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Regular and Chaotic Time Evolution in Spin Clusters

Niraj Srivastava , Charles Kaufman and Gerhard Müller

Department of Physics, University of Rhode Island, Kingston RI 02881, USA

We calculate spin-autocorrelation functions (as time averages over chaotic trajectories) and their intensity
spectra for clusters of two classical spins, interacting via a nonintegrable Hamiltonian. The long-time behav-
ior observed includes both power-law decay and persistent oscillatory components, resulting in an intensity
spectrum with power-law singularities and discrete lines.

The dynamics of clusters of two or more classical spins, vectors of fixed length which interact
via a prescribed Hamiltonian, is a powerful yet convenient way to investigate the nature of classical
chaos and its possible manifestations in the corresponding quantum systems [1-5]. The convenience
is due to the relative straightforwardness of the technical problem; the method is powerful because
the phase space is compact and the energy strictly bounded, and so truncations or approximations,
which might obscure the essence of the problem, can be avoided. In previous work [3-5] we have
studied the nature of the trajectories for various Hamiltonians, their geometric structure, as well as
the existence and analytic nature of invariants of the classical motion. We are continuing our study
of these systems, and report here new results on time correlation functions and spectral properties
of classical 2-spin clusters.

We consider the Hamiltonian

H =
∑

α=x,y,z

{
−JαSα1 Sα2 +

1
2
Aα

[(
Sα1
)2 +

(
Sα2
)2]}

. (1)

The time evolution of the spin vectors Sf is determined by Hamilton’s equation,

dS`/dt = −S` × ∂H/∂S` = {H,S`}, ` = 1, 2. (2)

That the variables S` correspond to spins is guaranteed by the requirement that the Poisson
brackets of their components satisfy the commutation rules of angular momentum variables,

{Sα` , S
β
`′} = −δ``′

∑
γ

εαβγSγ` . (3)

The classical 2-spin cluster model (1) represents an autonomous Hamiltonian system with two
degrees of freedom and is therefore completely integrable if there exists an independent integral of
the motion in addition to H. We have previously shown [3] that such an integral exists provided
that the interaction parameters satisfy the relation

(Ax −Ay)(Ay −Az)(Az −Ax) +
∑

αβγ=cycl(xyz)

J2
α(Aβ −Aγ) = 0. (4)

Autocorrelation functions for any component of one of the vectors S` may be defined as averages
over initial conditions (phase averages), or as averages over a trajectory that evolves from a single
initial condition (time averages):

〈Sα` (t)Sα` (0)〉T = lim
T→∞

1
T

∫ T

0

dt′Sα` (t+ t′)Sα` (t′), (5)
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and
〈Sα` (t)Sα` (0)〉P = (4π)−2

∫
dS1(0)

∫
dS2(0)Sα` (t)Sα` (0), (6)

where α = x, y, z and ` = 1, 2. Here we concentrate on time averages. It has previously been
suggested [6, 7], that the long-time asymptotic behavior of the spin-autocorrelation function for
chaotic trajectories is of the power-law type: ∼ tβ−1, β < 1. If that is the case, then the inten-
sity spectrum, which is (as a consequence of the Wiener-Khinchin theorem) equal to the Fourier
transform of the autocorrelation function, has a singularity ∼ ω−β as ω → 0. In previous work
[8] we have already found power-law decay with β < 0 of autocorrelation functions for particular
chaotic trajectories of the 2-spin model (1); in that case the intensity spectrum was non-divergent
in the low-frequency limit. Here we report calculations for different trajectories of the same general
model with very slow autocorrelation decay and consequent low-frequency divergence in the inten-
sity spectrum. Figure 1 shows the (normalized) autocorrelation function 〈Sx1 (t)Sx1 〉T /〈(Sx1 )2〉T up
to time lag t = 200 obtained via a time average over an interval of size T = 100000 from the time
series of a chaotic trajectory as specified in the caption. It exhibits a more or less uniform decay
to zero. The inset to figure 1 shows the corresponding intensity spectrum as calculated from the
autocorrelation function with time lag up to t = 8192. It has an infrared power-law divergence
with exponent β ' 0.2. This is consistent with the ∼ t−0.8 decay of the autocorrelation function
observed at intermediate times.

Figure 1. Normalized autocorrelation function 〈Sx
1 (t)Sx

1 〉T /〈(Sx
1 )2〉T and (inset) its Fourier

transform for the (chaotic) trajectory which starts at θ1 = 1.0, θ2 = 2.0, φ1 = 3.0, φ2 = 4.0
of the nonintegrable classical 2-spin model specified by Hamiltonian (1) with parameter values
Jx = Jy = 1, Jz = 0, Ax = 2, Ay = −1, Az = 0.

Figure 2 shows the function 〈Sx1 (t)Sx1 〉T /〈(Sx1 )2〉T and its intensity spectrum for a different
chaotic trajectory and different model parameters (see caption for specifications). In this case, the
autocorrelation function shows persistent high-frequency oscillations in addition to a slow power-
law decay (∼ t−0.6). These features are reflected in the intensity spectrum by a power-law infrared
divergence, ∼ ω−0.4, and a sharp peak at ω ' 0.467, respectively. A closer look (by stretching the
frequency scale) reveals that this peak actually has some structure, which is dominated by two
narrowly separated lines. They are the cause of the clearly distinguishable beats in the oscillations
of the autocorrelation function shown in figure 2. These oscillations including the beats persist up
to time lags of t = 4096 without noticeable attenuation.

The structure of the correlation function can be understood in terms of trapping of the phase
point in a small region of its allowed phase space, by nearly but not quite intact tori, as discussed
for example by Hanson, Cary and Meiss [9] in the context of area preserving maps. Considering
the effect of a single boundary torus, they concluded that decay ∼ t−2.05 would occur; considering
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Figure 2. As in figure 1, for the chaotic trajectory which starts at θ1 = 0.471239, θ2 = π/2, φ1 =
−π/4, φ2 = 0.6988059 and parameter values Jx = Jy = 1, Jz = 0, Ax = −0.7, Ay = 0.7, Az = 0.

a hierarchy of tori, Meiss and Ott [10] find decay like ∼ t−0.96. While these theoretical predictions
seem to accommodate our previous results (more rapid decay, ∼ t−1.5) [8] fairly well, the examples
presented here involve considerably more slowly decaying time correlation functions, implying the
existence of an even stronger trapping mechanism, which is yet to be understood.
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No. DMR-86-03036 and by a Grant-in-Aid of Research from Sigma Xi, The Scientific Research
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