relative to carbon and nitrogen.   

The C:P and N:P stoichiometry of the combined processes of respiration and 

inorganic/organic excretion by zooplankton may be important for both nutrient 

regeneration in the photic zone and export of carbon and nutrients to depth by vertical 

migration.  These ratios may be estimated using a mass balance of the C:P and N:P of 

four pools: phytoplankton food source (P), zooplankton (Z), particle flux (F), and the 

combined processes of respiration and inorganic/organic excretion (A).  The C:P and N:P 
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ratios of respiration and excretion are calculated independently because carbon must be 

assimilated at a higher rate than nitrogen based on the high C:P of zooplankton in this 

region.  Also, the C:P and N:P ratios of these  pools are inversed (i.e., 1/C:P = P:C and 

1/N:P = P:N) because A is calculated with respect to carbon and nitrogen, respectively.  

The mass balance equation for these nutrient pools is:    

                                                                     (3.1) 

where P, Z, F, and A are the P:C or P:N ratios of the four pools listed above, ae is the 

carbon or nitrogen assimilation efficiency by zooplankton, and f1 and f2 are the fractions 

of carbon or nitrogen available (not assimilated) for particle export or for the combined 

processes of respiration and inorganic/organic excretion by zooplankton, respectively.  

Values of P, Z and F are 87±44, 175±52, and 129±72 for C:P, respectively, and 12±5, 

35±9, and 21±14 for N:P, respectively (Tables 3.5, 3.6).   With regard to estimating the 

C:P ratio for A, a range of zooplankton assimilation efficiencies (ae = 0.6 to 0.8; 

Hannides et al., 2009) and f1 values (f1 = 0.1 to 0.3) are used, while the relationship 1-ae-

f1 is substituted for f2.  For cases in which ae, f1, f2 sum to 1, the average C:P ratio of A is 

21±9.7 (n = 89).  The same approach is used for estimating the N:P ratio of A; however, a 

range of  lower assimilation efficiencies are used because a large fraction of the ingested 

nitrogen is likely excreted immediately (E. Durbin, pers. comm.).  For the estimation of 

the N:P ratio, assimilation efficiencies range from 0.3 to 0.5 and f1 ranges from 0.1 to 0.3.  

These ranges of ae and f1 result in f2 values that are generally larger than those used for 

the C:P ratio estimation, consistent with a larger fraction of excreted nitrogen.  Solving 

equation 1 using these parameters yields an average N:P ratio of 6.3±1.1 (n = 121) for A.  

Notwithstanding that the average C:P and N:P ratios calculated for A have large 
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associated uncertainties that include large standard deviations of the P, Z, and F pools, 

and that the ae, f1, and f2 values are estimates from literature, these relatively low imputed 

ratios for A suggest that the processes of respiration and excretion are important 

components of both nutrient cycles in the upper water column and export of carbon and 

nutrients to depth.  

3.5. Conclusions 

During cold years in the eastern Bering Sea, the autotrophic community is 

dominated by diatoms in the spring and in the MIZ.  Associated with a high percent 

composition of diatoms in spring is a greater frequency of elevated rates of net primary 

production and high levels of TChl a and POC in the photic zone.  Despite a wide range 

in the magnitude of particle flux along the shelf break, the diatom algal class represents 

the majority of the exported total chlorophyll a.  Because pheophorbide a is present in 

large abundance in sinking particulate matter, often at levels much greater than TChl a, 

the vertical transfer of diatoms is likely mediated by enhanced zooplankton grazing of 

MIZ primary production and subsequent export of fecal pellets in late spring and early 

summer.  Daily loss rates of fucoxanthin and pheopigments from the photic zone exceed 

those for both TChl a and POC, supporting the notion that sinking of zooplankton fecal 

pellets exerts an important control on particle export from the surface waters along the 

shelf break.   

This study provides new evidence of the relationship between the phytoplankton 

community and zooplankton mediated export during cold years in the eastern Bering Sea.  

This region is predicted to warm in the coming decades (Overland and Wang, 2007; 
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Wang et al., 2012), resulting in a reduction in maximum sea-ice extent and earlier retreat 

in spring.  As a consequence, a warmer physical regime may restructure the spring 

autotrophic community to a population consisting of fewer diatoms, similar to summer 

conditions in this region. Total annual primary production may be greater in years 

characterized by early sea-ice retreat (Brown and Arrigo, 2013; Brown et al., 2011); 

however, warm years are unfavorable for large zooplankton (Hunt et al., 2011).  A 

reduction in large zooplankton may threaten the success of economically important 

animals.  Associated with this climate driven shift of the autotrophic and zooplankton 

community may be a reduction in POC transfer to deeper waters and greater organic 

carbon retention within the water column.  A further implication of a warming Bering 

Sea is the magnitude to which this subarctic shelf system sequesters carbon to the deep 

ocean, which may decrease in the future (Bauman et al., in press). 
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Table 3.1.  List of cruises and number of sampling profiles collected during the 2008-

2010 NSF-NPRB BEST-BSIERP field program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cruise Season Vessel Dates No. Water Col. No. Traps

HLY0802 Spring 2008 USCGC Healy March 29 - May 6, 2008 10 3

HLY0803 Summer 2008 USCGC Healy July 3 - July 31, 2008 - 3

HLY0902 Spring 2009 USCGC Healy March 31 - May 12, 2009 18 5

KN195-10 Summer 2009 R/V Knorr June 14 - July 13, 2009 18 4

TN249 Spring 2010 R/V Thompson May 9 - June 14, 2010 18 5

TN250 Summer 2010 R/V Thompson June 16 - July 13, 2010 13 4
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Table 3.2.  BSIERP domains grouped into 7 larger geographic regions as illustrated in 

Fig. 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Grouped Region BSIERP Domain

1 10 North Middle Shelf

11 North Inner Shelf

12 St. Lawrence

2 8 North Outer Shelf

9 St. Matthews

3 2 South Inner Shelf

7 Midnorth Inner Shelf

4 5 Pribilofs

6 Midnorth Middle Shelf

5 1 AK Peninsula

3 South Middle Shelf

4 South Outher Shelf

6 15 Off-shelf North

7 16 Off-shelf Southeast
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Table 3.3. Regional averages of mixed layer depth (MLD, m), depth of the photic 

zone (1% PAR, m), and percent ice at stations within each region (% Ice Cover) together 

with  MLD averages of temperature (°C), salinity (‰), density (σt, Densit – 1000 kg m
-3

), 

dissolved oxygen (DO, µmol kg
-1

), and dissolved oxygen saturation from equilibrium 

(ΔDO Saturation, µmol kg
-1

).   
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Table 3.4. Regional averages of primary pigment concentrations (µg L
-1

) in the upper 

water column: total chlorophyll a (TChl a), fucoxanthin, total chlorophyll b (TChl b), 

19’-Hexanoyloxyfucoxanthin, (19’-Hex), Pheophytin a, and Pheophorbide a.    
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Table 3.5. Station averages of upper water column particulate organic carbon (POC), 

particulate organic nitrogen (PON), particulate organic phosphorus (POP), and biogenic 

silica (bSi).  All units in µmol L
-1

.   
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Station No. Station ID n POC PON POP bSi

µmol L
-1

µmol L
-1

µmol L
-1

µmol L
-1

HLY0902

85 BL15 7 8.20 ± 3.30

90 BL20 7 11.75 ± 1.51

115 BL21 7 18.47 ± 6.83

TN249

7 NP12 3 1.96 ± 0.37

24 Z15 3 70.06 ± 18.53 5.88 ± 2.53 10.85 ± 3.30

39 IE1 3 39.40 ± 13.40 3.74 ± 1.45 6.79 ± 4.72

49 MN19 4 62.05 ± 60.89 5.35 ± 4.67 16.03 ± 4.79

50 MN19 3 126.60 ± 7.15 10.89 ± 0.47

55 NZ11.5 7 6.58 ± 2.86 1.09 ± 0.42 0.08 ± 0.02 1.27 ± 0.38

66 NZ4.5 3 56.40 ± 6.44 3.19 ± 0.54 0.34 ± 0.03 9.02 ± 0.68

71 HBR1 3 100.32 ± 56.58 7.27 ± 3.57 0.69 ± 0.14 16.03 ± 3.61

81 70M26 3 21.93 ± 2.16 1.25 ± 0.19 0.17 ± 0.03 5.48 ± 0.91

87 CN17 7 20.84 ± 10.17 1.43 ± 5.29 0.35 ± 0.12 2.93 ± 1.37

99 70M4 3 46.11 ± 33.62 5.81 ± 4.10 6.49 ± 0.51

124 70M29 3 9.97 ± 4.45 1.75 ± 0.32 0.13 ± 0.01 1.89 ± 0.92

147 70M52 3 15.17 ± 14.70 2.63 ± 2.42 0.20 ± 0.14 2.95 ± 2.72

156 SL12 3 10.96 ± 11.61 1.31 ± 1.56 0.17 ± 0.12 1.82 ± 1.50

163 MN19 7 29.38 ± 14.83 3.16 ± 2.30 0.24 ± 0.17 1.80 ± 0.80

175 MN8 3 11.15 ± 2.00 1.54 ± 0.23 0.21 ± 0.13 1.49 ± 0.73

179 NP3 7 11.43 ± 3.04 1.96 ± 0.45 0.16 ± 0.06 1.58 ± 0.95

TN250

8 UAP5 4 12.93 ± 1.62 1.82 ± 0.20 0.22 ± 0.05 1.55 ± 0.06

20 CN8 3 12.05 ± 5.24 2.55 ± 1.08 0.14 ± 0.05 2.07 ± 1.91

25 CN17 7 11.57 ± 1.43 2.39 ± 0.23 0.26 ± 0.10 1.02 ± 0.14

32 CNN4 3 15.26 ± 1.88 2.36 ± 0.76 0.21 ± 0.03 1.69 ± 1.16

47 NP9 3 16.94 ± 5.41 1.79 ± 1.58 0.14 ± 0.01 1.79 ± 1.76

53 TD2 6 13.60 ± 4.18 1.82 ± 0.67 0.19 ± 0.05 0.90 ± 0.28

67 TR3 7 11.20 ± 3.17 1.12 ± 0.28 0.11 ± 0.02 0.33 ± 0.06

82 MN1 3 14.57 ± 0.57 1.98 ± 0.20 0.27 ± 0.04 5.55 ± 0.99

97 MN16 3 14.24 ± 10.70 2.02 ± 1.79 0.26 ± 0.31 1.22 ± 1.73

103 TR4 6 11.65 ± 4.13 2.08 ± 1.06 0.17 ± 0.08 1.11 ± 0.33

122 ML3 3 5.52 ± 13.72 1.94 ± 1.46 0.14 ± 0.08 1.68 ± 2.15

145 BN3 4 6.82 ± 2.39 1.33 ± 0.80 0.08 ± 0.01 0.29 ± 0.06

167 70M39 3 8.52 ± 0.93 1.16 ± 0.24 0.07 ± 0.02 0.88 ± 1.05

197 70M9 3 12.27 ± 2.45 2.16 ± 0.90 0.17 ± 0.09 1.25 ± 1.53
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Table 3.6. Sediment trap profiles of primary pigment (mg m
-2

 d
-1

) and particulate 

fluxes (mmol m
-2

 d
-1

): total chlorophyll a (TChl a), fucoxanthin , Pheophytin a, 

Pheophorbide a, particulate organic carbon (POC), particulate organic nitrogen (PON), 

particulate organic phosphorus (POP), and biogenic silica (bSi).   
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Station/Depth TChl a Fucoxanthin Pheophytin a Pheophorbide a POC PON POP bSi

m mg m
-2

 d
-1

mg m
-2

 d
-1

mg m
-2

 d
-1

mg m
-2

 d
-1

mmol m
-2

 d
-1

mmol m
-2

 d
-1

mmol m
-2

 d
-1

mmol m
-2

 d
-1

HLY0802

T1-25 0.194 0.038 0.006 0.026 1.92 0.49

40 0.226 0.053 0.007 0.039 1.67 0.43

50 0.224 0.059 0.009 0.047 4.94 0.72

60 0.227 0.071 0.011 0.052 2.02 0.49

100 0.138 0.045 0.007 0.039 4.05 0.72

T2-25 0.221 0.034 0.005 0.020 7.58 1.35

40 0.097 0.062 0.002 0.014 3.03 0.69

50 0.227 0.024 0.007 0.030 5.20 1.01

60 0.128 0.033 0.002 0.014 3.39 0.69

100 0.151 0.052 0.012 0.025 4.22 0.75

T3-25 2.832 1.007 0.369 3.997 8.91 0.60

40 1.980 1.042 0.155 2.583 7.67 1.35

50 3.145 0.671 0.390 6.086 7.37 1.29

60 1.150 0.388 0.105 1.489 6.21 1.18

100 1.436 0.509 0.099 2.988 5.36 1.15

HLY0803

PIT1-40 0.015 0.009 0.153 0.194 22.30 3.04

60 0.019 0.009 0.134 0.172 14.43 2.07

100 0.015 0.009 0.102 0.173 19.14 2.48

PIT2-40 0.039 0.010 0.010 0.091 9.00 1.27

60 0.027 0.012 0.009 0.084 9.57 1.21

100 0.021 0.011 0.010 0.065 8.17 0.95

PIT3-40 0.079 0.033 0.026 0.592 14.52 2.02

60 0.047 0.026 0.030 0.458 13.44 1.93

100 0.031 0.019 0.018 0.183 7.98 0.96

HLY0902

NP15-25 0.165 0.041 0.009 0.058 9.64 1.47

50 0.182 0.074 0.014 0.099 10.52 1.52

100 0.163 0.110 0.020 0.105 11.00 1.19

BL2-25 36.886 13.205 0.723 3.911 46.56 7.91

50 7.570 2.795 0.247 1.788 17.07 2.55

100 4.275 1.671 0.152 1.149 28.55 3.65

BL15-25 113.536 22.407 1.532 7.405 66.30 10.92 9.58

50 17.558 4.182 0.255 1.548 36.46 5.19 6.86

100 24.258 5.242 0.354 1.833 40.89 5.46 10.27

BL15-1-25 44.857 8.589 0.912 6.026 60.71 10.85 26.03

50 16.382 3.262 0.324 2.374 28.74 4.93 7.32

100 10.536 2.217 0.185 1.475 44.22 6.19 45.35

B:21-25 72.354 30.664 1.071 13.837 272.91 40.32

50 7.761 3.214 0.202 1.778 77.64 9.64

100 5.954 2.513 0.214 1.656 108.15 13.92
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KN195-10

CN17-25 0.543 0.086 0.067 0.343 42.10 4.32

50 0.623 0.104 0.103 0.858 40.64 4.19

100 0.383 0.059 0.062 0.564 38.54 3.74

NP15-25 0.147 0.063 0.052 0.714 25.31 3.75

50 0.200 0.142 0.992 48.12 5.00

100 0.229 0.065 0.132 1.071 29.60 2.45

P14-7-25 0.326 0.101 0.155 0.939 20.58 2.97

50 0.314 0.103 0.283 1.332 21.89 2.57

100 0.295 0.136 0.224 2.140 23.11 2.65

TN249

MN19-25 3.024 2.169 1.576 9.565 73.71 8.97 46.21

50 4.512 1.886 1.929 7.941 43.50 6.16 34.27

100 3.052 1.239 1.561 4.933 48.07 5.91 42.18

NZ11.5-25 0.525 0.175 0.171 0.607 19.35 3.76 0.12 18.81

50 0.529 0.157 0.283 0.714 20.29 3.96 0.12 17.72

100 0.518 0.186 0.309 0.583 11.55 2.74 0.11 24.36

CN17-25 1.951 0.729 0.156 7.360 39.47 6.48 0.22 18.53

50 0.566 0.183 0.077 5.251 15.27 2.79 0.23 11.81

100 0.464 0.162 0.073 3.067 2.71 1.17 0.24 9.95

MN19-2-25 0.704 0.289 0.143 1.243 15.48 2.49 0.36 10.55

50 0.669 0.208 0.200 1.578 15.75 2.95 0.11 8.49

100 0.416 0.119 0.158 1.187 13.58 2.61 0.07 8.28

NP14-25 1.403 0.522 0.146 16.700 24.62 5.40 0.11 42.41

50 0.917 0.326 0.090 10.941 2.08 1.62 0.16 26.07

100 0.466 0.184 0.063 7.844 4.71 3.03 0.06 21.17

TN250

CN17-25 0.524 0.112 0.065 0.210 113.45 14.15 0.54 7.14

50 1.158 0.166 0.275 0.785 81.04 8.98 0.43 11.36

100 1.713 0.287 0.426 1.810 69.12 7.38 0.42 18.40

NP14-25 0.283 0.084 0.066 0.182 30.64 3.01 0.19 6.25

50 0.365 0.095 0.089 0.488 30.50 2.22 0.22 6.75

100 0.707 0.189 0.217 1.784 39.58 3.12 0.07 21.56

P14-7-25 0.099 0.031 0.020 0.075 21.72 2.47 0.04 1.69

50 0.066 0.021 0.041 0.166 15.48 1.41 0.15 3.65

100 0.141 0.032 0.055 0.176 19.11 1.09 0.10 1.82

MN19-25 0.167 0.070 0.088 0.065 24.89 2.89 0.15 4.38

50 0.209 0.174 0.394 0.002 17.26 1.83 0.03 5.04

100 0.250 0.150 0.889 0.001 11.83 1.00 0.23 5.98
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Table 3.7. Regional averages of percent contribution by algal group to total 

chlorophyll a.  
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Table 3.8. Algal group percent contribution to the flux of total chlorophyll a through 

the water column. 

 

Station/Depth Diatoms Prymnesiophytes Pelagophytes Chlorophytes Prasinophytes Cryptophytes Dinoflagellates Cyanobacteria

m

HLY0802

T1-25 57.17 1.66 8.40 22.48 5.58 0.23 4.48 0

40 51.94 1.87 8.83 28.19 1.00 0.19 7.97 0

50 43.37 1.97 9.12 28.01 8.85 0.16 8.52 0

60 44.04 2.35 10.95 28.89 1.70 0.15 11.91 0

100 45.89 2.42 10.60 26.68 1.95 0.17 12.28 0

T2-25 72.03 1.68 4.01 13.24 0.93 0.22 7.61 0.29

40 74.32 1.14 2.06 8.15 1.09 0.07 12.44 0.73

50 75.26 1.60 3.56 8.46 0.50 0.14 10.49 0

60 75.07 1.59 3.40 8.67 0.74 0.15 10.38 0

100 72.90 1.50 4.30 9.05 0.59 0.07 11.59 0

T3-25 97.02 0.05 0.29 1.61 0.36 0.03 0.51 0.13

40 97.13 0.04 0.63 0.60 0.48 0.02 0.82 0.27

50 97.70 0.07 0.00 1.63 0.38 0.02 0.10 0.10

60 97.39 0.07 0.02 1.63 0.43 0.02 0.19 0.24

100 97.66 0.09 0.02 1.52 0.37 0.02 0.14 0.17

HLY0803

PIT1-40 39.98 4.84 1.58 45.31 3.23 0.44 2.84 1.78

60 38.21 3.81 1.35 50.86 2.10 0.45 2.40 0.83

100 44.52 5.80 1.65 37.76 4.08 0.51 3.09 2.60

PIT2-40 70.44 1.36 0.67 24.23 0.99 0.90 1.12 0.29

60 72.35 2.14 0.88 19.84 2.61 1.10 0.97 0.12

100 72.51 2.59 1.10 19.35 1.80 0.61 1.35 0.70

PIT3-40 81.53 2.48 0.31 13.76 0 1.91 0 0

60 83.47 2.27 0.47 11.69 0 2.09 0 0

100 82.18 4.04 0.71 8.74 0 1.17 0.06 3.10

HLY0902

NP15-25 53.60 1.90 7.66 24.83 0.73 0.20 11.08 0

50 27.27 4.21 13.81 26.64 1.09 0.30 26.67 0

100 0 6.33 20.07 26.43 1.42 0.26 45.50 0

BL2-25 98.67 0 0.01 0.07 0.42 0.00 0.44 0.40

50 98.91 0 0.01 0.06 0.42 0.01 0.14 0.45

100 98.44 0 0.02 0.04 0.34 0.02 0.09 1.05

BL15-25 98.84 0 0.02 0.07 0.39 0 0.39 0.29

50 98.44 0 0.02 0.09 0.49 0 0.49 0.47

100 98.23 0 0.02 0.09 0.54 0.01 0.51 0.60

BL15-1-25 98.60 0 0.01 0.07 0.40 0 0.49 0.42

50 98.65 0 0.02 0.06 0.41 0 0.47 0.38

100 98.80 0 0.03 0.04 0.34 0.01 0.35 0.43

B:21-25 99.54 0 0.03 0.01 0.17 0 0.13 0.12

50 99.51 0 0.03 0.01 0.15 0 0.21 0.09

100 98.98 0 0.03 0 0.46 0 0.22 0.30
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KN195-10

CN17-25 92.55 0.48 0.52 3.20 0.68 0.03 0.48 2.07

50 95.48 0.37 0.00 0.21 0.74 0.01 0.43 2.78

100 94.69 0.36 0.00 0.20 0.71 0.03 0.40 3.60

NP15-25 89.43 1.81 0.21 0.17 0.55 0.07 0.28 7.47

50 83.89 1.51 2.87 0 4.18 0.09 0.32 7.13

100 82.13 1.83 3.77 0 4.98 0.01 0.11 7.17

P14-7-25 83.37 4.59 2.77 1.90 0.77 0.05 1.28 5.26

50 84.87 3.25 3.29 0 0 0.06 0 8.53

100 76.44 2.50 6.53 1.08 0 0.07 0 13.39

TN249

MN19-25 99.51 0.00 0.12 0.04 0.14 0.00 0.07 0.11

50 99.60 0.00 0.03 0.01 0.17 0.00 0.01 0.19

100 99.96 0.02 0.02 0.00 0.00 0.00 0.00 0

NZ11.5-25 91.06 1.30 0.03 3.61 0.67 0.05 2.02 1.25

50 93.10 0.71 0.02 4.08 0.50 0.05 1.36 0.19

100 95.51 0.48 0.04 1.99 0.36 0.03 1.38 0.21

CN17-25 97.64 0.11 0.01 2.18 0 0.05 0 0

50 95.88 0.24 0.01 3.73 0.03 0.11 0 0

100 95.79 0.24 0.02 3.74 0.09 0.11 0 0

MN19-2-25 97.21 0.11 0.04 2.06 0.23 0.03 0.15 0.16

50 96.59 0.24 0.00 2.15 0.20 0.04 0.65 0.12

100 96.45 0.53 0.00 2.95 0.00 0.07 0 0

NP14-25 99.76 0.17 0 0 0 0.07 0 0

50 98.80 0.20 0.00 0.96 0 0.05 0 0

100 99.23 0.18 0.01 0.52 0 0.06 0 0

TN250

CN17-25 97.37 0.10 0 0.17 0.70 0.02 0.93 0.70

50 91.28 0.19 0 0.17 0.62 0.00 0.81 6.94

100 98.40 0.29 0 0.12 0.44 0.00 0.26 0.49

NP14-25 92.22 0.40 1.01 3.58 0.28 0.09 1.10 1.33

50 86.20 0.60 2.01 6.92 0.16 0.15 1.34 2.63

100 92.93 0.84 5.32 0 0.72 0.11 0.03 0.05

P14-7-25 67.17 4.55 6.62 13.72 0.89 0.24 4.23 2.58

50 47.74 4.11 6.26 20.21 0 0.67 3.83 17.19

100 68.43 7.23 7.33 9.91 0.67 0.19 0.37 5.86

MN19-25 84.07 0.66 1.17 6.97 1.08 0.09 2.66 3.30

50 89.78 0.73 1.82 3.50 0.26 0.08 0.98 2.86

100 92.89 0.49 1.29 2.72 0.22 0.05 0.09 2.24
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Table 3.9. Photic zone stock of particulate organic carbon (POC, mmol m
-2

), total 

chlorophyll a (TChl a, mg m
-2

), pheopigment sum (Σpheopigment, Pheophytin a + 

Pheophorbide a, mg m
-2

), and fucoxanthin (mg m
-2

) together with daily loss rates and 

fraction of total POC flux associated with TChl a (F Chl a (C)) and pheopigments (F 

pheo (C)).  
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Figure 3.1.  Map of the eastern Bering Sea study area.  Thin lines delineate the regions 

designated during the BEST-BSIERP program.  Bold lines represent the seven larger 

geographic regions used for data interpretation in this study.  Listed in Table 2 are the 

BEST-BSIERP regions grouped in this study. White (spring) and black (summer) 

symbols represent water column sampling locations during the field study (see Table 1 

for cruise information).  Cross symbols are sediment trap deployment locations.  
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Figure 3.2.  Depth profiles of total chlorophyll a and fucoxanthin (µg L
-1

).  Open 

(spring) and shaded (summer) symbols correspond to specific cruises listed on the figure. 
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Figure 3.3.  Relationship between water column concentrations (a) and sediment trap 

fluxes (b) of total chlorophyll a and fucoxanthin (a: µg L
-1

, b: mg m
-2

 d
-1

). 
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Figure 3.4.  Percent contribution to total ambient chlorophyll a (a-c) and total 

chlorophyll a flux (d-f) for diatoms (a and d), chlorophytes (b and e), and 

prymnesiophytes (c and f). 
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Figure 3.5.  Chlorophyte and prymnesiophyte contribution versus diatom contribution 

to total chlorophyll a (a: chlorophytes, b: prymnesiophytes) and total chlorophyll a flux 

(d: chlorophytes, e: prymnesiophytes). Prymnesiophyte contribution versus chlorophyte 

contribution for water column total chlorophyll a (c) and total chlorophyll a flux (f).  
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Figure 3.6.  Average algal class contribution to autotrophic community (%) by region 

for spring (a) and summer (b).  Thin bars represent average total chlorophyll a (black) 

and fucoxanthin (grey) concentrations, and correspond to the right vertical axes. 
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Figure 3.7.  Phytoplankton composition (%) of the vertical flux of POM by cruise.  

Thin bars represent average total chlorophyll a (black), fucoxanthin (grey), and 

Σpheopigments, and correspond to the right vertical axes.   
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Figure 3.8.  N:P (a and b) and C:P (c and d) of suspended POM plotted against 

fucoxanthin concentration (µg L
-1

; a and c) and the ratio of fucoxanthin to total 

chlorophyll a (b and d).  Reference lines of 16:1 and 106:1 are drawn for N:P and C:P, 

respectively, for comparison of the data.  
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Figure 3.9.  N:P (a and b) and C:P (c and d) of the vertical flux of POM plotted against 

fucoxanthin flux (mg m
-2 

d
-1

; a and c) and the flux ratio of fucoxanthin to total 

chlorophyll a (b and d).  Reference lines of 16:1 and 106:1 are drawn for N:P and C:P, 

respectively, for comparison of the data.  
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APPENDIX 

A: SUPPORTING TABLES FOR THE CHEMTAX ANALYSIS PRESENTED IN 

MANUSCRIPT III 

 Appendix A includes two tables, which present the output matrices of the 

CHEMTAX analysis used for the identification of algal group percent contribution to 

total chlorophyll a in Manuscript III.  In Table A.1, the initial input matrix used for the 

analysis (a) is listed together with the final matrices for the analysis of water column 

pigments (b) and pigments in settling particles collected by sediment traps (c).  In Table 

A.2, the final matrices of the CHEMTAX analysis performed using varying input ratios 

of fucoxanthin to total chlorophyll a on the water column pigment data.  The 

fucoxanthin:total chlorophyll a input ratios were: 0.75 (a), 0.35 (b), and 1.1 (c).  

Abbreviations in Tables A.1 and A.2 are as follows: Peri; Peridinin, 19’-But; 19’-

Butanoyloxyfucoxanthin, Fuco; Fucoxanthin, 19’-Hex; 19’-Hexanoyloxyfucoxanthin, 

Neo; Neoxanthin, Violax; Violaxanthin, Diadinox; Diadinoxanthin, Allox; Alloxanthin, 

Prasinox; Prasinoxanthin, Zeax; Zeaxanthin, Chl b; Total Chlorophyll b, and Chl a; Total 

Chlorophyll a.   
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Appendix A.1.  Initial pigment:chlorophyl a matrix (a) used for the CHEMTAX 

analysis together with final matrices for the water column (b) and sediment trap (c) 

analyses.   

 

 

 

 

Peri 19'-But Fuco 19'-Hex Neo Violax Diadinox Allox Prasinox Zeax Chl b Chl a

a. Initial Matrix

Diatoms 0 0 0.377 0 0 0 0.121 0 0 0 0 0.503

Prymnesiophytes 0 0 0 0.547 0 0 0.063 0 0 0 0 0.391

Pelagophytes 0 0.311 0.207 0 0 0 0.147 0 0 0 0 0.334

Chlorophytes 0 0 0 0 0.028 0.021 0 0 0 0.043 0.199 0.709

Parasinophytes 0 0 0 0 0.045 0.045 0 0 0.146 0 0.360 0.405

Cryptophytes 0 0 0 0 0 0 0 0.123 0 0 0 0.877

Dinoflagellates 0.346 0 0 0 0 0 0 0 0 0 0 0.654

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.248 0 0.752

b. Final Matrix - Water Column

Diatoms 0 0 0.287 0 0 0 0.021 0 0 0 0 0.692

Prymnesiophytes 0 0 0 0.287 0 0 0.001 0 0 0 0 0.712

Pelagophytes 0 0.269 0.221 0 0 0 0.195 0 0 0 0 0.315

Chlorophytes 0 0 0 0 0.024 0.017 0 0 0 0.010 0.383 0.566

Parasinophytes 0 0 0 0 0.077 0.085 0 0 0.302 0 0.080 0.457

Cryptophytes 0 0 0 0 0 0 0 0.238 0 0 0 0.762

Dinoflagellates 0.421 0 0 0 0 0 0 0 0 0 0 0.579

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.567 0 0.433

c. Final Matrix - Sediment Trap

Diatoms 0 0 0.255 0 0 0 0.030 0 0 0 0 0.714

Prymnesiophytes 0 0 0 0.692 0 0 0.123 0 0 0 0 0.185

Pelagophytes 0 0.285 0.379 0 0 0 0.029 0 0 0 0 0.307

Chlorophytes 0 0 0 0 0.026 0.017 0 0 0 0.011 0.370 0.576

Parasinophytes 0 0 0 0 0.066 0.066 0 0 0.216 0 0.053 0.599

Cryptophytes 0 0 0 0 0 0 0 0.939 0 0 0 0.061

Dinoflagellates 0.346 0 0 0 0 0 0 0 0 0 0 0.654

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.268 0 0.732
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Appendix A.2.  Final matrices in the CHEMTAX analysis of the water column 

samples using fucoxanthin:chlorophyl a ratios of 0.75 (a), 0.35 (b), and 1.1 (c). 

 

 

 

 

 

Peri 19'-But Fuco 19'-Hex Neo Violax Diadinox Allox Prasinox Zeax Chl b Chl a

a. Fuco:Chl a : 0.75

Diatoms 0 0 0.287 0 0 0 0.021 0 0 0 0 0.692

Prymnesiophytes 0 0 0 0.287 0 0 0.001 0 0 0 0 0.712

Pelagophytes 0 0.269 0.221 0 0 0 0.195 0 0 0 0 0.315

Chlorophytes 0 0 0 0 0.024 0.017 0 0 0 0.010 0.383 0.566

Parasinophytes 0 0 0 0 0.077 0.085 0 0 0.302 0 0.080 0.457

Cryptophytes 0 0 0 0 0 0 0 0.238 0 0 0 0.762

Dinoflagellates 0.421 0 0 0 0 0 0 0 0 0 0 0.579

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.567 0 0.433

b. Fuco:Chl a : 0.35

Diatoms 0 0 0.288 0 0 0 0.021 0 0 0 0 0.691

Prymnesiophytes 0 0 0 0.287 0 0 0.002 0 0 0 0 0.711

Pelagophytes 0 0.283 0.197 0 0 0 0.203 0 0 0 0 0.317

Chlorophytes 0 0 0 0 0.025 0.017 0 0 0 0.011 0.387 0.561

Parasinophytes 0 0 0 0 0.074 0.081 0 0 0.296 0 0.075 0.474

Cryptophytes 0 0 0 0 0 0 0 0.238 0 0 0 0.762

Dinoflagellates 0.422 0 0 0 0 0 0 0 0 0 0 0.578

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.545 0 0.455

c. Fuco:Chl a : 1.1

Diatoms 0 0 0.287 0 0 0 0.021 0 0 0 0 0.692

Prymnesiophytes 0 0 0 0.288 0 0 0.001 0 0 0 0 0.711

Pelagophytes 0 0.272 0.219 0 0 0 0.196 0 0 0 0 0.313

Chlorophytes 0 0 0 0 0.024 0.016 0 0 0 0.010 0.382 0.568

Parasinophytes 0 0 0 0 0.079 0.088 0 0 0.311 0 0.078 0.444

Cryptophytes 0 0 0 0 0 0 0 0.236 0 0 0 0.764

Dinoflagellates 0.435 0 0 0 0 0 0 0 0 0 0 0.565

Cyanobacteria 0 0 0 0 0 0 0 0 0 0.575 0 0.425
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