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High-Temperature Spin Dynamics of the Classical
Heisenberg Magnet in One, Two, Three and Infinite
Dimensions

Gerhard Müller

Department of Physics, University of Rhode Island, Kingston RI 02881, USA

Time-dependent spin-autocorrelation functions at T = ∞ for the classical Heisenberg magnet in dimensions
d = 1, 2 and 3 are investigated by computer simulations. For the equivalent-neighbor Heisenberg model, the
autocorrelation function is calculated analytically.

Local spin fluctuations in magnetic insulators at high temperature spread rather slowly and
persist over appreciable times and distances only if a conservation law prohibits them from decaying
[1]. The transport of spin fluctuations is then governed by a diffusive process, which is directly
observable by dynamical experiments on insulating magnetic compounds [2]. This paper reports an
approach to computer simulations for the determination of time-dependent correlation functions
of classical spin systems which differs from methods previously employed [2, 3]. It is tailored
to situations where the coherence length is small or, in fact, zero. The focus here is on spin-
autocorrelation functions C0(t) ≡ 〈Sj(t) · Sj(0)〉 at T = ∞ for the classical Heisenberg model

H = −J
∑
〈i,j〉

Si · Sj (1)

with nearest-neighbor coupling. The variables Sj are classical 3-component unit vectors on a d-
dimensional hypercubic lattice with periodic boundary conditions. The classical spin dynamics is
specified by the equations of motion

Ṡj = −Sj × ∂H/∂Sj . (2)

For the numerical determination of the infinite temperature autocorrelation function, choose the
k-th set of initial conditions {S(k)

i } at random and integrate the equations of motion (2) numerically
over some time interval [4]. C0(t) is then evaluated as an average of Sj(t) · S(k)

j over all N lattice
sites and over K randomly chosen initial spin configurations. Results which are meaningful for
the infinite system can then be obtained by choosing both N and K sufficiently large. In view
of the fact that the transport of spin fluctuations is slow at high temperatures, the most efficient
and accurate method is first to reduce the statistical fluctuations by extensive ensemble averaging
and then to eliminate finite-size effects by analyzing precise data systematically for increasing N .
Results of such a simulation are displayed in figure 1. The three curves which are decorated by full
symbols represent the autocorrelation functions C0(t) at T = ∞ of the 1d, 2d and 3d Heisenberg
models on lattices of size N = 50 (1d), N = 20 × 20 (2d, square lattice) and N = 8 × 8 × 8 (3d,
simple cubic lattice), respectively. The time axis is rescaled by

√
d, which causes the three curves to

superimpose very precisely for Jt/
√
d ≤ 1.7. In all three dimensionalities, C0(t) is characterized by

a diffusive long-time tail. Its strength weakens with increasing d in qualitative agreement with the
phenomenological spin diffusion result C(SD)

0 (t) ∼ t−d/2. A more detailed analysis of these diffusive
tails has revealed that the long-time tails of the simulation data are indeed of the power-law type,
t−αd , but with exponents αd which are in excess of d/2: α1 = −0.609± 0.005, α2 = 1.050± 0.025,
α3 ' 1.6. This manifestation of anomalous spin diffusion was emphasized in reference [5].
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Figure 1. Spin-autocorrelation function C0(t) = 〈Sj(t) · Sj(0)〉 at T = ∞ of the classical
Heisenberg model with nearest-neighbor interaction. The curves with open symbols represent
simulation data averaged over K = 20000 random initial conditions for 1d systems of sizes
N = 4, 6, 8, 10. The curves with full symbols show results for a linear chain (N = 50), a square
lattice (N = 20×20), and a simple cubic lattice (N = 8×8×8). They represent simulation data
averaged over K = 22792 (1d), K = 4563 (2d), and K = 4041 (3d) random initial conditions.

The curves in figure 1 which are decorated by open symbols represent the autocorrelation
functions of chains with N = 4, 6, 8 and 10 spins. For small t all four curves lie on top of each other
and on top of the curve representing a chain of length N = 50. The curve for N = 4 is the first
to deviate from the others (at Jt ' 1) followed by the curve representing the next longer chain
(N = 6) somewhat later (Jt ' 3) etc. For all finite N , the function C0(t) decays to a positive
constant as t→∞; that constant is a monotonically decreasing function of N which tends to zero
as N → ∞. For N = 50 no noticeable finite-size effects occur out to Jt ' 40, i.e. much beyond
the maximum time lag shown in figure 1. Likewise, the 2d and 3d autocorrelation functions to not
exhibit any significant finite-size effects on the time intervals for which data are shown in figure 1.

The autocorrelation function of the equivalent-neighbor Heisenberg model (Kittel-Shore model)
can be determined exactly. The model is specified by Hamiltonian (1) with the sum 〈ij〉 now taken
over all distinct pairs of lattice sites. The equation of motion (2) then has the form Ṡj = JSj×ST ,
where ST =

∑
j Sj is a constant of the motion. The time evolution consists of a simple precession

of each spin Sj about the direction of ST , all with the same frequency J |ST | [6]. The T = ∞
autocorrelation function is then determined by an ensemble average over periodic phase-space
trajectories. For N = 2, the result is [7]

C0(t) =
1
2

+
3

2(Jt)3
sin(2Jt)− 3 + 2(Jt)2

4(Jt)4
+

3− 4(Jt)2

4(Jt)4
cos(2Jt). (3)

It is plotted in figure 2 along with the autocorrelation functions for chains with N = 4, 6, 8 sites.
Here the ensemble averaging was done numerically. We observe that for increasing N , the function
C0(t) goes through an increasingly deep minimum and then approaches a constant for t → ∞
which is a monotonically decreasing function of N ; that constant is 1/2 for N = 2 and approaches
the value 1/3 as N →∞. This is in contrast to the sequence of curves for the 1d Heisenberg model
depicted in figure 1, where the long-time asymptotic value of C0(t) goes to zero as N → ∞. The
different behavior is attributable to the fact that the special linear time evolution of the equivalent-
neighbor Heisenberg model does not accommodate any process by which local fluctuations spread
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over the entire system. Note that the time axis in figure 2 is rescaled by
√
N/2, which corresponds

to a rescaling of the interaction strength in the equivalent-neighbor model by the same amount
(J ′ = J/

√
N/2). The connection to the time scale used in figure 1 is thus established if we note

that the coordination number in a d-dimensional hypercubic lattice is 2d.

Figure 2. Spin-autocorrelation function C0(t) = 〈Sj(t) · Sj(0)〉 at T = ∞ of the classical
equivalent-neighbor Heisenberg model. The curves for N = 2 and N = ∞ represent exact
analytic results. The remaining curves represent ensemble averages over K = 250000 (N = 4),
K = 216140 (N = 6), and K = 133151 (N = 10) random initial conditions.

For all finite N , the autocorrelation function of the equvalent-neighbor model approaches its
long-time asymptotic value in a power-law type way: ∼ cos(ωN t)t−αN . For increasing N , the
characteristic exponent αN becomes larger and larger, reflecting the fact that the (power-law) sin-
gularities in the intensity spectrum become weaker and weaker as N →∞. In the thermodynamic
limit, they are wiped out completely, a result dictated by the central-limit theorem. The exact
expression for N →∞ reads

C0(t) =
1
3

+
2
3

[
1− 2

3
(J ′t)2

]
e−(J′t)2/3. (4)

Now C0(t) approaches its long-time asymptotic value in the form of a Gaussian, much more rapidly
than for finite N . Expression (4) is also shown in figure 2.
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