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An efficient surveillance system is a crucial factor in identifying, monitoring

and tackling outbreaks of infectious diseases. Scarcity of data and limited

amounts of economic resources require a targeted effort from public health

authorities. In this paper, we propose a mathematical method to identify

areas where surveillance is critical and low reporting rates might leave epi-

demics undetected. Our approach combines the use of reference-based

susceptible–exposed–infectious models and observed reporting data; We pro-

pose two different specifications, for constant and time-varying surveillance,

respectively. Our case study is centred around the spread of the raccoon

rabies epidemic in the state of New York, using data collected between 1990

and 2007. Both methods offer a feasible solution to analyse and identify

areas of intervention.

1. Introduction
As pointed out in Microbial threats to health: emergence, detection and response [1], the

degree of success of global and national efforts to create public health infrastructure

with effective systems of surveillance and response is a key variable influencing the

future impact of infectious diseases. According to WHO, surveillance is an ongoing,
systematic collection, analysis and interpretation of health-related data essential to plan-
ning, implementation and evaluation of public health practice (http://www.who.int/

immunization_monitoring/burden/routine_surveillance/en/index.html). Sur-

veillance plays a major role in devising public health strategies to curtail the

spread of infectious diseases and early detection remains the first line of defence

in preventing the emergence of novel disease outbreaks. Often, surveillance is

the decisive factor in triggering early intervention [2,3], in order to avoid the

higher public health costs associated with a widespread infection in the case an

outbreak has gone undetected.

The definition of an epidemic/epizootic or outbreak is varied and has a

long history of confusion (see Rosenburg [4] for an account of the history of

the concept of an epidemic). Contemporary discussions have assumed at

least two definitions of epidemic or outbreak occurrence. Childs et al. [5], for

example, consider a rabies outbreak as occurring when the observed number

of cases falls above a baseline for a specified number of consecutive observation

periods and where the average number of cases in a given location determines

the base line. They suggest an above-average reported rate at the county level

for three consecutive months. The other most common definition treats any

occurrence of an infectious disease as an outbreak, where it is detected in a

novel geographical location and poses a significant public health threat, because

of its novel appearance in that location. Throughout this paper, we adhere to

& 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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this latter definition since we are concerned with uncovering

appropriate surveillance strategies for detecting novel occur-

rences of disease.

Resources for infectious disease surveillance are always

in limited supply and any strategy that provides insights

into the optimal guidance of surveillance programmes is

a valued addition to our public health infrastructure [6].

Guidance strategies should include the identification of both

areas and populations that are at increased risk of disease

exposure. This is the key idea associated with the concept of

targeted surveillance (also known as risk-based surveillance)

defined as a surveillance strategy that focuses sampling on

high-risk populations in which specific and commonly

known risk factors exist [7]. The concept of targeted surveil-

lance was first formally introduced following the emergence

of bovine spongiform encephalopathy (BSE) in the UK

during the 1996 epidemic [8]. This idea is also behind the

recently emerging field of model-guided surveillance [9].

In the USA, the Council of State and Territorial Epidemiol-

ogists, in collaboration with the Center for Disease Control

(CDC), maintains a list of notifiable diseases constituting the

National Notifiable Diseases Surveillance System. For human

diseases, healthcare providers are an essential component of

any surveillance programme, but their impact is significantly

reduced when confronted with an epidemic of zoonotic

origin. Monitoring of wildlife reservoirs is an essential com-

ponent of detection but rarely undertaken routinely. What

we understand of zoonotic epidemics is largely constructed

from passive reporting of occurrences gleaned from haphazard

and incomplete surveillance of animal populations usually as

the result of an animal–human interaction [10]. For the pur-

poses of our analysis, the reporting rate (or equivalently the

detection rate) is taken to constitute the fraction of reported

cases over the total number of infections. Reporting rates

vary significantly over both time and space and may deviate

significantly from the true underlying distribution of infections

due to a variety of sources (e.g. variation in the size and extent

of infection clusters, heterogeneity in human and host popu-

lation densities, etc. [11]). However, these factors explain

only partially the spatial and temporal heterogeneity in report-

ing rate. Variation in the implementation and structure of

surveillance programmes can themselves be a significant

source of reporting rate variation and a mapping of different

levels of reporting rate and surveillance efforts across space

or time can help identify specific areas in need of intervention.

A variety of mathematical models are available in the litera-

ture to describe the dynamics of infectious diseases using the

generalized susceptible–exposed–infectious–removed (SEIR)

modelling structure (see, for instance, [12,13] or, for a spatially

continuous model, [14]), and some work has been done at

estimating the reporting rates for some human diseases confer-

ing lifelong immunity [15,16], but little effort has been directed

at elucidating how to incorporate reporting data into models of

surveillance [17], especially from an ecological viewpoint [18].

The goal of this paper is to show how to use reporting data

(both reports of positive and negative occurrences) to identify

geographical areas where surveillance levels are potentially

insufficient to detect outbreaks.

Our approach is intended to provide a useful tool for public

health agents, who monitor critical areas for surveillance and

allocate funds for increased intervention. We introduce two

different methods depending on whether agents have fixed

or time-varying reporting rate data. The first method is based

on a simple, constant reporting rate, intended to model a

constant level of surveillance over time. Considering that

surveillance levels usually change as a consequence of case

detection and local public health concerns, we relax this

assumption in our second method, where we formulate a

reporting rate that changes over time and depends on the

total number of reports (positive and negative) and the esti-

mated host population. Provided that such an estimate is

moderately accurate at any given time, it is possible to track dis-

ease dynamics through a model for infectious spread. The first

approach identifies a surveillance risk, whereas the second one

identifies a surveillance efficacy. The concepts are not mutually

exclusive, and the observed correlation between our results

from the two approaches supports their mutual consistency.

As a consequence, either method can be used to identify

areas where surveillance levels are critical, possibly underas-

sessed and potentially leaving an outbreak unidentified.

Such evaluation relies on comparing the values of computable

parameters (risk or efficacy) across different counties. From the

public health standpoint, the areas identified by the method as

at risk are the ones where additional resources should be allo-

cated for targeted monitoring. The proposed models provide

input for explicit assessment of which counties need active

intervention by public health decision-makers.

The approach we introduce combines process-driven and

observational methods. It is quite general and suitable to a

wide range of infectious disease systems and datasets. More-

over, it has great potential for application to human diseases.

The approach relies on good estimates of the population size

and a good knowledge of the epidemiology of the disease.

Both aspects are crucial, and often poorly specified. In the

case of human diseases, the knowledge of the susceptible

population and mitigated uncertainty about the epidemiolo-

gical parameters of the disease would significantly increase

the accuracy of the method. The model then can serve as

a basis to improve surveillance strategies, particularly in

disadvantaged regions.

For illustrative purposes, we apply our method specifically

to the spread of raccoon rabies virus among its raccoon

(Procyon lotor) hosts in the state of New York. Rabies, a viral

encephalomyelitis specific to mammals, has been a CDC noti-

fiable disease since the mid-1970s. Rabies has the longest

extant record of reports of any zoonotic disease in the USA.

Rabies virus is transmitted from one animal to another usually

by a bite [19,20]. Because its transmission modality is favour-

able to interspecies infection, including human beings, rabies

is a major public health concern. Raccoons are the major terres-

trial vector of the disease in the eastern USA, though many

foxes, bats and skunks carry the disease as well [10,21]. The

potential risks to humans coupled with an extensive database

with high geographical resolution, exact occurrence dates and

knowledge of the species of host involved engenders the appli-

cation particularly relevant and amenable to testing our

methods and approach.

2. Material and methods
2.1. Model
We consider the dynamics of a lethal disease, as described by a

compartmentalized model of susceptible–exposed–infectious

(SEI) type. The model subdivides the population into suscep-

tible, exposed (hosts that have been exposed to the virus but
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not yet infectious) and infectious (host with the capability of

transmitting the pathogen). The spatial resolution of the

model is set at regional level (from township to state). Conse-

quently, the computational model consists of a system of ODEs

S0 ¼ aA� bNS� bIS;
E0 ¼ bIS� bNE� sE;
I0 ¼ sE� aI;
A ¼ Sþ E

and N ¼ Sþ Eþ I

completed by suitable initial conditions. In the above equations,

we denote by b the transmission of pathogen by contact

between a susceptible and an infectious individual, by v the

vaccination rate, by s the reciprocal of the latency period, by

a the reciprocal of the life expectancy of an infectious host.

We assume a density-dependent mortality rate in the

absence of the disease, bN. We denote by a the reproduction

rate, which represents a yearly average, to take into account

the reduced fecundity of juveniles. Seasonality is not explicitly

included here, but could easily be with a time-dependent

reproduction rate [22]. Moreover, we assume that only suscep-

tible and exposed individuals are able to reproduce. Such an

assumption is reasonable for a very aggressive disease in wild-

life, assuming the expected survival of an infectious host much

too short to give birth or care of the offspring. To show the

dynamics of the epidemic model, we ran a simulation of the

SEI model within one single virtual region. We report in

table 1 the model parameter values that are adapted to raccoon

rabies for the eastern USA and have either been drawn from

published values and US Department of Agriculture sources

(http://www.usda.org) or estimated indirectly. In particular,

the birth rate a, the transmission rate b, the latency period

1/s and the infectious period 1/a are taken from literature

[25–29]. The rate of density-dependent mortality, b, is

estimated indirectly to produce a disease-free equilibrium

of 27 000 individuals, corresponding to a density of 11 ani-

mals per km2 (average for raccoons in the eastern USA

[23]) in a region of 2457 km2 (average size of a New York

county, outside the five boroughs of New York city). We

simulate 922 weeks of epizootic. The plot of the temporal

dynamics of the full SEI model (susceptible, exposed, infec-

tious and total population) is available in the electronic

supplementary material.

In order to simplify the dynamics of the SEI system, we

aggregate the model to a planar system in terms of the infectious

individuals I and the total population N. Since A¼ N 2 I,
by summing up the first three equations in the model, we get

N0 ¼ aN � ðaþ aÞI � bNðN � IÞ

and

I0 ¼ sE� aI:

A fourth class of removed could be included in a more

general model, consisting of hosts that recovered from the

disease or have been vaccinated. Since there is no evidence

for natural recovery in rabies, which is our case study in

this paper, and we do not consider vaccination at this level,

the removed class is not considered. However, the following

results are based on an aggregated method, and the use of a

SEIR model would not affect the conclusions.

2.2. Main features of the aggregated model
The aggregated model is not in closed form due to the pres-

ence in the second equation of the term sE. However, the

knowledge of the new infectious sE temporal dynamics is

sufficient to reproduce the dynamics of the full SEI model

by means of the aggregated one. If the new infectious are

known as function of time, their dynamics can be considered

a source term F in the second equation of the aggregated

model, which can be written in the more general form

N0 ¼ aN � ðaþ aÞI � bNðN � IÞ

and

I0 ¼ �aI þF:

To support our claim, we ran a simulation of the reduced

model using as a source term in the second equation the

temporal dynamics of the new infectious sE, obtained by

simulating the full SEI. We compare in figure 1 its dynamics

with those of the aggregated model. We plot the dynamics

of both the total population (figure 1a) and the number infec-

tious (figure 1b). In both pictures, the dashed line represents

the values obtained with the full SEI model, whereas the cir-

cles represent the values obtained with the aggregated

model. The numerical results confirm that the knowledge of

the temporal dynamics of the new infectious sE is sufficient

to reproduce the SEI dynamics with the aggregated model.

A direct stability analysis for the aggregate model is not

feasible. However, we can identify the N-nullcline, namely

the set of points in the plane (N,I ), where N0 ¼ 0, that is

shown in figure 2a. If the number of infectious is constant,

the upper branch of the nullcline is stable, whereas the

lower branch is unstable. Moreover, as expected, the persist-

ence of infectious hosts (i.e. an endemic state) reduces the

carrying capacity of the host.

Different temporal dynamics of the new infectious F

entail complex behaviours of the system in terms of epidemic

outbreak, including persistency and possible extinction of the

host population. We simulated different temporal dynamics

by rescaling the new infectious from the full SEI, as F ¼

z � (sE), with z ¼ 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2. The

resulting trajectories in the phase plane (N,I ) are plotted in

figure 2b. If the growth rate of the newly infectious hosts F

is too large, the population goes extinct along the bisector

of the phase plane N ¼ I (note the different scales on the

axes). Otherwise, the trajectories show different levels of

population drops in epidemic outbreaks, and a recovery

Table 1. Coefficients of the SEI model. The natural death rate is chosen to
be density dependent to provide a carrying capacity compatible with the
published values in literature of 5 – 17 animals per km2 [23,24]. The birth
rate a, the transmission rate b, the latency period 1/s and the infectious
period 1/a are taken from [25 – 29].

a birth rate 2.67 k/f/y

m0 natural death rate variable

b contact rate 1�10 – 4 (a d) – 1

1/s latency period 50 days

1/a infectious period 14 days
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process towards the stable endemic equilibrium on the upper

branch of the N-nullcline.

2.3. Modelling detection rate for surveillance
Effective surveillance within a region amounts to the ability

to identify newly infectious individuals. In the SEI model,

this amounts to the correct assessment of sE, and to estimate

the surveillance levels in the different counties, we need an

accurate evaluation of this value. However, this value is

unknown. We propose to extrapolate the value sE from the

available data in a given observational window, whose

length we denote by t. Specifically, we consider the reported

positive and negative cases. We denote by rþ(t) and r2(t) the

reported positive and negative cases at time t, respectively,

and the total amount of reports (positive and negative)

along the observation window It ¼ [t 2 t, t] are given by

RþðtÞ ¼
X

fs[ItjrþðsÞ=0g
rþðsÞ and R�ðtÞ ¼

X
fs[Itjr�ðsÞ=0g

r�ðsÞ:

Note that the istantaneous reports rþ(t) and r2(t) are 0 for

most times t, according to the reporting frequency of the

public health departments. In what follows, the dependency

on time will be left out.

We introduce a suitable function of the available reports

that we denote with F(Rþ, R2), whose role is to expand

the actual number of reported cases to take into account the

effectiveness of the surveillance procedure, leading to the

extrapolation model

N0 ¼ aN � ðaþ aÞI � bNðN � IÞ

and

I0 ¼ �aI þ FðRþ;R�Þ:

2.4. Compatibility of the extrapolation functions
The extrapolation function F(Rþ, R2) has to satisfy any com-

patibility requirements arising from the disease dynamics

under consideration. Our case study in this paper concerns

raccoon rabies, which is a lethal disease for the host, killing
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Figure 1. Comparison between the temporal dynamics of (a) total population and (b) the infectious for the complete SEIR (dashed line) and the aggregated model
(N, I) (bullets).
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Figure 2. (a) N-nullcline and stability for constant values of infectious: the upper branch of the curve is stable, whereas the lower one is unstable. (b) Trajectories in
the phase plane (N,I ) associated with different temporal dynamics of the new infectious F ¼ z � (sE), with z ¼ 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, and sE
from the complete SEI model. In red, we highlight the trajectory asociated with z ¼ 1, corresponding to the one of the complete SEI model.
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an infected animal within two weeks from the emergence of

symptoms. For a lethal disease, the total population drop

(namely the percentage of animals killed by the first out-

break) is known to be related to the basic reproductive rate

R0 associated with the disease [30], and can be used as a com-

patibility constraint. We would like to observe that estimating

the population drop with this method is not needed for most

human diseases, as public health data regarding the number

of deaths are usually available.

For the SEI model introduced earlier, the basic reproductive

rate is given by

R0 ¼
s

sþ bN
b

a
N;

while the expected population drop [30] is

1� 1

R0
:

The reported values in literature for raccoon rabies R0 lie

between 1.2 and 1.4 [26]. As a consequence, a population

drop between 16% and 28% can be used as a reliable compatibil-

ity constraint for the system

N0 ¼ aN � ðaþ aÞI � bNðN � IÞ

and

I0 ¼ �aI þ FðRþ;R�Þ:

2.5. Modelling extrapolation
We propose here two different extrapolation functions to

model surveillance efficacy that depend upon a family of

parameters. The first models a constant level of surveillance,

whereas the second models dynamic surveillance over time.

We base our analysis on the assumption that an outbreak

actually occurred in every area featuring positive reports.

2.5.1. Constant surveillance
Constant surveillance in time is modelled using only the positive

reports Rþ, together with a linear extrapolation function

Fconst:ðRþÞ ¼
1

g
Rþ:

In the above expression, g is the reporting rate, namely the

percentage of new rabid cases that are actually detected.

Reporting activity varies in space and is also known to be

correlated with the population density [10]. In order to iden-

tify the local surveillance efficacy for a given area, we express

g in terms of the human population density of the area (h)

g ¼ 1þ K
h

� ��1

:

This choice models an increase in the reporting rate with the

human density: in particular, if h is zero then g vanishes, and

as h increases g approaches 1 (that is, in the case where

human population density is infinite, every new infectious

case would be detected). The positive parameter K is a risk

index: the larger its value, the lower the reporting rate for a

given human population density.

Knowing the initial population in a given area, we can

identify the parameter g fulfilling the compatibility require-

ments on the extrapolation function. In order to assess the

level of surveillance in the region, we choose the corresponding

risk index K.

We iterate the procedure over all the areas of interest and

identify the corresponding values for g. This procedure

clearly depends on the epidemic under study. To eliminate

such dependence, we normalize the risk index to a scale

from 1 to 10, where a small value indicates a high level of sur-

veillance in the region, whereas a large value entails a

significant risk of an outbreak to go undetected in the area.

2.5.2. Dynamic surveillance
Dynamic surveillance in time is modelled by using both posi-

tive Rþ and negative R2 reports, combined through a

nonlinear extrapolation function

FdynðRþ;R�Þ ¼
N

Rþ þ R�

� �1=u

Rþ;

where u . 1 is a parameter that represents the surveillance effi-

cacy. The choice of the function Fdyn(Rþ, R2) relies on two

assumptions. First, we want a change in a small number of

total reports to be more significant than a change in a larger

number (a concept similar to diminishing returns in econ-

omics). Then, we assume that the testing procedure has

sensitivity 1 (that is, if we could test all individuals we

would be able to identify all the new infectious cases) and

specificity 1 (we have no false positives). As a consequence,

the function depends also on the total population N.

Also in this case, knowing the initial population, we can

identify the parameteru fulfilling the compatibility requirements

on the extrapolation function. We iterate the procedure over all

the areas of interest and identify the corresponding values

for u. In this case, a large value of u indicates a high level of sur-

veillance in the area, whereas a small value of u highlights a

significant risk that an outbreak can go undetected in the region.

2.6. New York State epidemiological data (1990 – 2007)
On 4 May 1990, the first case of a rabid raccoon was recorded

in the state of New York, in Addison Township, Steuben

County, on the New York/Pennsylvania border, as part of

an advancing wavefront of rabies spread. By the end of

1994, the epizootic had propagated extensively across the

state. The epizootic wave across NY was actually part of a

larger epizootic that began at the boundary between Virginia

and West Virginia in the mid-1970s and spread northeast

through Pennsylvania and Connecticut and southeast to

North Carolina [5], but entering NY in 1990.

At the time of the outbreak, rabies posed a particularly

pressing public health problem with the number of post-

exposure prophylactic treatments increasing from around 70

before the outbreak to over 1200 by 1991 [31]. Consequently,

intensive surveillance and monitoring of wildlife populations

was undertaken by the state and continues today. An extensive

database has been collected by the New York State Department

of Health. Each entry was recorded at the township level (754

locations) from 1990 to the present. The data we use in our

analysis are those positive and negative cases verified by the

New York State Department of Health from 1990 to 2007.

We aggregated the data at the county level, at which sur-

veillance and intervention policies are actually implemented.

Table 2 collects the 56 counties that featured reported cases

of rabid raccoons in the period 1990–2007, their human

population density and the total positive cases. Figure 3

illustrates the progression of the epidemic across the state at
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four different times, in terms of total reported cases at the

county level.

2.7. Estimate of the raccoon population
One of the major limitations in studying wildlife epidemics is

the difficulty in establishing the actual size of the at-risk

population under investigation. Best estimates from the litera-

ture suggest that raccoon density in the eastern USA falls in

the range of 5–17 animals per km2 [23,24].

We consider in this study all 56 counties (table 2) that

featured reported cases of rabid raccoons in the period 1990–

2007. We mitigate the uncertainty about the actual raccoon

population size by drawing, for each county, 50 values from

a normal distribution with mean 11 and s.d. 2 (in order to

cover the variability among the different ranges in the litera-

ture, see [23,24] and references therein). We add a correction

to this distribution by taking into account the human popu-

lation density: according to the New York State Department

of Environmental Conservation (http://www.dec.ny.gov/ani-

mals/9358.html), raccoons are more prone to establish in

areas where the human presence is higher. Suburban/

metropolitan areas are often associated with the highest

recorded raccoon population densities. We thus added an

extra term to the counties with human density above the aver-

age for the state (157.81 individuals per km2), by adding draws

from a normal distribution with mean 0:3
ffiffiffi
h
p

(h being the

human density for the ith county) and s.d. 12. The concerned

counties are Albany, Erie, Monroe, Nassau, Niagara, Rockland,

Schenectady, Suffolk and Westchester. We plot in figure 4 the

minimal (figure 4a) and maximal (figure 4b) initial populations

stochastically generated by the procedure described earlier,

and we report in table 3 the corresponding values.

2.8. Model simulation and risk identification
We ran simulations of the aggregated system with extrap-

olation from the data for all 56 counties with the 50 values

of the initial population described earlier. The reports’ behav-

iour along time seems to suggest the presence of an epidemic

in almost all counties featuring positive reports, with the

exception of Clinton, Hamilton, Suffolk and Warren, where

the scarcity of reports does not allow us to draw evidence.

The results for these counties have thus to be considered

Table 2. New York State epidemiological data (1990 – 2007). Counties, area, human population densities and total reported rabid cases from 1990 to 2007.

county area (km2) density reports county area (km2) density reports

1. Albany 1380 213.45 1547 29. Oneida 3142 74.94 198

2. Allegany 2678 18.64 223 30. Onondaga 2088 219.51 290

3. Broome 1852 108.28 102 31. Ontario 1715 58.44 135

4. Cattaraugus 3393 24.74 237 32. Orange 2173 157.09 236

5. Cayuga 1797 45.61 688 33. Orleans 1013 43.6 208

6. Chautauqua 2751 49.59 191 34. Oswego 2468 49.59 171

7. Chemung 1064 85.59 230 35. Otsego 2598 23.74 114

8. Chenango 2328 22.08 85 36. Putnam 637 150.31 93

9. Clinton 2896 27.59 5 37. Rensselaer 1722 88.58 448

10. Columbia 1678 37.6 306 38. Rockland 515 556.8 120

11. Cortland 1300 37.38 403 39. St Lawrence 7306 15.32 223

12. Delaware 3802 12.64 132 40. Saratoga 2186 91.78 337

13. Dutchess 2137 138.11 265 41. Schenectady 544 269.4 145

14. Erie 2704 351.43 341 42. Schoharie 1621 19.48 160

15. Essex 4962 7.83 40 43. Schuyler 886 21.7 112

16. Fulton 1380 39.91 52 44. Seneca 842 39.6 120

17. Genesee 1282 47.09 117 45. Steuben 3636 27.15 222

18. Greene 1704 28.28 130 46. Suffolk 2362 600.92 17

19. Hamilton 4683 1.15 2 47. Sullivan 2582 28.65 98

20. Herkimer 3776 17.06 87 48. Tioga 1355 38.22 232

21. Jefferson 3294 33.92 223 49. Tompkins 1233 78.27 415

22. Lewis 3341 8.06 99 50. Ulster 3007 59.11 273

23. Livingston 1658 38.8 169 51. Warren 2253 28.1 34

24. Madison 1715 40.49 119 52. Washington 2191 27.86 198

25. Monroe 1707 430.78 124 53. Wayne 1564 59.95 465

26. Montgomery 1062 46.81 95 54. Westchester 1295 713.1 164

27. Nassau 743 1796.16 67 55. Wyoming 1544 28.12 121

28. Niagara 1355 162.25 285 56. Yates 974 25.28 86
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with care. We assumed that at the beginning of the epizootic

the host population is entirely susceptible and at equilibrium,

and that an epidemic has actually taken place in the counties

included in the study. As a consequence, a drop in the popu-

lation occurred that was compatible with the epizootic of the

disease. We tested both the static and the dynamic model

approaches, by running the SEI model with sampled values

for g and u. Different values for g and u produce different tem-

poral dynamics for the total population and different

population drops (figure 5b,d). We sampled values of g

between 0 and 1, and values of u between 1 and 7. For all 56

counties, we identify for all values of the initial population,

0
1–50
51–100
101–200
201–400
401–1000
1001–1600

(a) (b)

(c) (d)

Figure 3. Total reported cases aggregated by county at different times. (a) 6 May 1991, (b) 30 November 1992, (c) 21 June 1994 and (d) 31 December 2007.

0
1–10000
10001–20000
20001–40000

(a) (b)

40001–50000
50001–80000
80001–130000

Figure 4. (a) Minimal and (b) maximal initial population stochastically generated in the 56 counties included in the study.
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the ranges of the parameters that produce population drops

between 16% and 28% during the first outbreak.

Knowing the initial population, we can then assess the

level of risk for each county (labelled by i ¼ 1, . . . , 56) for

the constant surveillance model. We choose the risk index

Ki
m, obtained algebraically from the midpoint of the compat-

ibility interval for g. If the compatible values of g for the ith
county lie in the interval Gi ¼ ðg i

min;g
i
maxÞ, the corresponding

risk index is given by Ki
m ¼ hi/g

i
mð1� g i

mÞ, where hi is the

human population of the county, and g i
m is the midpoint of

the interval Gi. The procedure clearly depends on the epi-

demic under study. In order to eliminate such dependence,

we normalize the risk index to a scale from 1 to 10. Hence,

we introduce for the ith county a surveillance risk ri, which

is defined as the natural logarithm of Ki
m weighted by its

maximum over all counties. The corresponding surveillance

risk for th ith county is then given by

ri ¼ 10� logðKi
mÞ

max
i

logðKi
mÞ
;

where a small value of ri indicates a high level of surveillance

in the county, whereas a large value of ri entails a significant

risk of an epidemic going undetected in the area.

In a similar manner, we can assess the surveillance effi-

cacy for the dynamic surveillance model. In this case, we

consider as indicator for the surveillance efficacy in the ith
county, the value of ui corresponding to the midpoint of the

interval associated with the initial population. A large

value of ui indicates a high level of surveillance in the area,

whereas a small value of ui highlights a significant risk that

an epidemic will go undetected in the region.

Finally, the values of ri and ui can be plotted on a geo-

graphical map to get a comprehensive view of the global

risk across the state.

3. Results
Detailed results are shown for Albany County. This county has

a very high count of reports, probably associated with the pres-

ence of the rabies diagnostic laboratory of the Wadsworth

Center (New York State Health Department). We would like

to observe that the presence of this large facility might

induce bias in the estimated surveillance risk for the neighbour-

ing counties. However, the observed disease dynamics are not

different from what was observed in the majority of other

counties. Figure 5a,c shows, respectively, for constant and

dynamic surveillance, the curves obtained connecting the

values of the parameters (g and u) paired with the associated

population drop. The dashed blue line corresponds to the

lower bound for the initial raccoon population, whereas the

red line corresponds to the upper bound. The intersections of

the two curves with the horizontal lines at 16% and 28%

drop locate the intervals, where the compatibility constraints

are satisfied. For static surveillance, we have g [ ð0:02; 0:05Þ
in the case we believe that the raccoon population is on the

higher end of the estimate, and g [ ð0:12; 0:23Þ for the lower

end. As we can see the lack of overlap between the compatibil-

ity intervals associated with the minimal and maximal initial

population implies that optimal surveillance levels can be

potentially very different. The importance of an accurate esti-

mate of the initial raccoon population is crucial. A similar

Table 3. New York State: estimate of raccoon population. Minimal and maximal initial raccoon population for the counties included in the study.

county min. max. county min. max. county min. max.

1. Albany 10 595 24 885 20. Herkimer 29 039 60 441 39. St. Lawrence 56 409 1 21 406

2. Allegany 16 463 43 054 21. Jefferson 26 845 47 734 40. Saratoga 11 646 34 663

3. Broome 14 253 31 771 22. Lewis 25 472 51 688 41. Schenectady 4171 11 343

4. Cattaraugus 19 482 51 551 23. Livingston 11 322 25 528 42. Schoharie 10 948 25 644

5. Cayuga 11 567 28 961 24. Madison 11 431 26 676 43. Schuyler 6519 13 585

6. Chautauqua 15 383 40 411 25. Monroe 14 077 30 749 44. Seneca 5295 14 056

7. Chemung 7043 19 532 26. Montgomery 5163 15 227 45. Steuben 26 508 52 381

8. Chenango 17 840 33 385 27. Nassau 8600 16 983 46. Suffolk 21 985 46 092

9. Clinton 19 015 44 168 28. Niagara 11 861 23 499 47. Sullivan 18 035 38 966

10. Columbia 11 193 23 194 29. Oneida 16 844 49 377 48. Tioga 8029 19 435

11. Cortland 7285 22 220 30. Onondaga 14 216 36 543 49. Tompkins 9703 18 054

12. Delaware 22 355 61 437 31. Ontario 13 526 25 470 50. Ulster 20 425 46 220

13. Dutchess 15 692 33 017 32. Orange 14 761 41 116 51. Warren 14 664 35 641

14. Erie 24 051 56 638 33. Orleans 7136 14 544 52. Washington 14 131 34 818

15. Essex 31 369 66 867 34. Oswego 13 904 39 270 53. Wayne 11 001 26 300

16. Fulton 6647 22 492 35. Otsego 17 512 40 891 54. Westchester 14 462 25 374

17. Genesee 7491 19 424 36. Putnam 5270 10 650 55. Wyoming 10 081 24 834

18. Greene 10 976 26 937 37. Rensselaer 11 556 26 893 56. Yates 5669 14 404

19. Hamilton 31 505 78 448 38. Rockland 4850 9914
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argument can be drawn for u in the dynamic surveillance

model, as shown in figure 5c.

Figure 5b,d shows different time series for the total raccoon

population associated with different surveillance scenarios. We

believe that the outbreak that occurred in Albany County was

typical and we expect disease dynamics consistent with the

values of R0 in the literature. For a population of roughly

60 000 raccoons, we can observe the drop caused by the out-

break, some damped oscillations and a slow recovery to the

endemic equilibrium carrying capacity.

In figure 6a,c, we have comprehensive plots for g and u

for the estimated intervals for all the 56 counties alphabeti-

cally ordered. The same level of surveillance can produce

completely different interpretation of the disease dynamics:

for instance, a value g ¼ 0.07 is associated with an outbreak

so violent that it leads to extinction if the initial population

is the minimal one, and at the same time with a complete

absence of outbreak in the case where the initial population

is the maximal one. Such a feature is shared by almost all

the counties when a constant level of surveillance is assumed

(figure 6a), with the exception of Clinton and Suffolk. In the

case of dynamic surveillance, in contrast, only 12 counties do

not feature an overlap between the intervals of u correspond-

ing to minimal and maximal initial population (figure 6c).

Moreover, among those 12, only two feature a significant

gap comparable with the length of the smaller interval

(Albany and Schenectady).

Since the actual raccoon population is not known with abso-

lute certainty, we choose to geographically map (figure 6b,d) the

values of ri and ui corresponding to the maximal estimated

initial population. This is a conservative choice, justified by the

consideration that the higher the population, the higher the

risk (and relative consequences in terms of public health) of an

undetected epidemic.

Finally, a somewhat expected duality between the intrinsic

surveillance risk r associated with the constant extrapolation

and the surveillance efficacy u associated with the dynamic

extrapolation is apparent, and can be assessed directly from

the risk and efficacy mappings: areas with low surveillance

risk display higher levels of surveillance efficacy.

4. Discussion
Surveillance is a key element in detecting, monitoring and

studying infectious disease outbreaks over time and space.

In this paper, we present some methodological aspects that

can be used to evaluate the impact of localized surveillance

for infectious diseases and help devising public health

strategies. Intervention is based on information and the aim
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Figure 5. Albany county. (a,b) Constant surveillance, (c,d ) dynamic surveillance. (a) Population drops in Albany county as a function of the surveillance accuracy g
for the estimated minimal and maximal population. (b) Temporal dynamics of the total population for different surveillance accuracies, given a maximal level as
initial condition. (c) Population drops in Albany county as a function of the surveillance efficacy u for the estimated minimal and maximal population. (d ) Temporal
dynamics of the total population for different surveillance efficacies, given a maximal level as initial condition. In (a – d), the horizontal dashed lines identify the
range of population drop expected for raccoon rabies.
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of this paper is to provide some of the information to

decision-makers. As an illustration to the methodology,

we showed an example based on a real dataset, consisting

of positive and negative reported cases of rabid raccoons

in the state of New York over a period spanning from 1990

to 2007.

We introduce two methods, both based on the idea of com-

bining process-driven models with an observational approach,

to take advantage of the features of both. The first method is

based on a simple, constant reporting/detection rate, intended

to model a constant level of surveillance over time. Consider-

ing that surveillance levels usually change because of news

effects and public health concerns over possible outbreaks

[18], we relax this assumption in our second model, where

we formulate a reporting/detection rate that changes over

time and depends on the total number of reports (positive

and negative) and the estimated host population. Provided

that such an estimate is accurate at any given time, it is pos-

sible to track disease dynamics through a model for disease

spread [12]. With each of the two methods, we are able to

identify locations where surveillance levels are critical and

can potentially leave an outbreak unidentified.

The first method identifies surveillance risk, whereas the

second one identifies a surveillance efficacy. An expected

negative correlation between risk and efficacy emerged

(20.5652384). Besides being intuitive, such correlation is

actually a sign that the two approaches are consistent, and

either one can be used to identify areas at greater risk to

which resources should be allocated in priority. The dynamic

surveillance method (which assesses surveillance efficacy)

provides results that are less sensitive to the initial population

size. This aspect is very promising in view of extending the

approach presented here to human diseases, where accurate

accounts of the total population, with high resolution in

space and more stable self reporting rates are available.

Two significant assumptions underlay our analyses. The

first pertains to possible scenarios for the initial population

size (before the first cases were recorded), and the second is

that an epidemic actually occurred in each county where

there was a positive reported case. We note that the first

assumption is less limiting in the instance of human diseases.

Since our study focuses on raccoon rabies, an a priori knowl-

edge about the epidemiology of the disease is well known

and established [29]. This is not a limiting aspect as long as

the methodology is applied to extant diseases, but could

prove problematic when applied to a newly emerging pathogen

for which the epidemiology is not yet available. In this case, the

method should be adapted by introducing some stochasticity in
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Figure 6. (a,c) Compatibility intervals for minimal and maximal initial raccoon population for the 56 New York counties with reported positive cases. Counties are
numbered in alphabetical order matching table 1. (a) Constant surveillance, (c) dynamic surveillance. (b,d) Maps of surveillance risk and efficacy for the 56
New York counties with reported positive cases. (b) Surveillance risk map associated with constant surveillance. Small values indicate an high level of surveillance in
the region, whereas large values entail a significant risk of an epidemic going undetected in the area. (d ) Surveillance efficacy map associated with dynamic surveillance.
Large values indicate a high level of surveillance in the area, whereas small values highlight a significant risk that an epidemics can go undetected in the region.
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the key model parameters such as the transmission rate and the

latency period.

Our work has the potential to be extended at both the meth-

odological and applied level. For instance, the raccoon rabies

surveillance analysis can potentially benefit from the inclusion

of information regarding vaccinations programmes. Oral

Rabies Vaccination (ORV) was initiated during the collection

of our data (J. E. Childs 2000, personal communication) and

may have affected, for instance, Essex and Clinton counties as

suggested by a slight decline in the number of reports in

those counties after ORV establishment. Unfortunately, we do

not know if these modest declines are due to ORV or simply

the decline is cases as the epizootic moved through the

county. Very little is known about the rate of transition of indi-

viduals from the susceptible to the immune class through

artificial immunization and we cannot, at this point, include

such dynamics in our modelling. Investigating the efficacy of

ORV programmes and verifying their eventual impact on dis-

ease dynamics might help better understanding of targeted

surveillance, although it is unclear whether the conclusions

we reached in our work will be sensitive to this extension.

Although uncertainty in outbreak size is taken into

account by estimating system trajectories for different levels

of R0 [21] and of initial host population [23], the model can

be further generalized by including randomness in some of

the parameters. A current work in progress involves esti-

mation of parameters in a full Bayesian hierarchical setting.

Combining the information from previous studies (prior eli-

citation) with the evidence arising from observational data

(likelihood), we are able to produce estimates and uncertainty

assessment for all the model parameters. This form of model-

ling bears directly on our understanding of the underlying

disease process. Nonetheless, however the results can be

incorporated also into the surveillance setting.

In future work, one could also estimate optimal levels of

surveillance, by maximizing an utility function that depends

on the social or environmental benefits of detecting an epi-

demic and on a penalty term with the costs associated with

implementing surveillance policies. Furthermore, writing a

stochastic model, possibly with the introduction of a spatial

dynamics not considered in the present work [14,32–34],

will allow us to actually estimate parameters and optimal sur-

veillance levels in a likelihood framework. Finally, we also

envision applications to other types of diseases where accu-

rate estimates for the host population are available (for

instance, some infectious diseases in humans).
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