Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model

Megan K. Luther
University of Rhode Island

Louis B. Rice

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/php_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Available at: http://dx.doi.org/10.1128/AAC.03126-15
Ampicillin in Combination with Ceftaroline, Cefepime, or Ceftriaxone Demonstrates Equivalent Activities in a High-Inoculum Enterococcus faecalis Infection Model

Megan K. Luther, Louis B. Rice, and Kerry L. LaPlante

Ampicillin–ceftriaxone combination therapy has become a predominant treatment for serious Enterococcus faecalis infections, such as endocarditis. Unfortunately, ceftriaxone use is associated with future vancomycin-resistant enterococcus colonization. We evaluated E. faecalis in an in vitro pharmacodynamic model against simulated human concentration–time profiles of ampicillin plus ceftaroline, cefepime, ceftriaxone, or gentamicin. Ampicillin–cefpime and ampicillin–ceftaroline demonstrated activities similar to those of ampicillin–ceftriaxone against E. faecalis.

Enterococcus faecalis is one of the most common causes of infective endocarditis in hospitalized and/or immunocompromised patients. The combination regimen of ampicillin plus ceftriaxone has averted high-level aminoglycoside resistance (HLAR) and improved the safety profile in E. faecalis endocarditis treatment over the traditional regimen of ampicillin plus gentamicin (1–4). Accordingly, ampicillin and ceftriaxone were recently added as an option to treat both HLAR and non-HLAR E. faecalis endocarditis, according to national guidelines (5). While this regimen has increased safety for patients with serious E. faecalis infections, it may create long-term collateral damage, as ceftriaxone carries an increased risk of vancomycin-resistant Enterococcus (VRE) gastrointestinal colonization (6, 7). This increase in VRE colonization is likely due to ceftriaxone’s high biliary excretion and is associated with increased risk for VRE bacteremia (6–9). Cefepime and ceftaroline are cephalosporins with different spectra of activity, distinct structures, and less biliary excretion; therefore, they should carry less risk of VRE colonization (6, 10).

Ampicillin in combination with ceftazidime, cefepime, or ceftaroline demonstrated activities similar to those of ampicillin–ceftriaxone against E. faecalis.
Changes in bacterial growth (log$_{10}$ CFU/ml) at 24 h were compared by analysis of variance with Tukey’s post hoc test. A $P$ value of $<0.05$ was considered significant. All statistical analyses were performed using SPSS statistical software (SPSS 22, Inc., Chicago, IL).

Against both isolates, ampicillin-cefepime and ampicillin-cefortaroline demonstrated greater activity than that of ampicillin-gentamicin at 24 h (mean difference in log$_{10}$ CFU/ml, 2.29 to 3.69; $P = 0.02$ for all) (Fig. 1). The activity of ampicillin-ceftriaxone was not significantly different than that of ampicillin-cefortaroline or ampicillin-cefepime. Ampicillin-gentamicin was no more active than ampicillin alone against either strain, likely due to high-level aminoglycoside resistance of HH22 and once-daily gentamicin dosing.

Against the gentamicin-susceptible E. faecalis OG1X, ampicillin alone and all ampicillin-cephalosporin combinations demonstrated bactericidal activity. Due to the considerable activity of ampicillin alone, ampicillin-cephalosporin combinations were not significantly more active. Ampicillin-gentamicin demonstrated regrowth at 24 h.

We used a high-dose once-daily gentamicin regimen in this study, similar to that recommended by recent European guidelines for enterococcal endocarditis (24). Previous studies have found no difference in humans or rabbits with gentamicin intervals of once, twice, or thrice daily (25, 26). Of importance, penicillins can accelerate the degradation of aminoglycosides in vitro (41). It remains possible, however, that activity against the gentamicin-susceptible isolate could have been increased by using gentamicin every 8 or 12 h. Additionally, an increase in other antibiotics, such as ceftaroline every 8 h, might increase activity against enterococci, particularly those with higher ceftaroline MICs.

Against our high-level aminoglycoside-resistant (HLAR), β-lactamase-producing ampicillin-susceptible isolate (HH22), ampicillin alone demonstrated bacteriostatic activity, but combinations with cefepime or ceftaroline demonstrated bactericidal activity at 24 h. These ampicillin-cefepime and ampicillin-ceftaroline combinations were more active than ampicillin alone (mean difference in log$_{10}$ CFU/ml, 2.49; 95% confidence interval [95% CI], 0.46 to 4.52; $P = 0.01$, and 3.62; 95% CI, 1.59 to 5.65; $P = 0.001$). Ampicillin-ceftriaxone did not significantly increase activity over that of ampicillin alone but was also not significantly different from the other cephalosporin combinations. Against this HLAR isolate, there was regrowth at 24 h with all monotherapy regimens and ampicillin-gentamicin. Despite regrowth, no increases in MIC were seen with any combination or ampicillin monotherapy. There was no regrowth with ampicillin-cefepime or ampicillin-ceftaroline.

Enterococcal β-lactamase production has a negligible effect on ampicillin MIC at standard testing inocula but raises the MIC when tested at high inocula (27). The significant differences we observed in the activities of ampicillin alone against the two strains in this study are consistent with these prior studies of HH22. Our results are encouraging in that the reduced efficacy of ampicillin against the β-lactamase-producing strain was overcome by the addition of cefepime or ceftaroline. Our study is limited by the use of two strains and the 24-h duration. Additional research will be required before the efficacy of cefepime and ceftaroline against E. faecalis endocarditis in the clinical setting can be determined.

Overall, ampicillin-cephalosporin combinations demonstrated the greatest activity against both strains. Activity with dual-β-lactam therapy may be isolate dependent and likely depends on the isolate’s susceptibility to ampicillin alone. While the rate of susceptibility to ampicillin remains at $>95\%$ in E. faecalis, up to 60% of bloodstream isolates in the United States in 2010 were gentamicin resistant, necessitating other synergistic treatment options (28–30). The synergy of ampicillin-cephalosporin combinations is thought to be due to complementary penicillin binding protein (PBP) saturation (31). Cephalosporins bind to PBP 2 and 3 at low concentrations, providing total saturation. Ampicillin binds to PBP 4 and 5, inhibiting cell wall synthesis (31). This same mechanism has been shown with amoxicillin-cefotaxime and amoxicillin-ceftriaxone (31, 32). The synergistic effect demonstrated in our study between ampicillin-cefepime and ampicillin-ceftaroline is predictable and increases the possibilities of additional treatment options for enterococcal endocarditis.

Previous studies have associated ceftriaxone use with both VRE colonization and bacteremia (7, 8). The high biliary excretion of ceftriaxone selects for the survival of VRE; this increased colonization does not occur with other cephalosporins that do not undergo significant biliary excretion (6, 7, 9, 11). The high levels of ceftriaxone in the gastrointestinal tract (up to 67% biliary excretion) inhibit colonic microbiota, but due to their intrinsic resistance to cephalosporins (along with ampicillin and vancomycin resistance), VRE growth is left unchecked (7, 33). The complex interactions between colonic flora, innate immunity, antimicrobial spectrum, and gastrointestinal antimicrobial concentration likely all contribute to VRE colonization, but these relationships have not been clearly determined (7, 33). Antenterococcal and antianaerobic activities are important for VRE colonization, but VRE expansion does not always correlate with the numbers of anaerobes present (10, 34). Both gut anaerobes and Gram-negative bacteria interact with VRE growth and the immune regulation of VRE (34, 35). In hospitalized patients, rates of VRE acquisition can be as high as 41% (30). Bacteremia with HLAR enterococci, which has demonstrated increased mortality over that with non-HLAR bacteremia, was also associated with previous third-generation cephalosporin use, likely ceftriaxone (36).

### Table 1 MICs by Etest against two strains of E. faecalis

<table>
<thead>
<tr>
<th>Drug</th>
<th>MIC (mg/liter) (CLSI susceptibility)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OG1X, aminoglycoside susceptible</td>
</tr>
<tr>
<td></td>
<td>HH22, high-level aminoglycoside resistant</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0.19 (S)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>&gt;256*</td>
</tr>
<tr>
<td>Cefepine</td>
<td>3*</td>
</tr>
<tr>
<td>Ceftaroline</td>
<td>0.047*</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>12 (S)</td>
</tr>
</tbody>
</table>
|                 | S, susceptible per CLSI guidelines; R, resistant per CLSI guidelines; *., no CLSI breakpoints for cefalosporins against enterococci.

* S, susceptible per CLSI guidelines; R, resistant per CLSI guidelines. *, no CLSI breakpoints for cefalosporins against enterococci.
Cefepime carries less risk of promoting VRE colonization in animals and has not been associated with VRE in humans (6, 10). This may be due to the low biliary excretion (~95% renal excretion) and lack of antianaerobic activity (10, 19). The narrower spectrum of activity of ceftaroline, coupled with its renal excretion and high activity in this study, make ampicillin-ceftaroline a promising combination for *E. faecalis* endocarditis. Despite intrinsic resistance, ceftaroline monotherapy has demonstrated *in vitro* and *in vivo* activity against *E. faecalis* (37). The ampicillin-ceftaroline combination has previously demonstrated synergy against *E. faecalis* in an *in vitro* time-kill study (38). Further study of VRE colonization with ceftaroline is needed, as the antianaerobic activity is ~4- to 8-fold greater than that of ceftriaxone, but biliary excretion is lower (~6% excreted in feces) (39, 40).

In our study, ampicillin-cephalosporin combinations demonstrated the most activity against both strains of *E. faecalis* over 24h.
h. Ampicillin-cefepime and ampicillin-ceftaroline significantly increased activity over that of ampicillin alone for one strain. Dual-β-lactam regimens should be investigated further, not only for activity, but also with regard to colonization and infection with vancomycin-resistant enterococci.

ACKNOWLEDGMENTS
We thank Kayla Babcock and Thomas Ryhal for laboratory assistance. Cefaroline research powder was provided by Forest Laboratories, Inc.

The research reported in this publication was supported in part by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant 2P20GM103430.

This material is the result of work supported with resources at the Providence Veterans Affairs Medical Center.

The content of this paper does not represent the views of the U.S. Department of Veterans Affairs or the U.S. Government.

Megan K. Luther declares research funding from Pfizer and Cubist.

Luis B. Rice declares no conflicts of interest. Kerry L. LaPlante declares research funding, an advisory position, and/or consultancy with Merck (Cubist), Allergan (Forest), Cempra, Melinta, The Medicines Company, Bard-Daval, Marvao Medical, and Pfizer.

REFERENCES
Thuny F, Tornos Mas P, Vilacosta I, Zamorano JL, Erol C, Nihoyan-
GY, Mestres CA, Piepól MF, Punjabi PP, Repezi C, Rosenhek R, Siebens K, et al. 2015. 2015 ESC guidelines for the management of infective Endo-
carditis of the Task Force for the Management of Infective Endo-
carditis of the European Society of Cardiology (ESC). Endorsed by: Euro-
pean Association for Cardio-Thoracic Surgery (EACTS), the European
http://dx.doi.org/10.1093/eurheartj/ehv319.
25. Dahl A, Rasmussen RV, Bundgaard H, Hassager C, Bruun LE, Laurids-
faecalis infective endocarditis: a pilot study of the relationship between
duration of gentamicin treatment and outcome. Circulation 127:1810–
1817. http://dx.doi.org/10.1161/CIRCULATIONAHA.112.001170.
Crespo E, Pigrau C, Pahissa A. 1996. Treatment of experimental endo-
carditis due to Enterococcus faecalis using once-daily dosing regimen of
gentamicin plus simulated profiles of ampicillin in human serum. Anti-
27. Murray BE, Church DA, Wanger A, Zscheck K, Levison ME, Ingerman
MJ, Abrutyn E, Mederski-Samoraj B. 1986. Comparison of two beta-
lactamase-producing strains of Streptococcus faecalis. Antimicrob
Kallen A, Limbago B, Fridkin S, National Healthcare Data Net-
work (NHSN) Team and Participating NHSN Families. 2013. Antimicrobial-
resistant pathogens associated with healthcare-associated infections: sum-
mary of data reported to the National Healthcare Safety Network at the
Centers for Disease Control and Prevention, 2009–2010. Infect Control
Persing DH, Cockerill FR, Thompson RL. 2001. Natural history of
vancomycin-resistant enterococcal colonization in liver and kidney trans-
2001.20784.
30. Sidler JA, Battegay M, Tschudin-Sutter S, Widmer AF, Weisser M.
2014. Enterococci, Clostridium difficile and ESBL-producing bacteria: ep-
emiology, clinical impact and prevention in ICU patients. Swiss Med
Wkly 144:w14009.
effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimi-
2001. Fractional maximal effect method for in vitro synergy between
amoxicillin and ceftriaxone and between vancomycin and ceftriaxone
against Enterococcus faecalis and penicillin-resistant Streptococcus pneu-
renal and biliary excretion and effect on the colon microflora. J Antimi-
Mechanisms by which anaerobic microbiota inhibit the establishment in
mice of intestinal colonization by vancomycin-resistant Enterococcus. J
DeMatteo RP, Pamer EG. 2008. Vancomycin-resistant enterococci ex-
http://dx.doi.org/10.1038/nature07250.
NJ, Kim EC, Oh MD, Choe KW. 2010. Clinical features, risk factors and
outcomes of bacteremia due to enterococci with high-level gentamicin
resistance: comparison with bacteremia due to enterococci without high-
10.3346/jkms.2010.25.1.3.
37. Jacqueline G, Caillon J, Le Mabecque V, Miegeville AF, Ge Y, Biek D,
Batard E, Potel G. 2009. In vivo activity of a novel anti-methicillin-
resistant Staphylococcus aureus cephalosporin, cefaroline, against vanco-
mycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit
endocarditis model: a comparative study with linezolid and vancomycin.
AAC.00984-09.
38. Werth BJ, Abbott AN. 2015. The combination of ampicillin plus cefaro-
line is synergistic against Enterococcus faecalis. J Antimicrob Chemother
activity of cefaroline against 623 diverse strains of anaerobic bacteria.
1128/AAC.01788-09.
40. Rymarz A, Brodowska-Kania D, Gomolka M, Jozefczak-Bergier E,
Dzierzanowska M, Niemczyk S. 2014. Vancomycin dosing in patients
http://dx.doi.org/10.1007/s11255-014-0707-0.
41. Trissel LA. 2005. Trissel’s stability of compounded formulations. Amer-
ican Pharmacists Association, Washington, DC.