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Modeling range dynamics in heterogeneous landscapes:
invasion of the hemlock woolly adelgid in eastern North America
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Abstract. Range expansion by native and exotic species will continue to be a major
component of global change. Anticipating the potential effects of changes in species
distributions requires models capable of forecasting population spread across realistic,
heterogeneous landscapes and subject to spatiotemporal variability in habitat suitability.
Several decades of theory and model development, as well as increased computing power and
availability of fine-resolution GIS data, now make such models possible. Still unanswered,
however, is the question of how well this new generation of dynamic models will anticipate
range expansion. Here we develop a spatially explicit stochastic model that combines dynamic
dispersal and population processes with fine-resolution maps characterizing spatiotemporal
heterogeneity in climate and habitat to model range expansion of the hemlock woolly adelgid
(HWA; Adelges tsugae). We parameterize this model using multiyear data sets describing
population and dispersal dynamics of HWA and apply it to eastern North America over a 57-
year period (1951–2008). To evaluate the model, the observed pattern of spread of HWA
during this same period was compared to model predictions. Our model predicts considerable
heterogeneity in the risk of HWA invasion across space and through time, and it suggests that
spatiotemporal variation in winter temperature, rather than hemlock abundance, exerts a
primary control on the spread of HWA. Although the simulations generally matched the
observed current extent of the invasion of HWA and patterns of anisotropic spread, it did not
correctly predict when HWA was observed to arrive in different geographic regions. We
attribute differences between the modeled and observed dynamics to an inability to capture the
timing and direction of long-distance dispersal events that substantially affected the ensuing
pattern of spread.

Key words: Adelges tsugae, hemlock woolly adelgid; bioclimate envelopes; biological invasions; climate
change; global warming; landscape epidemiology; metapopulation model; population dynamics; range shift;
species distribution models; species migration; spread model.

INTRODUCTION

Across the globe, species are actively expanding their

geographic ranges, some in response to recent climatic

change (Walther et al. 2002, Parmesan and Yohe 2003)

and others as the result of introductions into new

regions (Mack 1996). In order to anticipate the potential

effects of ongoing and future changes in the distribu-

tions of native and invasive species, there is increasing

need to understand which factors influence the dynamics

of range expansion and to develop models to forecast

population spread. However, species most likely to

exhibit dramatic range expansion and to therefore be of

greatest interest in management contexts often possess

characteristics that make changes in their distributions

difficult to predict, notably spread driven by rare, long-

distance dispersal events and rapid population growth

(Hastings et al. 2005). The interaction between land-

scape heterogeneity and spread dynamics adds a layer of

complexity that is rarely incorporated into models, but

may be critical to developing adequate forecasts of range

expansion at regional scales (Turner et al. 1993, With

2002, Hastings et al. 2005).

Multiple approaches have been used to model changes

in species distributions at a variety of temporal and

spatial scales. Given their relative simplicity, computa-

tional efficiency, and benign data requirements, species

distribution models (SDMs) remain a common tech-

nique generally regarded as providing a useful first

estimate of potential changes in species distributions at

the broadest of spatial extents (Pearson and Dawson

2003). SDMs rely on static correlations between species

occurrences and environmental characteristics to predict

distributions of species. In essence, SDMs produce

mapped predictions of the geographic ranges that
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species would occupy if distributions were constrained

by abiotic factors alone. Such correlative models will

accurately predict changes in species distributions only if

the observed species–environment relationships corre-

spond to processes and factors that constrain the range

and these relationships remain unchanged in new

ecological settings (Guisan and Thuiller 2005, Broenni-

mann et al. 2007, Fitzpatrick et al. 2007). Even when

these conditions are met, SDMs rarely incorporate the

underlying processes that drive spread dynamics, most

notably population and dispersal processes (Gallien et

al. 2010). Therefore, although SDMs can predict

potential changes in geographic distributions of species

though time (e.g., Fitzpatrick et al. 2008), unless

predictions from SDMs are coupled to dynamic

population growth and dispersal models (e.g., Keith et

al. 2008, Anderson et al. 2009), they can reveal little

about the extent to which spreading populations could

actually attain these changes. As a result, SDMs are

more suited to mapping a species’ potential range within

a study region than to determining the probability of

establishment or the likely timing of arrival in a specific

location.

Forecasting actual changes in the geographic distri-

bution of populations requires the development of

models that integrate habitat suitability with dynamic

dispersal and population processes (Thuiller et al. 2008,

Elith et al. 2010, Franklin 2010, Huntley et al. 2010).

General theoretical models of spread that incorporate

population growth and dispersal have been used by

ecologists for decades (e.g., Fisher 1937, Skellam 1951,

Kot et al. 1996), but these existing models rarely

consider temporal and spatial heterogeneity in habitat

suitability that may profoundly influence spread dy-

namics (Higgins et al. 1996, With 2002, Meentemeyer et

al. 2008, 2011). As a result, general models of spread

provide considerable theoretical insight but offer little in

terms of applied practical utility and specific predictions

regarding range expansion in a region of interest.

Developing models of range expansion that incorpo-

rate the dynamics of population growth and dispersal, as

well as shifting habitat suitability and realistic landscape

heterogeneity, could substantially improve our ability to

understand and predict range expansion (Thuiller et al.

2008). Few such models have been developed and

applied to large heterogeneous landscapes (for notable

exceptions, see Keith et al. 2008, Anderson et al. 2009,

and Meentemeyer et al. 2011). Because long-term

observational data sets documenting range expansion

are rare, there have been even fewer direct comparisons

of predictions from dynamic models to long-term

records of spread (but see Pitt et al. 2009). Although

incorporating greater realism into models may improve

our understanding of range expansion, it is still unclear

whether this improved understanding will translate into

better forecasts, especially for those species capable of

rapid spread.

Here we describe a model to predict the geographic

spread of the hemlock woolly adelgid, HWA (Adelges
tsugae Annand; Hemiptera: Adelgidae), an introduced

forest pest that threatens eastern hemlock (Tsuga
canadensis (L.) Carr.) and Carolina hemlock (Tsuga

caroliniana Englemann) in eastern North America
(Orwig et al. 2002). The model combines dynamic
dispersal and population processes with fine-resolution

maps characterizing spatiotemporal heterogeneity in
climate and habitat in order to model range expansion

across large, heterogeneous landscapes. We parameter-
ize our model using field data sets on the population and

spread dynamics of HWA, and we evaluate the
predictions of the model against a 60-year record of

HWA spread across eastern North America. These long-
term empirical observations of spread provide a rare

opportunity to evaluate how well dynamic spread
models might anticipate range expansion. Although

several studies have investigated the relationships
between HWA spread and a variety of environmental

factors (Koch et al. 2006, Evans and Gregoire 2007,
Morin et al. 2009, Fitzpatrick et al. 2010), these studies

have been limited either in geographic extent and/or by a
coarse spatial resolution. Further, correlations between
environmental parameters and hemlock abundance have

hindered the ability of regression models to draw
inferences regarding the processes influencing the spread

of HWA (Morin et al. 2009). Specifically, our objectives
are threefold: (1) parameterize a model using field data

on population growth and historic spread patterns of
HWA, (2) use this model to investigate range expansion

of HWA across the range of hemlock, and (3) compare
the simulated pattern of spread against the observed

pattern. Of particular interest is how temporal and
spatial heterogeneity in habitat suitability affect range

expansion. In addition to providing taxon-specific
information regarding HWA range expansion, our

approach represents a general framework for developing
dynamic spread models that explicitly incorporate

environmental heterogeneity.

METHODS

Study system

The hemlock woolly adelgid (HWA) is a small (1-mm
adult), flightless insect (see Plate 1) native to Japan and

China that was first collected from hemlock trees (Tsuga
spp.) in the eastern United States in spring of 1951, in

Richmond, Virginia (Stoetzel 2002). By 1969 HWA had
spread to Philadelphia, Pennsylvania (G. Miller, person-

al communication), and to southern New England by
1985 (McClure 1990). The invaded range now stretches

from Maine, New Hampshire, and Vermont in the north
to Georgia in the south.

HWA is a bivoltine insect that has a holocyclic life
cycle in its native range but is obligately parthenogenetic
in its invaded range. The parthenogenetic nature of

HWA in eastern North America means that even a
single colonizing individual can start a new infestation;
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as a result, Allee effects at range margins are unlikely to

affect spread dynamics (cf. Johnson et al. 2006).

Adelgids have two generations per year composed of

three life forms, the sistens (present from July to June),

the progrediens (present from April to July), and the

winged sexuparae (which emerge concurrently with the

progrediens in spring). In Asia, the winged sexuparae fly

to spruce and reproduce sexually. Because sexuparae do

not survive on spruce species found in North America

(McClure 1989), this actively mobile life stage does not

play a role in the invasion of HWA, and acts as a

population sink. Progrediens are sessile hemlock feeders

that settle exclusively on foliage from the previous year’s

growth. They mature by June and give rise to the next

generation of sistens. The sistens generation develops

during autumn and winter, following a summer aesti-

vation period. About 85% of sistens settle on new

growth produced by the tree in spring (McClure 1991)

and the remainder on older growth. In spring, the sistens

produce eggs that develop into either progrediens or

sexuparae, thereby completing the life cycle. Sistens tend

to produce more numerous offspring than do progre-

diens (McClure 1989). Feeding progrediens and sistens

do not move between branches, so the ‘‘crawler’’

nymphs (life stage between eggs and sessile adults) and

potentially eggs are the sole dispersal stages in eastern

North America. Dispersal is passive, with wind, birds,

deer, and humans thought to act as the primary

dispersal agents (McClure 1990). See McClure (1989,

1991) for additional details regarding the life cycle of

HWA.

General framework

We develop a spatially explicit, discrete space–time

stochastic model that links within-patch population

dynamics and between-patch propagule dispersal with

fine-resolution maps characterizing spatiotemporal var-

iability in climate and hemlock abundance to simulate

range expansion of HWA across the heterogeneous

landscape of eastern North America. The model

incorporates the influence of four heterogeneous factors

on HWA spread: (1) hemlock abundance, (2) winter

temperature, (3) population growth, and (4) dispersal.

Hemlock abundance and winter temperature are char-

acterized as raster maps composed of 13 1 km cells (see

Appendix A for details regarding the creation of these

maps, which are available online from the Harvard

Forest LTER data archive).6 It is across these maps that

the model simulates HWA population growth and

dispersal on an annual time step. Hemlock abundance

in each cell (Fig. 1) determines the probability that

dispersing adelgids establish in a location and also sets

the upper limit to HWA population growth once a cell

becomes infested. Hemlock abundance declines annually

in infested cells and, for tractability, is assumed to

remain constant elsewhere. Winter temperatures (Ap-

pendix C: Fig. C1), which change annually following

observed temperature fluctuations, influence population

growth by limiting the proportion of overwintering

sistens that survive to produce progrediens in the next

year. Mortality rates of progrediens (which include

production of sexuparae, a demographic dead end) and

sistens are drawn from appropriate probability distri-

butions. Dispersal between cells is simulated using a

function parameterized from multiple data sets docu-

menting the spread of HWA across different regions of

the eastern United States.

A single simulation of the model proceeds as follows.

To initiate a simulation, a random number of HWA are

introduced to a cell containing hemlock near Richmond,

Virginia, the location of the first documented infestation

of HWA in eastern North America (Stoetzel 2002). The

simulation continues thereafter for 58 annual time steps,

representing the period from 1951 (date of first HWA

collection in the eastern United States) through 2008,

with time steps beginning with production of progre-

diens in the spring by overwintering sistens and ending

with winter mortality of sistens. First, sistens in infested

cells that have survived the winter produce the next

generation of progrediens crawlers, a portion of which

disperse to neighboring cells either through local

diffusion or via long-distance dispersal described using

a distance-based probability density function. Dispers-

ing individuals can (1) initiate new infestations in

uninfested cells containing hemlock, (2) reestablish in

the cell from which they originated, or (3) die if they fail

to establish in a cell with hemlock or if they disperse to a

cell without hemlock. The probability that dispersing

individuals establish is equivalent to the fraction of the

cell covered by hemlock crown and is therefore related

to hemlock abundance. Carrying capacity of HWA

populations is also determined by hemlock abundance;

after dispersal, the surplus individuals larger than the

carrying capacity of the cell die. The remaining

population is then subjected to stochastic mortality.

Surviving progrediens reproduce to create the next

generation of sistens crawlers. Sistens follow the same

cycle of dispersal, establishment, and mortality as

progrediens, including limiting population size to

carrying capacity, but with sistens being subjected to

two additional forms of mortality: summer aestivation

and overwintering. Hemlock abundance, and therefore

carrying capacity and probability of establishment,

declines each year in infested cells as a function of

HWA population density. Stochasticity enters the model

via random sampling from appropriate probability

distributions that influence population growth and

mortality, dispersal and establishment. These compo-

nents are described in more detail in the next sections.

The parameters of the model are summarized in Table 1.

Simulations were constrained to the region of eastern6 http://harvardforest.fas.harvard.edu/data/archive.html
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North America encompassing the natural distribution of

hemlock (Fig. 1). We used the results of the 1000

stochastic simulations to obtain an average representa-

tion of HWA spread. The model was written in the

statistical language R (R Development Core Team 2009)

and the code is available from the Supplement.

Hemlock abundance

We mapped geographic variation in hemlock abun-

dance (Bi ) as basal area (m2) in each 1 3 1 km cell i

following the procedures described in Appendix A. The

amount of hemlock in a cell determines both the number

of HWA that the cell can support and the probability

that dispersing HWA encounter hemlock. HWA attach

themselves at the base of needles, typically at a rate of

one individual per needle. Thus, the number of needles

in a stand can serve as a reasonable estimate of the carry

capacity of HWA populations. To estimate the number

of needles in each stand, we used allometric relationships

to compute leaf area from basal area (Kenefic and

Seymour 1999) and the number of needles (Li ) from the

mean leaf area per needle (Santee and Monk 1981).

Because sistens feed predominantly on new growth,

typically at a rate of 85% on new growth and 15% on

older foliage (McClure 1991; A. Paradis and J. Elkinton,

unpublished data), we used field surveys of uninfested

hemlocks to estimate the proportion of total leaf area in

new growth (wi ). This quantity varied by tree size and

site conditions, but we estimated it to be between 1%
and 10%. Together, these quantities allowed us to

estimate the carrying capacity of progrediens (KPi ),

which settle exclusively on the previous years’ growth

and therefore can be approximated as KPi¼ Li, and the

carrying capacity of sistens as KSi ¼ 0.85Liwi þ 0.15Li.

To estimate probability of establishment, we used

allometric relationships to compute crown area (Ci ) in

m2 from basal area (Santee and Monk 1981). We

assumed the probability that dispersing HWA establish

in a cell is equivalent to the ratio of Ci to cell area in m2.

Therefore, the number of HWA that establish in a cell is

FIG. 1. Eastern North America showing modeled hemlock (Tsuga spp.) abundance, by basal area, at 131 km resolution vs. the
geographic range of hemlock (USGS 1999). The red star indicates the location of Richmond, Virginia (VA), where introduced
populations of hemlock woolly adelgid (Adelges tsugae) were first collected in 1951.
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simply Ci multiplied by the number of HWA dispersing

to that location. In infested cells, temporal variation in

hemlock abundance in each year t was introduced by

reducing hemlock abundance as a function of HWA

population density, thereby also reducing carry capacity

and probability of establishment in the next year. See

Appendix B for a description of how hemlock decline

was estimated. For tractability, hemlock abundance was

assumed to remain constant in uninfested cells through-

out the simulation.

Winter temperature

Of the causes of HWA mortality, winter temperatures

are thought to be the most important and most variable

in space. The relationship between HWA mortality and

temperature has been assessed in both the laboratory

and the field (Parker et al. 1999, Skinner et al. 2003,

Shields and Cheah 2005, Paradis et al. 2008, Trotter and

Shields 2009). Winter temperatures can cause consider-

able mortality and trigger dramatic population declines,

with southern populations typically experiencing signif-

icantly less mortality than those in the north (Shields

and Cheah 2005, Trotter and Shields 2009).

Paradis et al. (2008) explored the relationship between

winter temperature and HWA overwintering mortality

and determined that of eight different measures of

winter temperature they considered, average daily mean

winter (December–March) temperature had the greatest

explanatory power. To account for the geographic

variability in HWA winter mortality, we used the best-

fit regression equation from Paradis et al. (2008) to

express overwintering mortality (MSwit) in cell i in year t

as a function of temperature (Wit, 8C): MSwit ¼ 0.507�
0.078Wit. To incorporate stochasticity in MSwit, we used

values for the slope and intercept drawn from the 95%

confidence intervals reported by Paradis et al. (2008).

See Appendix C for details regarding the creation of

annual mean winter temperature maps.

Within-cell population dynamics

We used multiyear surveys of HWA reproduction and

survival rates in Massachusetts and Connecticut to

estimate mean values of parameters for the life stages of

HWA. See Appendix D for details regarding how these

data were collected. Using these data, we estimated

probability distributions that were sampled to estimate

stochastic reproduction and mortality of the sistens and

progrediens generations in each cell i in year t. For the

progrediens generation, these parameters included aver-

age number of progrediens produced by each overwin-

tering sistens (Pit) and the mortality rate of progrediens

(MPit). For the sistens generation, parameters included

the average number of sistens produced by progrediens

(Sit) and the mortality rates of dispersing, aestivating,

TABLE 1. Overview of default and fitted parameter values of the hemlock woolly adelgid (HWA) range expansion model.

Symbol Parameter Type
Value, range,
or distribution

General

i Index of a particular cell index � � �
j Index of a particular year index 1951–2008

Population dynamics

N0 Initial population size in Richmond, Virginia in 1951 random ;Poisson(1000)
KPit Carrying capacity of progrediens in cell i in year t, equal to Lit modeled � � �
KSit Carrying capacity of sistens in cell i in year t, function of Lit

and wit

modeled � � �

NPit Progrediens population size in cell i in year t modeled [0, KPit]
NSit Sistens population size in cell i in year t modeled [0, KSit]
Wit Winter temperature in cell i in year t observed � � �
Pit Number of progrediens produced by each sisten in cell i in year t random ;Poisson(142.7)
Sit Number of sistens produced by each progredien in cell i in year t random ;Poisson(22.2)
MPit Mortality rate of established progrediens in cell i in year t random ;Binomial(0.98)
MSit Mortality rate of established sistens in cell i in year t random ;Binomial(0.64)
MSait Mortality rates of sistens during aestivation in cell i in year t random ;Binomial(0.71)
MSwit Overwintering mortality rate of sistens in cell i in year t, function

of Wit

modeled [0, 1]

Host dynamics

Bit Basal area of hemlock in cell i year t modeled � � �
Lit Leaf area in cell i in year t, function of Bit modeled � � �
Cit Crown area in cell i in year t, function of Bit modeled � � �
xit Proportion of Lit that is new growth random ;Uniform(0.01, 0.05)

Dispersal dynamics

l Mean of the log-normal dispersal pdf modeled 4.73 km
r Standard deviation of the log-normal dispersal pdf modeled 3.27 km
/it Proportion of individuals diffusing to adjacent cells in cell i in

year t
random ;Uniform(0, 1 3 10�6)

cit Proportion of long-distance dispersers in cell i in year t random ;Uniform(0, 1 3 10�8)

MATTHEW C. FITZPATRICK ET AL.476 Ecological Applications
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and overwintering sistens (MSit, MSait, MSwit, respec-

tively, with MSwit calculated as described in the previous

section). To model stochastic population growth, we

sampled Poisson distributions with means Pit or Sit and

multiplied these values by the existing population size of

either sistens (NSit) or progrediens (NPit). Binomial

distributions with means MPit, MSit, or MSait were used

to model mortality of progrediens and sistens. We

incorporated the influence of density dependence on

population dynamics by allowing HWA density to

increase to the carry capacity set by hemlock abundance

as described previously and by reducing hemlock

abundance in infested cells as described in Appendix B.

Between-stand dispersal

Range expansion of organisms is often driven by

multiple mechanisms that operate at different scales

(Higgins et al. 2003, Hastings et al. 2005), a process

termed stratified dispersal (Hengeveld 1988). The

biology and historic pattern of spread of HWA is

consistent with this form of dispersal. Dispersal within

hemlock stands is facilitated by progrediens and sistens

nymphs crawling along branches or between proximate

trees, whereas wind, birds, humans, or other agents

facilitate rare long-distance dispersal between stands

(McClure 1990). Our model characterized stratified

dispersal by allowing local diffusion between neighbor-

ing cells and by using historic data on HWA spread to fit

a function that models long-distance dispersal events.

To fit a function representing the frequency distribu-

tion of between-stand dispersal distances, hereafter

termed the distance-based probability density function

or ‘‘distance-pdf,’’ we used multiple data sets describing

the historic spread of HWA (Table 2). Note that a

distance-pdf differs from a dispersal kernel, which

describes the density of propagules as a function of the

distance from a source (Cousens et al. 2008). The data

sets describing spread varied in their geographic focus

and their spatial and temporal coverage (Table 2), but

all represent either purposeful or ad hoc surveys of

regionally distributed hemlock stands rather than trees

within stands, and therefore represent a sample of

successful between-stand dispersal events. Appendix E

describes how these data were fit to a set of candidate

distance-pdfs using maximum likelihood. Given their

coarse spatial resolution, we did not use the existing

USFS county-level spread data set to inform the

distance-pdf. These data were, however, used in model

evaluation (USFS data available online).7

For both between-cell and long-distance movements,

it was assumed that a small fraction of NSit (population

size of sistens) and NPit (population size of progrediens)

was subject to dispersal. These proportions of dispersing

individuals were drawn from different uniform proba-

bility distributions for local diffusion (/it) and long-

distance dispersal (cit) and were multiplied by NSit and

NPit to calculate the number of dispersing HWA in each
generation. Ideally these proportions could be estimated

using maximum likelihood approaches, but the data

necessary to fit such a likelihood function currently are
not available for HWA. To estimate the proportions of

dispersing individuals, we therefore performed a sensi-

tivity analysis that confirmed that spread rate was

indeed sensitive to these parameters and that reasonable
results (spread rate of ;10–20 km per year; Evans and

Gregoire 2007) were obtained if we assumed that one

individual in a million diffused to neighboring cells and
if one individual in 100 million was subjected to long-

distance dispersal as described by the distance-pdf.

Model evaluation

We evaluated predictive performance of the model in

two ways. First, to assess spatial accuracy, we used the

area under the curve (AUC) of the receiver operating

characteristics curve (ROC; Fielding and Bell 1997) to
compare the predicted probability of infestation with the

observed spatial pattern of HWA infestations in three

locations: the northern extent of the range in New
England, near the center of the range in Pennsylvania,

and the southern extent of the range in Georgia. Second,

to assess temporal accuracy, we compared the predicted

timing of first infestation to the observed year of
infestation using the 60-year record of spread from the

USFS county-level data set. We used the following

procedure to address the scale mismatch between the
model (1-km2 cells) and the observation data (county

level, .103 km2). Given the size of counties, each

contained numerous cells. Each cell within a county had

a predicted year of first infestation for each of the 1000
simulations. For each county, we obtained the predicted

years of first infestation across all cells within the county

and across all 1000 simulations. Cells that did not become
infested were ignored. Thus, if a county had 100 cells, all

of which were infested in all 1000 simulations, we obtained

a distribution of predicted years of infestation for the

county composed of 13 105 data points. To evaluate the
extent to which the predicted dates of infestation

compared to the observed date, we determined whether

the 95% confidence interval of the distribution of

predicted years contained the observed year.

TABLE 2. Data sets describing the spread of hemlock woolly
adelgid at the landscape scale that were used to parameterize
the dispersal probability density function.

Region
No.

locations
Year of first/

last observation

Georgia 1057 2003/2006
Southwestern Virginia 98 1997/2007
Pennsylvania 1598 1982/2006
Connecticut and Massachusetts� 142 1998/2007
New Hampshire 73 2000/2008

Notes: See Acknowledgments for data sources.
� Preisser et al. (2008).

7 http://na.fs.fed.us/fhp/hwa/maps/distribution.shtm
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RESULTS

The maximum-likelihood estimation of the distance-

pdf determined that a log-normal function with a

dispersal distance of 4.73 km [4.5–5.0 km] (mean and

95% CI) provided the most plausible fit to the observed

HWA spread data (Appendix E: Fig. E1). Application

of the model to spatially and temporally heterogeneous

hemlock abundance (Fig. 1) and mean winter temper-

ature (Appendix C: Fig. C1) over the 57-year simulation

period suggested that the probability of infestation was

greatest from central Pennsylvania to the southernmost

extent of the geographic range of hemlock in northern

Georgia (red-yellow shading, Fig. 2; see Appendix F:

Fig. F1 for an animated version of this figure). Regions

of southern New York and New England, portions of

which currently are infested by HWA, were generally

predicted to have very low probabilities (,1%) of

invasion (blue shading, Fig. 2), whereas most of

northern New England, Wisconsin, the upper peninsula

of Michigan, and southern Canada had zero probability

of infestation. In the southern portion of the study

region, probabilities of infestation generally increased

with time before gradually declining as hemlock was lost

from the region (Appendix F: Fig. F1, animated). In

contrast, probabilities of infestation did not increase

above zero in southern New England until late in the

simulation, where invasion risk tended to remain low

and fluctuate yearly in response to year-to-year changes

in winter temperature. Geographic and temporal vari-

ation in HWA population size tended to follow the

pattern of probability of infestation, with population

sizes being greatest south of central Pennsylvania and

remaining relatively small in the north (Appendix G:

Fig. G1, animated).

Earliest infestations were concentrated in the central

Appalachians, with subsequent spread to the south and

followed by later spread to the north (Fig. 3). In general,

HWA was not predicted to arrive in northern Pennsylva-

FIG. 2. Predicted probability of infestation of hemlock stands by hemlock woolly adelgid averaged over 1000 simulations of
range expansion initiated in Richmond, Virginia, using annual winter temperatures experienced during the period 1951–2008. The
observed extent of the invasion in 2008 is delineated by the bold gray line. Hemlock stands not predicted to become infested in any
of the 1000 simulations are shown in black. Light-gray regions do not contain hemlock.
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FIG. 3. Predicted year of infestation of hemlock stands by hemlock woolly adelgid averaged over 1000 simulations of range
expansion initiated in Richmond, Virginia, using annual winter temperatures experienced during the period 1951–2008. The
observed extent of the invasion in 2008 is delineated by the bold gray line. Hemlock stands not predicted to become infested in any
of the 1000 simulations are shown in black. Light-gray regions do not contain hemlock.

FIG. 4. Total area infested vs. time for each of the 1000 individual simulations (dashed gray lines) and the mean (solid black
line) total area infested.
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nia and southern New England until after year 2000. On

average, themodel predicted an overall increase in infested

area beginning around 1970 and continuing to increase

throughout the simulation period (Fig. 4). Simulated

spread was most rapid in the southwest and was slowest in

the north and northeast (slopes of curves, Fig. 5).

The spatial accuracy of the model measured using

AUC varied by geographic region (Fig. 6). AUC was

highest in New England (NE, solid line; Fig. 6) and

Georgia (GA, dashed line; Fig. 6), where the model had

excellent to good discrimination (Pearce and Ferrier

2000). In contrast, model performance was poor (less

FIG. 5. Area of hemlock infested (km2) vs. year (1951–2008) averaged over 1000 simulations within different geographic regions
defined by dividing the study area into 22.58 intervals (16 cardinal directions), using Richmond, Virginia, as the origin. The y-axis
scales are the same for each region. The rate of spread, indicated by the slope of the line in each panel, is most rapid in the
southwest and slowest in the northeast.
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than 0.5) in Pennsylvania (PA, dotted line; Fig. 6),

where the model over-predicted the observed extent of

the invasion in the northwestern portion of the state.

Of the 325 counties that were known to be infested by

HWA in 2008, the observed year of first infestation fell

within the 95% confidence interval of the simulated year

for only 37 counties (11.4%) (Fig. 7, hatched counties).

There was no discernable geographic patterning to these

37 counties, which tended to be scattered throughout the

study area. In contrast, there were strong geographic

patterns in model error. In general, the model predicted

arrival later than observed (Fig. 7, purple shading) in the

north and earlier than observed (Fig. 7, green shading)

in the south. In some instances the difference between

the observed and modeled year of first infestation

differed by more than 15 years. Most notably, HWA

was predicted to arrive much later than observed in

counties surrounding New York, New York and the city

of Philadelphia, Pennsylvania. In addition, there were 13

known-infested counties that the model did not predict

would become infested (Fig. 7, black-shaded counties).

These areas included Philadelphia County, Pennsylvania

as well as counties containing New York, New York.

DISCUSSION

The objectives of this study were to develop a process-

based, stochastic model to simulate range expansion of

HWA across the large heterogeneous landscape of

eastern North America, to examine how environmental

heterogeneity affected spread dynamics, and to compare

the predictions of the model with the observed pattern of

range expansion. Taken together, our model predicts

considerable heterogeneity in the risk of HWA invasion

across space and through time, with spatiotemporal

variation in winter temperature, rather than hemlock

abundance, exerting a primary control on simulated

spread dynamics. The simulated dynamics match some

aspects of the observed pattern of range expansion, most

notably the extent of invasion and anisotropic spread,

but our model did not correctly predict the timing of

HWA’s arrival in different geographic regions.

Ours joins a growing list of range expansion models

that integrate temporal and spatial heterogeneity in

habitat suitability with dynamic population and dis-

persal processes (Dullinger et al. 2004, Keith et al. 2008,

Anderson et al. 2009, Meentemeyer et al. 2011).

However, evaluations of dynamic models against long-

term records of observed spread histories remain rare

(but see Pitt et al. 2009) and such comparisons are sorely

needed to quantify the extent to which dynamic models

might anticipate rapid range expansion. HWA provides

a particularly good study system because its population

dynamics are strongly influenced by temperature and it

is limited to discrete habitat patches of its host plant

(hemlock). Most importantly in the context of model

evaluation, the introduction and spread history of HWA

are relatively well known. Therefore we have a unique

opportunity to ask: Given what we know today, how

well could we have anticipated the spread of HWA

across eastern North America? This question can be

considered in the context of (1) extent of infestation, (2)

rate of spread, and (3) timing of arrival.

In terms of extent of invasion, our simulations

generally agree with the observed current extent of

HWA’s spread (Figs. 2 and 6) and suggest that there are

few remaining opportunities for widespread invasion of

HWA. The model suggests that lethal winter tempera-

tures are likely to limit additional northward spread of

HWA beyond its current northern limit. Northwestern

Pennsylvania and southern New York represent notable

exceptions, although invasion risks are rather low or

zero across most of New York. Elsewhere, the invasion

largely has already reached the extent of its potential

range as determined by availability of hemlock.

The model predicted anisotropic spread (Fig. 5),

generally matching the observed pattern of most rapid

spread in the south and lower rates of spread elsewhere

(Fitzpatrick et al. 2010). Our model predicted HWA to

spread most rapidly across the southern Appalachians,

where winters are relatively warm and hemlock is

relatively abundant. Despite an abundance of hemlock

in New England, HWA was predicted to spread slowly

in this region, highlighting the importance of winter

temperatures in limiting range expansion. It is worth

noting that our findings contrast with regression-based

analyses of the observed pattern of anisotropy, which

suggest that, although spread rates of HWA were

relatively rapid in the south, they were greatest in the

northeast (Morin et al. 2009). However, this finding may

in part be an artifact of the regression approach

implemented by Morin et al. (2009), which assumes

FIG. 6. Receiver operating characteristics (ROC) curves
showing model performance in three geographic regions,
including New England (NE), Georgia (GA), and Pennsylvania
(PA). Higher values for AUC (area under the curve) indicate
greater spatial accuracy of the model.
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that spread rates are constant, and therefore can

overestimate spread rates if long-distance dispersal

events to a particular region are followed by slower

diffusion (i.e., if invasion speed varies in time). This is

the case with the dispersal of HWA to the northeast,

which was facilitated by early, long-distance dispersal,

followed by much slower rates of diffusion (Fitzpatrick

et al. 2010).

Despite generally matching the observed extent of the

invasion of HWA and the pattern of anisotropic spread,

our model did a poor job of predicting the timing of

arrival: a failure that we attribute to an inability of the

model to adequately capture both the timing and

direction of early, rare, long-distance dispersal events.

Much has been written regarding the inherent difficul-

ties of accurately measuring and modeling infrequent

long-distance dispersal events and of the importance of

such rare events in determining spread rate and

ultimately timing of arrival of an organism undergoing

range expansion (e.g., Clark et al. 1998, Higgins and

Richardson 1999, Clark et al. 2001, Clark et al. 2003,

Skarpaas and Shea 2007). For the most part, discus-

sions regarding the modeling of long-distance dispersal

have been one-dimensional in that they mainly have

considered the shape of the probability function

describing the distribution of dispersal distances. A less

appreciated aspect of modeling range expansion is that,

for models to be successful, they must also accurately

model dispersal direction (i.e., anisotropy). In the case

of HWA, data suggest that populations spread from

Richmond, Virginia to Philadelphia, Pennsylvania then

eventually to New York, New York. These early, long-

distance movements to densely populated regions of the

northeast were not captured in our simulations (black

shading; Fig. 7), which may explain why the simulations

predicted later arrival in the northeast than was

observed. In fact, none of our simulations predicted

that Philadelphia County, Pennsylvania and the coun-

ties surrounding New York, New York would become

infested. These findings can be attributed in part to the

failure of our hemlock map to capture urban hemlock

density. Of equal or greater importance could be the

role of long-distance dispersal vectors that increase the

likelihood of spread to the east and northeast, most

notable of which are wind and birds (McClure 1990).

Dispersing progrediens hatch during the time of spring

bird migration from south to north, and McClure

(1990) found HWA attached to forest birds. Bird

migration may be a particularly important dispersal

vector in unforested areas such as cities, because

isolated hemlocks probably have much higher bird

visitation rates per tree than trees embedded in a forest.

During the time of both progrediens and sistens

dispersal, dominant winds are mainly out of the west

PLATE 1. An overwintering population of invasive hemlock woolly adelgid (Adelges tsugae) on an isolated eastern hemlock
(Tsuga canadensis) in the Buchanan State Forest near Beans Cove, Pennsylvania, USA. Each white, woolly mass contains a single
individual of the sistens generation. By spring, individuals that have survived the winter could produce more than 100 eggs, each of
which could hatch into nymphs capable of dispersing near and far. Photo credit: M. C. Fitzpatrick.
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and southwest (Klink 1999). Consistent with the

observed pattern of range expansion of HWA, the

dominant winds and bird migrations would tend to

reduce the probability of spread to the south and west,

thereby delaying arrival in the southern Appalachians,

while increasing spread potential to north and east. The

failure to incorporate wind patterns may also explain

why the model predicted a high probability of spread to

upwind portions of northwestern Pennsylvania that are

not currently known to be invaded (B. Regester,

personal communication). The movement of hemlock

for landscaping purposes may also play a role in

facilitating long-distance dispersal of HWA, although

the directionality of such movements is less clear. Taken

together, the inability of the model to reproduce the

observed timing of arrival in different regions seems to

result largely from an inability to capture early dispersal

events to northeastern cities and an overestimation of

the frequency of long-distance dispersal events to the

south and west.

Although the model failed to capture aspects of the

spread of HWA, it is reasonable to ask: Within the

context of the model, how likely was the observed

pattern of spread? Invasion dynamics are dependent on

a number of highly stochastic processes that pose major

challenges to developing realistic models of range

expansion. Vagaries of population dynamics and dis-

persal, particularly at early stages of range expansion

(Higgins and Richardson 1999), can play a dispropor-

tionate role in determining the ensuing pattern of

spread. It is reasonable to assume that small changes

to any of these early dynamics could result in strikingly

different patterns of range expansion. More broadly, the

ecological patterns that we observe, and on which

models are parameterized, represent a single realization

of a multitude of possible realizations, some more likely

than others. It is critical to note that although running

FIG. 7. Map of the difference between the observed (inset) and mean simulated year of infestation for counties infested by the
hemlock woolly adelgid up to year 2008. Green/purple shading indicates counties for which the model predicted a county to
become infested earlier/later than was observed. Gray shading indicates counties for which the simulated data fell within one year
of the observed date. Hatching highlights those counties for which the observed year of infestation fell within the 95% confidence
interval of the simulated year. Black shading represents counties where HWA has been observed but none of the 1000 simulations
predicted infestation.
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many simulations can reduce the influence of model

stochasticity on the predicted outcome, as well as

provide an indication of uncertainty, model averaging

may not necessarily bring us any closer to predicting the

observed pattern. In fact, it could do just the opposite

because averaging multiple simulations reduces the

influence of uncommon, but highly consequential,

events.

Knowledge of when and where an invasive species is

likely to spread is critical to management efforts. In the

case of HWA, there appears to be little potential for

additional spread, at least under current climatic

conditions, and therefore correspondingly small remain-

ing opportunities for management intervention at the

landscape scale. However, given the limiting effects of

temperature on HWA range dynamics in New England,

increases in winter temperature in this region could lead

to the rapid spread of HWA (Paradis et al. 2008) and

subsequent loss of hemlock. Planned applications of our

model to scenarios of future climate in the northeastern

United States and southern Canada will explore these

dynamics in greater detail.

As global change continues to alter the distributions

of native and exotic species, there is an increasing need

for spatially explicit forecasts of range expansion. Here,

we combined existing techniques for modeling popula-

tion growth and dispersal with fine-resolution maps

characterizing spatial and temporal variability in cli-

matic and habitat suitability to model species spread

over a large heterogeneous region. Ours is the sort of

integrated model recently envisioned by Huntley et al.

(2010), who, like many others, have argued that dynamic

models are needed to provide more realistic forecasts of

changes in species distributions, such as species respons-

es to climatic change. Validation remains a central

challenge however, as it is not possible to validate

predictions of events that may not occur for decades. In

contrast, invasive species offer a unique opportunity to

observe range expansion over relatively short timescales

and can therefore serve as a means to assess dynamic

models of range expansion. Our results suggest that, by

some measures, dynamic models can provide useful

predictions of changes in species distributions in space

broadly consistent with observed patterns. However, in

instances where range expansion is driven by rare events

with large consequences, for models to be successful in

predicting timing of arrival, they must incorporate an

improved understanding of the drivers of anisotropy. In

the context of the range dynamics of HWA, this would

include the role of passive dispersal vectors in driving

long-distance dispersal events to cities in the northeast-

ern United States and preventing spread to highly

suitable locations elsewhere.
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SUPPLEMENTAL MATERIAL

Appendix A

Description of how maps of hemlock distribution and abundance were developed (Ecological Archives A022-030-A1).

Appendix B

Description of how hemlock mortality in infested cells was modeled (Ecological Archives A022-030-A2).

Appendix C

Description of how annual maps of mean winter temperature were developed (Ecological Archives A022-030-A3).

Appendix D

Description of field data collection and analyses used to estimate hemlock woolly adelgid (HWA) reproduction and survival
rates (Ecological Archives A022-030-A4).

Appendix E

Description of the estimation of the dispersal-distance probability density function using maximum likelihood (Ecological
Archives A022-030-A5).

Appendix F

Animated version of Fig. 2 showing spatiotemporal changes in probability of HWA infestation (Ecological Archives A022-030-
A6).

Appendix G

Animation of spatiotemporal changes in HWA population size (Ecological Archives A022-030-A7).

Supplement

R source code used for spread simulations (Ecological Archives A022-030-S1).
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