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ABSTRACT 

 

The Atlantic silverside (Menidia menidia) is one of the numerically most 

abundant fish species in estuaries along the East Coast of North America, but its 

ecology during the first two weeks post-hatch has not been described.  Therefore 

ecological investigations into appropriate sampling methods, preferred habitats, 

feeding ecology and growth of these larvae will contribute valuable information to our 

knowledge base for this species.  The upper reaches of two Rhode Island, USA, 

estuaries, with differing levels of anthropogenic inputs, were the study sites for this 

project.  Previous studies have shown that during early spring M. menidia adults ripen 

for spawning by feeding exclusively on zooplankton.  The zooplankton community in 

Upper Point Judith Pond (UPJP) is dominated by polychaete larvae, indicating a 

eutrophic environment, whereas the Upper Pettaquamscutt River (UPR) is dominated 

by crustaceans, indicating a relatively pristine environment.  To assess and describe 

the habitat ecology of M. menidia larvae during their first two weeks of life in the 

littoral zone, four goals were set:  (1) determine depth distribution of M. menidia 

larvae from both estuaries: (2) assess abundance and distribution of M. menidia larvae 

between estuaries; (3) compare feeding habits of the larvae in the two estuaries 

through gut content analysis; (4) compare growth of larvae in the two estuaries via 

age-length relationships based on otolith analysis.  Of the four sampling devices used 

to collect larvae, the circular quadrat, which sampled the land-water interface, the 

aquarium net, which sampled water from 0.3 – 0.4 m depth, and the small plankton 

net, which sampled water from 0.4 – 0.5 m depth collected many larvae.  A large 

plankton net, which sampled water > 1 m depth, did not.  This indicates that M. 



 
 

menidia larvae can be found from the shoreline interface to 0.5 m depth.  Analysis of 

collection data indicated a zero-inflated Poisson distribution, suggesting a patchy 

distribution of larvae in the field.  Gut content of larvae between estuaries differed 

markedly, with 76.2% of the larval diet at UPR consisting of copepod eggs and 72.5% 

of that at UPJP consisting of copepod nauplii.  The slopes of the age-length 

regressions of the larvae between estuaries were not significantly different, indicating 

that growth rates did not differ.  These results provide new information on the feeding 

habits, growth, and distribution of M. menidia during its first two weeks of life in the 

field. 
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PREFACE 

 This thesis is being submitted in manuscript format.  There is one chapter for 

this thesis and two appendices.  The title of the manuscript is, “Ecology of Menidia 

menidia larvae in two temperate estuarine littoral habitats”.  This manuscript will be 

submitted to Estuaries & Coasts, with co-authors Gavino Puggioni and David 

Bengtson. 

 Appendix I describes a laboratory experiment designed to determine if size 

classes of Menidia menidia larvae have a depth preference when residing in the littoral 

zone.  Appendix II lists the catch data for Menidia menidia larvae collected from the 

Upper Pettaquamscutt River and Upper Point Judith Pond. 
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INTRODUCTION 

Estuaries are physically complex habitats due to influences from the ocean and 

freshwater drainage.  Simultaneously, they serve as nursery habitats for a critical 

phase of the life cycle of numerous species of fish.  To provide a favorable habitat for 

larval and juvenile development, many adult fish spawn near coastal habitats (i.e. tidal 

inlets, bays, passes, and estuaries) (Patillo et al. 1997).  Other adult fish species 

migrate from the open ocean to estuaries to spawn.  Some species of adult fish spawn 

in structured habitat so that the risk of predation is reduced and food availability for 

larvae is high (Beck et al. 2001; Boesch and Turner 1984; Heck and Thoman 1981; 

Rooker and Holt 1997; Weinstein 1979).  Such habitats include shallow, near-shore 

environments that may or may not have submerged aquatic vegetation. 

The Atlantic silverside (Menidia menidia) is an estuarine species that occurs 

from Nova Scotia to Florida (Middaugh 1981) and is one of the numerically most 

abundant fish species in those estuaries.  Although M. menidia has no commercial 

fishery value, it serves as a forage species for commercially important fish such as 

bluefish, striped bass, and Atlantic mackerel (U.S. Fish and Wildlife 1983).  From 

March to December, M. menidia occupy estuaries while during the winter months they 

migrate to open water.  The life cycle and spawning behavior of M. menidia have been 

described in detail (Conover and Kynard 1984; Koltes 1984; Middaugh et al. 1981; 

Moore 1980).  For example, Middaugh (1981), showed that M. menidia spawn during 

on a lunar cycle.  In addition, Bengtson et al. (1987) investigated the relationship 

between maternal length and egg diameter.  Research investigating the habitat ecology 

of M. menidia has been restricted to the juvenile and adult life stages (Barkman et al. 
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1981; Bengtson 1984).  Adults spawn on grasses in the intertidal zone (Middaugh 

1981).  In Rhode Island, USA estuaries, spawning occurs between May and early July 

(Huber and Bengtson 1999). 

In the upper reaches of two local estuaries, the Pettaquamscutt River (UPR) 

and Point Judith Pond (UPJP), the zooplankton communities are quite different in 

early spring, when adult M. menidia return from the winter in an emaciated condition 

and feed on zooplankton to ripen for spawning (Bengtson 1982; 1984).  The 

zooplankton community in UPR is dominated by crustaceans at this time, indicating a 

fairly pristine environment, and UPJP is dominated by polychaete larvae, indicating a 

eutrophied environment (Bengtson 1982).  Given the propensity of marine larval fish 

to feed on copepods, an a priori assumption might be that M. menidia in UPR feed on 

higher quality prey than do those in UPJP.  Volson (2012) has examined effects of 

nutritional quality of zooplankton prey from these two estuaries on adult M. menidia 

and their eggs, along with the hatching length of their larvae after incubation in the 

laboratory.  Surprisingly, length-at-hatch was greater for fish from UPJP than it was 

for fish from UPR in each of two years.  It remains unclear whether greater length-at-

hatch translates into different growth rates of the larvae during the first two weeks of 

life in the field. 

Although we know a great deal about M. menidia juveniles, adults and 

developing embryos in the field, we know nothing about the habitat ecology of larvae 

during their first 2-3 weeks of life in the estuary (e.g. depth distribution in the 

estuaries).  Further, the feeding ecology of larval M. menidia, in the field, is 

undocumented (U.S. Fish and Wildlife 1983).  Therefore, one focus of this research 
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was to determine food consumption by M. menidia larvae during their first two weeks 

post-hatch in the littoral zone.  Since this is one of the numerically most abundant fish 

species in estuaries along the East Coast of the U.S., investigations of larval ecology 

will contribute valuable information to our knowledge base for this species. 

The goals of this study were to:  (1) determine the depth distribution of M. 

menidia larvae; (2) compare abundance and distribution of M. menidia larvae between 

estuaries; (3) compare feeding habits of the larvae in the two estuaries through gut 

content analysis; (4) compare growth of larvae in the two estuaries via age-length 

relationships based on otolith analysis.  Distribution and abundances of M. menidia 

larvae were determined by collecting the species in the littoral zone from both 

estuarine environments using four sampling devices at different depths.  Gut content 

analysis and the age-length relationship using otoliths of the M. menidia larvae were 

determined from field samples.  The null hypotheses tested were:  all of the devices 

can be used to collect M. menidia larvae from the littoral zone in both estuaries; there 

is no difference in densities of M. menidia larvae between estuaries; there is no 

difference in the diet of M. menidia larvae between estuaries; and there is no 

difference in growth (age-length relationship) of M. menidia larvae between estuaries. 

MATERIALS AND METHODS 

I. Field Sampling 

1.  Site Description 

Field collections took place in the upper portions of two estuaries:  Point Judith 

Pond (UPJP) and the Pettaquamscutt River (UPR).  The estuaries are approximately 5 

km apart, located in Washington County, Rhode Island, USA and have different 
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physical characteristics (Table 1).  Point Judith Pond is a shallow coastal lagoon, one 

of seven along the southern coast of Rhode Island, connected to Block Island Sound 

by a breachway (Lee 1980).  The Pettaquamscutt River is a flooded river valley that is 

approximately 227 hectares (Gaines 1975). 

 2.  Abundance and Distribution Sampling 

 To determine distribution patterns and densities, i.e., abundance per cubic 

meter, of M. menidia larvae in the field, a variety of sampling methods were 

investigated.  The sampling methods included four sampling devices:  (1) a cylindrical 

quadrat with a diameter of 0.5 m to sample the shoreline interface between land and 

water, (2) an aquarium net, 19.05 cm X 26.03 cm with 500-µm mesh, to collect 

samples in water that was about 0.35 m deep, (3) a plankton net with a diameter of 0.2 

m, length of 0.6 m, and 200-µm mesh to collect samples in water from 0.4 - 0.5 m 

deep, and (4) a second plankton net with a diameter of 0.5 m, length of 1.8 m, and 

100-µm mesh to collect samples in water that was slightly greater than 1 m deep.  Due 

to the different dimensions of the devices, each was only used at the depths mentioned 

above. 

 At both estuaries, collections occurred seven days after the May 20, 2012 new 

moon and continued for two weeks and again for a second two-week interval seven 

days after the June 4, 2012 full moon.  Sampling began at 6:30 AM and continued 

throughout the day until all 64 tows and plots were complete or until weather 

conditions prohibited further sampling.  Collections starting at 6:30 AM were 

important for determining foraging habits as this is after M. menidia larvae have begun 

to feed for the day.  Each device was used at four locations within UPJP and UPR.  



6 
 

Collections on and after June 14th in UPJP were sampled from one location because 

this estuary had the same benthic structure and was treated as one location.  The 

quadrat was haphazardly tossed four times at the shoreline interface.  Both plankton 

nets were pulled along 10 m transects in replicates of four.  Finally, the aquarium net 

was pushed along a 10 m transect in replicates of four.  However, on and after June 14 

the aquarium net was pushed along a 1 m transect in replicates of four.  Typically, the 

devices were used one at a time in each location; not alternated.  The quadrat sampled 

0.01 m3 of water at the shoreline interface.  For field collections made before June 

14th, the volume of water filtered by the aquarium net was 0.49 m3.  For field 

collections made on and after June 14th, the aquarium net filtered 0.049 m3 of water.  

The small plankton net filtered 0.32 m3 of water.  Finally, the large plankton net 

filtered 1.98 m3 of water. 

 Larvae that were collected for laboratory analysis were euthanized using MS-

222 mixed in seawater (90 g/mL), then preserved in either 95% ethanol (for otolith 

analysis) or 10% straight formalin mixed in seawater (for gut content analysis).  Each 

larva collected in the field was measured to the nearest hundredth of a millimeter for 

total length (TL) using a dial caliper. 

III. Laboratory Work 

 1.  Gut Content Analysis 

 Foraging habits of M. menidia larvae were determined by gut content analysis 

of preserved M. menidia larvae collected from the field.  In the laboratory, the gut was 

gently pulled apart and examined in a 50-mm Sedgwick-Rafter counting cell under a 

compound microscope.  Each prey item was tallied and identified to the lowest 
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possible taxon.  From UPJP, a total of 58 guts were examined.  From UPR, a total of 

51 guts were examined.  All larvae dissected, for both estuaries, were between 4.18 

mm and 9.36 mm (TL).  The number method was used to show food type as a 

percentage of the total gut contents of each larva (Zacharia and Abdurahiman 2004).  

Each taxon was represented as a percent of the total gut contents for all the larvae 

dissected for each estuary. 

 2.  Otolith Analysis 

 In the lab, one of the sagittal otoliths was extracted from each larva, placed on 

a microscope slide with one drop of immersion oil (Grade A from Cargille 

Laboratories), photographed using a light microscope camera (at 100X or 400X 

magnification), and the rings counted using methods of Barkman (1978).  Otoliths 

were first examined using light microscopy (400 X magnification) to count daily 

growth rings to determine age (days).  Measurements of diameters of the sagittae were 

taken as a proxy for growth.  At a later time, a second reading was completed by the 

same observer from the photographs taken of the sagittal otoliths.  Six pre-hatch rings 

were subtracted from the total number of daily rings on each sagittal otolith (Barkman, 

1978).  The sagittae did not require additional processing because the core was visible.  

The relation of the number of daily rings (age) to larval length (TL) was determined 

for each estuary.  The slopes of these linear relationships provided an estimate of 

growth (mm/day) of larvae in each of the estuaries.  All measurements were in 

micrometers (µm) using the computer software program ImageJ® (Abràmoff et al. 

2004).  Seventeen larvae were examined from UPJP and 19 larvae from UPR. 
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IV. Statistical Analysis 

The relationship between age and length was determined for each estuary and 

the slopes of these regressions were analyzed with an analysis of covariance 

(ANCOVA).  A chi-square analysis was applied to the gut content data to determine 

any significant difference in feeding habits of M. menidia larvae between estuaries. 

 Distribution and abundance data collected from the field were analyzed using a 

Zero-inflated Poisson model (White and Bennetts 1996).  This type of generalized 

linear model assumes that the outcomes that have a zero value are due to two 

processes, collecting larvae vs. not collecting larvae.  Not collecting larvae results in 

an outcome of zero.  If larvae were collected, then the outcome becomes count data. 

Logit(Yp = extra 0) = β�01 + β�quadratHp + β�aquarium netIp + β�small plankton netJp+ β� large plankton 

netKp 

Log(E(Yp)) = Log (µp) = β�0 + β�siteAp + β�dateBp + β�depthCp + β�quadratDp+ β�aquarium netEp+ 

β�small plankton netFp+ β� large plankton netGp 

Where Yp is equal to the number of larvae collected, β�01  and β�0 are the intercepts, and 

β�quadrat, aquarium net, small plankton net, large plankton net, site, date, depth are the coefficients for each 

predictor.  The predictors included in the part of the model that analyzes when a larva 

was not collected are Hp which represents the quadrat, Ip which represents the 

aquarium net, Jp which represents the small plankton net, and Kp which represents the 

large plankton net.  The intercept was set at zero for this part of the analysis.  The 

predictors included in the part of the model that analyzes when larvae were collected 

are Ap which represents the sites (UPR and UPJP), Bp which represents the duration of 

sampling (date), Cp which represents the depth of the water, Dp which represents the 
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quadrat, Ep which represents the aquarium net, Fp which represents the small plankton 

net, and Gp which represents the large plankton net.  For this part of the analysis, the 

intercept could not be set at zero. 

RESULTS 

I.  Field Abundance and Distribution 

Average density and the number of larvae collected by each device are shown 

in Table 2.  Only one M. menidia larva was collected with the large plankton net.  The 

quadrat, aquarium net, and small plankton net all collected more larvae compared to 

the large plankton net.  This indicates that M. menidia larvae are generally not in 

waters greater than one meter depth, but can be found in waters less than 0.5 m depth 

in the littoral zone.  Further, the quadrat, the aquarium net, and small plankton net can 

all be used to collect M. menidia larvae from the littoral zone of estuaries. 

Distribution and abundance of M. menidia larvae from the field are represented 

as the frequency of occurrence of the number of larvae collected (Figure 2).  The 

distribution of the data follows a Poisson curve with a high frequency of zeros (Figure 

2).  This suggests that M. menidia larvae have a patchy distribution in the littoral zone.  

It also shows how often and how many M. menidia larvae were collected per tow 

(Figure 2).  For field collections made before June 14th, up to 69 larvae were collected 

per tow (Figure 2A).  For field collections made on and after June 14th, up to fifteen 

larvae were collected per tow (Figure 2B). 

The Zero-inflated Poisson analysis shows which predictors in this study 

influenced the number of larvae collected, as well as which predictors influenced the 

zeros in the data (Tables 3, 4).  Before June 14th, the presence of larvae in the littoral 
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zone in both estuaries correlated with date, depth, and all sampling devices (Table 3).  

By the middle of June, fewer larvae were collected from the littoral zone in UPR and 

UPJP compared to the beginning of this sampling season (β�date = - 0.10, χ2 = 46.01, p 

< 0.0001, Table 3).  The number of larvae collected increased with depth in the littoral 

zone (β�depth = 1.34, χ2 = 35.16, p < 0.0001, Table 3).  The quadrat, aquarium net, and 

small plankton net collected larvae in statistically significant amounts (β�quadrat = 

291.32, χ2 = 131.62, p < 0.0001, β�aquarium net = 6.73, χ2 = 243.79, p < 0.0001, β�small 

plankton net = 7.63, χ2 = 58.92, p < 0.0001, Table 3), as indicated by the positive 

coefficients.  However, the large plankton net did not catch M. menidia larvae in 

statistically significant amounts (β� large plankton net = - 2.22, χ2 = 17.71, p < 0.0001, Table 

3), as indicated by the negative coefficients.  The quadrat (β�quadrat = 2024.99, χ2 = 

1959.45, p < 0.0001, Table 3) and the aquarium net (β�aquarium net = 36.29, χ2 = 2748.10, 

p < 0.0001, Table 3) influenced the presence of zeros in the data. 

 For field collections made on and after June 14th, depth, the quadrat, and the 

aquarium net influenced the number of larvae collected from the littoral zone in UPR 

and UPJP (Table 4).  The number of larvae collected increased with depth in the 

littoral zone (β�depth = 5.28, χ2 = 12.96, p < 0.05, Table 4).  The quadrat and aquarium 

net did not consistently collect larvae in statistically significant amounts (β�quadrat =       

- 247.90, χ2 = 4.03, p < 0.05, β�aquarium net = - 59.65, χ2 = 4.68, p < 0.05, Table 4), as 

indicated by the negative coefficients.  This suggests that larvae were most likely in 

waters between 0.4 and 0.5 meters depth in the littoral zone.  No predictors 

significantly influenced the presence of zeros for this data. 
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 One of the goals of this project was to determine if the density of M. menidia 

larvae differed between the estuaries.  The results of the Zero-inflated Poisson analysis 

for site indicated that UPR had a higher density of M. menidia larvae compared to 

UPJP, for the entire sampling period. 

II. Gut Content Analysis 

Feeding habits of M. menidia larvae between estuaries were significantly 

different (χ2 = 622.7, p < 0.0001).  In UPJP, copepod nauplii made up 72.5% of total 

gut content (Figure 3).  In UPR, M.menidia larvae consumed mostly copepod eggs, 

which made up 76.2% of the total gut content (Figure 3). 

III. Otolith Analysis 

 Results from the ANCOVA show a significant relationship between length of 

larvae and age for fish from both estuaries (p < 0.0001, Figure 4).  Based on the age-

length regressions, larvae grow 0.65 mm/day in UPR and 0.66 mm/day in UPJP 

(Figure 4).  The results from the ANCOVA show no significant difference (p = 

0.8147) in the age-length relationship of larvae between estuaries (Figure 4). 

DISCUSSION 

This is the first report of the field ecology of M. menidia larvae, even though 

laboratory studies on this larval species have been conducted for decades (e.g., Austin 

et al. 1975; Middaugh and Lempesis 1976; Morgan and Prince 1977; Deacutis 1978; 

Bengtson 1985; Lankford et al. 2001).  Field collections from the littoral zone of UPR 

and UPJP during the summer of 2012 showed that this larval fish can be collected at 
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the shoreline interface to waters 0.5 m deep, can be collected with a variety of 

sampling devices, and displays a patchy distribution.  The two estuaries sampled 

differed with regard to abundances of M. menidia larvae and the prey consumed by 

those larvae, but the larvae grew at the same rates regardless of those differences. 

The quadrat, aquarium net, and small plankton net collected more larvae 

compared to the large plankton net with the aquarium net collecting the most M. 

menidia larvae both in absolute and per-volume terms.  Hildebrand (1922) and 

Middaugh et al. (1981) documented M. menidia adults spawning in shallow grassy 

areas.  This study suggests that M. menidia larvae stay in the littoral zone after hatch.  

Lindsay et al. (1978) sampled ichthyoplankton in the Indian River, Delaware, USA 

and noted that the low abundance of atherinid larvae was not representative of their 

high abundance as juveniles and adults.  Of the mid-channel water column that they 

sampled from 0 – 45 cm, atherinid larvae occurred mostly within the top 5 cm (their 

study included M. menidia).  They concluded, based on data from Breder and Rasquin 

(1950) on the confamilial species Atherina stipes, that atherinid larvae are positively 

phototaxic, which explains their presence very close to the surface.  Their finding that 

larvae can occasionally be collected from mid-channel (as well as our finding that one 

larva was collected at a depth > 0.5 m) indicates that some larvae stray from the 

apparently preferred shallower water. 

Occupation of very shallow waters by M. menidia larvae likely provides them 

with protection from predators.  Pomatomus saltatrix, Morone saxatilis, Morone 

americana, and Caranx hippos have all been collected from the Pettaquamscutt River 

estuary and used in predation experiments on larval and juvenile Menidia beryllina 



13 
 

(inland silverside) (Gleason and Bengtson 1996).  In Point Judith Pond, predators 

include Morone saxatilis and Fundulus majalis (Pfeiffer-Herbert 2007). 

Menidia menidia larvae collected from the field followed a zero-inflated 

Poisson model, suggesting that these larvae are not distributed evenly in the littoral 

zone, but have a patchy distribution.  Many fishes display a patchy distribution 

because of ocean processes (Pepin et al. 2003) and social behavior (Maynou et al. 

2006), such as spawning, predator pressures, and feeding.  Understanding why marine 

larvae have a patchy distribution has been a focus of many studies.  Hewitt (1981) 

proposed that larvae display a patchy distribution because it benefits schooling, a 

behavior displayed in the juveniles and adult life stages.  Shaw (1960, 1961) showed 

that M. menidia begin to school around 11 - 12 mm SL; later research by Shaw and 

Sachs (1967) showed that optomotor responses, proposed to be involved with 

schooling, are present in newly hatched M. menidia.  Since schooling is widely 

thought to reduce predation pressure, the development of such behavior likely allows 

M. menidia larvae to enter water that they occupy as newly hatched larvae.  Future 

research should include collecting spatial data to determine where these patches of 

larvae are in the littoral zone and the size of each group. 

 Results from the gut content data show that M. menidia larvae in UPR 

consume mostly copepod eggs, whereas those in UPJP consume mostly copepod 

nauplii.  Volson (2012) found a high abundance of calanoid copepods in UPR and a 

varying zooplankton community in UPJP, where from early spring (April to early 

May) to late spring (June), the dominant zooplankton present switches from 

polychaete larvae to copepods.  Most of the sampling for this study took place in late 
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spring, when the polychaete larvae had already settled and were not available to, or 

not preferred by, the larvae.  The exact species of copepod that the eggs came from, 

for this study, was not determined. 

 These findings agree with previous research on M. menidia.  In the Pataguanset 

Estuary in Connecticut, Cadigan and Fell (1985) found that one of the most commonly 

occurring food items in the guts of adult M. menidia were copepods.  Further, research 

by Gilmurray and Daborn (1981) showed that small-sized M. menidia consumed 

smaller zooplankton species, such as copepods.  In UPR and UPJP it may be that size 

class of M. menidia is also an important factor in prey selection.  Fernandez-Diaz et al. 

(1994) showed that mouth size of larval Sparus aurata correlates to the size of prey it 

consumes.  For this study, the prey items found in the gut contents of larval M. 

menidia may be due to the available zooplankton in the estuary and mouth size. 

It is necessary to stress the importance of future monitoring of the zooplankton 

communities in both of these estuaries, because of impacts due to anthropogenic 

influences.  Increased nutrient levels in the water can change the community 

composition of estuaries (Pinckney et al. 1998), including UPJP and UPR.  UPJP has a 

high abundance of polychaete larvae (Bengtson 1982), and is more eutrophic than 

UPR (Table 1).  However, as stated previously there are shifts in the dominant species 

of zooplankton in this estuary, which can lead to different predators entering the 

estuary (Purcell 2012).  For example, during the sampling year of 2005, an unusually 

high abundance of Lion’s Mane jellyfish were present in UPJP (Volson pers. comm.).  

Few to no M. menidia adults and juveniles were collected in seine hauls that spring.  It 

was determined that the jellyfish were consuming the zooplankton community in 
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UPJP.  The mechanisms that regulate this phenomenon are not well understood, but 

eutrophication has been suggested as one factor (Purcell 2012). 

It has long been known that otoliths can be used as a proxy for fish growth.  

The significant age-length relationship for M. menidia larvae in the current study has 

been previously shown in work by Barkman (1978). 

Between estuaries, there was no significant difference in the age-length 

relationship of M. menidia larvae.  According to the regression coefficients in the age-

length equations, the larvae grow at 0.65 - 0.66 mm/d.  Barkman et al. (1981) found 

that over a length range of about 12 – 90 mm, M. menidia grow at 0.84 mm/d, based 

on an otolith age-length relationship, whereas Mulkana (1964) estimated a growth rate 

of 7-11 mm/month (0.23 – 0.37 mm/d) based on length-frequency analyses of a 

cohort.  Volson (2012) found that larval length at hatch was significantly greater for 

M. menidia larvae in UPJP than UPR.  The results from the present study indicate that 

a greater length at hatch does not translate into faster growth for larval M. menidia.  

Temperature influences the growth of fish.  In particular, for M. menidia, temperature 

is one factor that determines sex and size during the larval stage (Conover and Kynard 

1981).  Research by Conover and Kynard (1981) showed that warmer temperatures, 

17o – 25o C, produce more male fish compared to cooler temperatures, 11o – 19oC, 

which produced more females.  In addition, the male fish produced in those warmer 

temperatures tended to be smaller in size compared to female M. menidia (Conover 

and Kynard 1981).  Water temperatures in UPJP are cooler than the water 

temperatures in UPR, even during the summer months (Volson 2012) when sampling 

occurred for this study (Table 1).  Despite a larger length-at-hatch for M. menidia in 
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UPJP, the cooler water temperature in this estuary may have resulted in a slower 

growth rate for the larvae.  As a result, larval growth was not greater in UPJP 

compared to UPR. 

Nutritional quality of the prey items might also influence the growth of M. 

menidia larvae.  Previous research has shown that zooplankton from UPJP are more 

lipid-rich compared to zooplankton from UPR (Volson 2012).  On the other hand, 

copepod eggs, with more yolk, might be expected to have a higher lipid content than 

do copepod nauplii.  In any case, this difference in gut content between the estuaries 

did not influence larval growth during the time samples were collected for this study.  

Furthermore, the number of copepod nauplii and copepod eggs consumed by M. 

menidia larvae on an hourly or daily timescale in both estuaries is not known.  As a 

result, any further remarks concerning the effect of the nutritional quality of prey on 

M. menidia larvae cannot be made. 

The “growth-mortality” hypothesis states that larger fish have higher 

survivability than smaller fish (Anderson 1988).  However, Gleason and Bengtson 

(1996) found that for inland silversides (Menidia beryllina) the smaller individuals 

have higher survival rates than larger individuals.  If M. menidia larvae in UPJP are 

not growing significantly faster, once in their larval life stage, compared to larvae 

from UPR, then we cannot expect larvae in UPJP to have a higher survival rate.  

Despite having no difference in growth, and thus survival of M. menidia larvae, 

between the estuaries, density of larvae did differ.  UPR had higher densities of M. 

menidia larvae compared to UPJP. 
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Summary 

 The larval life stage is an important life stage to the recruitment of adult 

populations.  Studies on this fish are not important simply because of its abundance, 

but its role as a forage fish for fisheries species and how these fish influence the 

energetics of estuaries.  The goal of this study was to describe the larval ecology of M. 

menidia.  Larvae from both estuaries displayed a patchy distribution and were 

collected with the quadrat, aquarium net, and small plankton net.  Diet differed 

between estuaries with UPR larvae eating mostly copepod eggs and UPJP larvae 

consuming mostly copepod nauplii.  The growth of larvae collected in UPR was not 

significantly greater than that of larvae collected from UPJP, indicating that a larger 

length at hatch, based on the previous study of Volson (2012) does not translate into 

faster growth in the larval life stage.  We hope that the initial information presented 

here will stimulate estuarine researchers to further examine the larval ecology of this 

important component of estuarine ecosystems. 

.



 
 

Table 1.  Physical parameters of the Upper Pettaquamscutt River and Upper Point Judith Pond from May to July of 2012 from URI 
Watershed Watch. 

Parameters Time Depth (m) Upper Pettaquamscutt River Depth (m) Upper Point Judith Pond 
Temperature May 2012 0.1 19.5 0.5 19.8 
(o Celsius) Jun 2012   24 

 
21 

  Jul 2012   27   25.3 
  Average: 24   22 

Salinity May 2012 0.1 16.5 0.5 - 
(ppt) Jun 2012 

 
15 

 
27.5 

  Jul 2012   16   30.5 
  Average: 16   29 

Fecal Coliform May 2012   < 10 
 

478 
(per 100 mL) Jun 2012   < 10 

 
189 

  Jul 2012   < 10   84 
Enterococci May 2012   < 10 

 
124 

(per 100 mL) Jun 2012   < 10 
 

20 
  Jul 2012   124   30 
Dissolved Phosphorus May 2012 0.5 5 0.5 7 

(µg/L) Jun 2012   < 3   8 
  Jul 2012   4   29 
Ammonium-Nitrogen May 2012 0.5 45 0.5 60 

(µg/L) Jun 2012   40   45 
  Jul 2012   25   75 

Total Phosphorus May 2012 0.5 16 0.5 42 
(µg/L) Jun 2012   23   72 

  Jul 2012   35   107 
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Table 2.  Description of catch data for each sampling device used in the Upper Pettaquamscutt River (UPR) and Upper Point Judith 
Pond (UPJP) before June 14, 2012 (Table A) as well as on and after June 14, 2012 (Table B).  Also included in each table are 
descriptions of the volume of water filtered by each sampling device. 
 
 A. 

  Volume water 
sampled per tow 

Total Number of Larvae Collected Average Density of Larvae (# fish / m3) ± S.E. 

 
UPR UPJP UPR UPJP 

Quadrat 0.01 m3 33 2 0.23 ± 1.43 0.01 ± 0.10 
Aquarium Net 0.49 m3 152 311 2.55 ± 6 10.11 ± 25.30 

Small Plankton Net 0.32 m3 35 3 0.05 ± 0.21 0.11 ± 0.76 
Large Plankton Net 1.98 m3 0 1 0 0.01 ± 0.07 

 
 
 B. 

 Volume of water 
sampled per tow 

Total Number of Larvae Collected Average Density of Larvae (# fish / m3) ± S.E. 
UPR UPJP UPR UPJP 

Quadrat 0.01 m3 8 1 0.05 ± 0.33 0.02 ± 0.11 
Aquarium Net 0.049 m3 25 24 6 ± 33.97 20.16 ± 47.57 

Small Plankton Net 0.32 m3 2 0 0.07 ± 0.47 0 
Large Plankton Net 1.98 m3 0 0 0 0 
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Table 3.  The parameter estimates for the Zero-inflated Poisson model from field 
samples collected before June 14, 2012.  The top table includes parameters from the 
ZIP model that analyzes all data values greater than zero, i.e. when a larva was 
collected.  Site refers to the Upper Pettaquamscutt River and Upper Point Judith Pond.  
Date represents the duration of sampling, May 30, 2012 until June 13, 2012.  The 
Wald Chi-Square statistic tests if the probability of collecting a larva is significantly 
influenced by site, depth, date, the quadrat, the aquarium net, the small plankton net, 
and the large plankton net.  The bottom table includes the parameters influencing the 
probability of having a count of zero in the data.  The Wald Chi-Square statistic tests if 
the probability of not collecting a larva is significantly affected by each of the 
sampling devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 
 
 
 
 
 
 
 
 

Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits Wald Chi-Square Pr > Chi Sq 

Intercept 0 0.0000 0.0000 0.0000 0.0000 . . 

Site 1 -0.7790 0.1007 -0.9763 -0.5816 59.85 <.0001 

Date 1 -0.1039 0.0153 -0.1339 -0.0739 46.01 <.0001 

Depth (m) 1 1.3441 0.2267 0.8998 1.7884 35.16 <.0001 

Quadrat 1 291.3240 25.3932 241.5542 341.0939 131.62 <.0001 

Aquarium Net 1 6.7282 0.4309 5.8836 7.5728 243.79 <.0001 

Small Plankton Net 1 7.6333 0.9945 5.6842 9.5824 58.92 <.0001 

Large Plankton Net 1 -2.2153 0.5264 -3.2471 -1.1835 17.71 <.0001 

Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq 

Intercept 1 -17.2746 0.3014 -17.8653 -16.6839 3285.32 <.0001 

Quadrat 1 2024.991 45.7462 1935.330 2114.652 1959.45 <.0001 

Aquarium Net 1 36.2855 0.6922 34.9288 37.6421 2748.10 <.0001 

Small Plankton Net 0 62.2735 0.0000 62.2735 62.2735 . . 

Large Plankton Net 0 0.0000 0.0000 0.0000 0.0000 . . 
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Table 4.  The parameter estimates for the Zero-inflated Poisson model from field 
samples collected on and after June 14, 2012.  The top table includes parameters from 
the ZIP model that analyzes all data values greater than zero, i.e. when a larva was 
collected.  Site refers to the Upper Pettaquamscutt River and Upper Point Judith Pond.  
Date represents the duration of sampling, June 14, 2012 until June 25, 2012.  The 
Wald Chi-Square statistic tests if the probability of collecting a larva is significantly 
influenced by site, depth, date, the quadrat, the aquarium net, the small plankton net, 
and the large plankton net.  The bottom table includes the parameters influencing the 
probability of having a count of zero in the data.  The Wald Chi-Square statistic tests if 
the probability of not collecting a larva is significantly affected by each of the 
sampling devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
Analysis Of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq 

Intercept 0 0.0000 0.0000 0.0000 0.0000 . . 

Site 1 1.4755 0.5281 0.4404 2.5105 7.81 0.0052 

Date 1 -0.0371 0.0646 -0.1636 0.0895 0.33 0.5658 

Depth (m) 1 5.2823 1.4675 2.4060 8.1585 12.96 0.0003 

Quadrat 1 -247.903 123.5552 -490.067 -5.7396 4.03 0.0448 

Aquarium Net 1 -59.6478 27.5598 -13.664 -5.6315 4.68 0.0304 

Small Plankton Net 1 -16.8952 9.2335 -34.9926 1.2021 3.35 0.0673 

Large Plankton Net 0 1.7209 0.0000 1.7209 1.7209 . . 

Analysis Of Maximum Likelihood Zero Inflation Parameter Estimates 

Parameter DF Estimate Standard Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq 

Intercept 1 8.6700 8.4818 -7.9541 25.2940 1.04 0.3067 

Quadrat 1 -571.863 849.9277 -2237.69 1093.965 0.45 0.5011 

Aquarium Net 0 146.905 173.1981 -486.367 192.5570 0.72 0.3963 

Small Plankton Net  -17.5081 27.4089 -71.286 36.2123 0.41 0.5230 

Large Plankton Net 0 0.0000 0.0000 0.0000 0.0000 . . 
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Figure 1:  Map and aerial photographs of the upper portions of the Pettaquamscutt River estuary (left image) and Point Judith Pond 
(right image).  Arrows point to the approximate sampling locations in each estuary. 
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Figure 2:  The frequency of occurrence of the total number of Menidia menidia larvae 
collected from the Upper Pettaquamscutt River (UPR) and Upper Point Judith Pond 
(UPJP).  Graph A represents field collections made before June 14, 2012; while Graph 
B represents field collections made on and after June 14, 2012.  For both graphs, red 
triangles represent the probability estimates following the Zero-inflated Poisson 
model.  The blue dots, in each graph, represent the observed relative frequencies of the 
total number of larvae collected from the field.  Both graphs also show how many 
Menidia menidia larvae were collected from the field in one tow. 
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     A. 

    B. 
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Figure 3:  Gut contents of Menidia menidia larvae for UPR (n = 51) and UPJP (n = 
58).  Each taxon is represented as a percent of the total gut contents for all larvae 
collected in each estuary.  Results from the chi-square analysis show a significant 
difference in feeding habits of Menidia menidia larvae (p < 0.0001). 
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Figure 4:  Growth of Menidia menidia larvae collected from UPJP (open circles) and 
UPR (diamonds).  Linear regressions represent the age-length relationship of Menidia 
menidia larvae from UPJP (dashed line), y = 0.66x + 2.98, and UPR (solid line), y = 
0.65x + 3.06.  In the linear equations Y = total length in millimeters and X = age in 
days.  Results from the ANCOVA analysis show no significant differences in the 
slopes of the age-length relationship of larvae between estuaries (p = 0.8147).  
However, age is a significant indicator of the size of larvae (p < 0.0001). 
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APPENDIX I. 
DEPTH PREFERENCE EXPERIMENT 

 A mock littoral zone was created in the laboratory to determine if different size 

classes of M. menidia larva prefer a certain depth when residing in the littoral zone.  

Larval M. menidia used for the experiment were spawned from four gravid male and 

four gravid female adults; collected in the field.  In the lab, the adults were strip-

spawned, their fertilized eggs incubated, and the larvae reared according to methods 

described by Barkman and Beck (1976).  During incubation and for the duration of the 

experiment, room temperature was kept at a constant 22oC with an 18 h light: 6 h dark 

cycle.  After seven days of incubation, the newly hatched larvae were added to one of 

the three aquaria.  To the first aquarium, 54 larvae were added.  To the second 

aquarium, 34 larvae were added.  And to the third aquarium, 40 larvae were added. 

 Each aquarium was 113.56 liters (76.2 cm X 30.4 cm X 31.7 cm) and lined 

with sand that was sloped 12o.  A piece of acrylic glass, 0.64 cm thick, was cut to the 

dimensions of the aquarium and sealed over the sand (Figure 5).  The main purpose of 

the sand was to act as a support for the acrylic glass.  The purpose of creating a slope 

was to mock the natural slope of the littoral zone found along the shores of Point 

Judith Pond and the Pettaquamscutt River.  Each aquarium was divided into three 

sections according to depth.  The shallow area ranged from 1.27 to 3.80 cm deep, the 

middle area ranged from 3.80 cm to 7.62 cm deep, and the deep area ranged from 7.62 

cm to 10.16 cm deep.  To ensure that the larvae would not be disturbed by the entrance 

of the observer, a black tarp was hung in front of the aquaria.  During the experiment, 

larvae were fed Artemia nauplii every other day ad libitum.  The experiment ran for 
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two weeks.  Three observations per aquarium were made daily to determine the 

number of larvae in each depth zone. 

The exact number of larvae in each depth was unknown through most of the 

experiment, therefore; the number of larvae in each depth zone could only be 

estimated.  Initial populations in each aquarium were determined by tallying the 

number of dead larvae removed from each tank each day. 

Although the larvae were too delicate for determination of total length at the 

beginning of the experiment, length-at-hatch of larvae from these estuaries is about 4.5 

mm (Volson 2012). 

 
 
 
 
 
 
 
 
 
 
Figure 5:  Representation of aquarium used for depth preference experiment. 
 
 

Analysis & Findings 

 A replicated test of goodness of fit (heterogeneity test) was constructed to 

determine any significant differences in depth preferences by larvae.  Results showed 

no significant differences in depth preference by the M. menidia larvae (GT = 11.8, p > 

0.05). 

Contrary to observations in other laboratory settings (Bengtson, pers. comm.), 

the larvae did not seem to prefer specific depths over time.  It was postulated that the 
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larvae would prefer the shallow zone or be found very close to the water’s edge, on the 

day of hatch.  As time progressed, and the larvae grew, we expected them to move into 

the deeper zones of the aquaria.  However, there did not appear to be a pattern of 

preference for the duration of the experiment. 
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APPENDIX II 
MENIDIA MENIDIA LARVAE CATCH DATA 

 

 Menidia menidia larvae were collected from the upper portions of two Rhode 

Island estuaries, the Pettaquamscutt River (UPR) and Point Judith Pond (UPJP).  A 

variety of sampling methods were investigated to determine optimal sampling 

methods for this larval fish.  The four sampling devices included:  (1) a cylindrical 

quadrat with a diameter of 0.5 m to sample the shoreline interface between land and 

water, (2) an aquarium net, 19.05 cm X 26.03 cm with 500 µm mesh, to collect 

samples in water that was about 0.35 m deep, (3) a plankton net with a diameter of 0.2 

m, length of 0.6 m, and 200 µm mesh to collect samples in water from 0.4 - 0.5 m 

deep, and (4) a second plankton net with a diameter of 0.5 m, length of 1.8 m, and 100 

µm mesh to collect samples in water that was slightly greater than 1 m deep.  Due to 

the different dimensions of the devices, each could only be used between the depths 

described above. 

 Field sampling was complete when the entire 64 tows and plots were finished; 

unless weather conditions prohibited further sampling.  Each device was used at four 

locations within UPJP and UPR.  However, collections on and after June 14th in UPJP 

were sampled from one location because this estuary had the same benthic structure 

and therefore was treated as one location.  The field data was divided by date because 

a different sampling method was used.  Therefore, field collections made before June 

14, 2012 (Table 1) as well as on and after June 14, 2012 (Table 2) are provided. 

 



 
 

Table 1.   Number of M. menidia larvae collected with the quadrat, aquarium net, small plankton net, and large plankton net from the 
Upper Pettaquamscutt River and Upper Point Judith Pond before June 14, 2012.  A dash indicates that the device was not used. 

Quadrat Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
5/30/12 6/1/12 6/4/12 6/6/12 6/8/12 6/10/12 6/13/12 6/3/12 6/5/12 6/7/12 6/9/12 6/12/12 

1 0 0 - - - 0 - 1 0 0 0 0 
2 0 0 - - - 0 - 0 0 0 0 0 
3 0 0 - - - 0 - 0 0 0 0 0 
4 0 0 - - - 0 - 0 0 0 0 0 
5 0 0 0 - 0 0 0 - 0 0 0 0 
6 0 2 0 - 0 0 0 - 0 0 0 0 
7 0 0 0 - 0 0 0 - 0 0 0 0 
8 0 0 0 - 0 0 0 - 0 0 0 0 
9 0 0 0 0 10 0 0 - 0 0 0 0 

10 0 0 2 0 0 0 0 - 0 0 0 0 
11 0 0 0 0 14 0 0 - 0 0 0 0 
12 0 0 0 0 0 0 0 - 0 0 0 0 
13 3 0 0 0 0 0 0 - 0 1 0 0 
14 1 0 0 0 0 0 0 - 0 0 0 0 
15 0 0 0 0 0 0 0 - 0 0 0 0 
16 0 0 0 0 0 0 0 - 0 0 0 0 
17 0 0 0 0 0 0 0 - 0 0 0 0 
18 0 0 0 0 0 0 0 - 0 0 0 0 
19 1 0 0 0 0 0 0 - 0 0 0 0 
20 0 0 0 0 0 0 0 - 0 0 0 0 
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Table 1 cont’d. 
Aquarium 

Net Upper Pettaquamscutt River Upper Point Judith Pond 

Number  
of 

Replicates 
5/30/12 6/1/12 6/4/12 6/6/12 6/8/12 6/10/12 6/13/12 6/3/12 6/5/12 6/7/12 6/9/12 6/12/12 

1 0 0 - - - 0 - - 12 - 16 1 
2 3 0 - - - 0 - - 13 - 0 4 
3 0 4 - - - 0 - - 36 - 9 0 
4 11 2 - - - 0 - - 5 - 0 1 
5 0 0 0 - 0 0 0 - 69 - 0 0 
6 1 0 0 - 5 4 0 - 18 - 0 1 
7 1 0 0 - 0 0 1 - 28 - 0 0 
8 0 0 2 - 1 3 0 - 5 - 0 0 
9 0 0 0 0 0 0 0 - 1 - 1 0 

10 0 0 3 0 18 0 1 - 0 - 0 3 
11 0 0 3 1 0 0 0 - 0 - 0 0 
12 0 0 0 1 0 0 0 - 0 - 0 0 
13 0 0 1 0 0 0 1 - 0 - 0 2 
14 2 0 0 0 0 0 1 - 0 - 0 2 
15 3 0 8 0 0 0 0 - 0 - 0 0 
16 2 0 1 0 0 0 2 - 0 - 1 2 
17 2 0 13 14 0 0 2 - 0 2 3 0 
18 0 0 0 2 0 0 0 - 0 0 7 0 
19 0 0 6 11 1 3 0 - 0 - 3 6 
20 7 0 2 0 0 3 0 - 0 - 56 4 
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Table 1 cont’d. 

Small 
Plankton Net Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
5/30/12 6/1/12 6/4/12 6/6/12 6/8/12 6/10/12 6/13/12 6/3/12 6/5/12 6/7/12 6/9/12 6/12/12 

1 0 0 - - - 0 - 0 0 - 0 0 
2 0 0 - - - 0 - 0 0 - 0 0 
3 0 0 - - - 0 - 0 0 - 0 0 
4 0 0 - - - 0 - 0 0 - 0 0 
5 0 0 1 - 0 0 11 0 0 - 2 0 
6 0 0 0 - 0 0 0 0 0 - 0 0 
7 0 0 0 - 0 5 0 0 0 - 1 0 
8 0 0 0 - 0 1 0 0 0 - 0 0 
9 0 0 0 0 0 0 0 0 0 - 0 0 
10 0 0 0 0 0 0 0 0 0 - 0 0 
11 0 2 0 0 0 0 0 0 0 - 0 0 
12 0 3 0 8 0 0 0 0 0 - 0 - 
13 0 0 0 0 0 0 0 0 0 - 0 0 
14 0 0 0 0 0 0 0 0 0 - 0 0 
15 0 0 0 1 0 0 0 0 0 - 0 0 
16 0 0 0 2 0 0 0 0 0 - 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 
18 0 0 0 1 0 0 0 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 - 0 0 
20 0 0 0 0 0 0 - 0 0 - 0 0 
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Table 1 cont’d.  

Large 
Plankton Net Upper Pettaquamscutt River Upper Point Judith Pond 

Number  
of 

Replicates 
5/30/12 6/1/12 6/4/12 6/6/12 6/8/12 6/10/12 6/13/12 6/3/12 6/5/12 6/7/12 6/9/12 6/12/12 

1 0 0 - - - 0 - 1 - 0 - 0 
2 0 0 - - - 0 - 0 - 0 - 0 
3 0 0 - - - 0 - 0 - 0 - 0 
4 0 0 - - - 0 - 0 - 0 - 0 
5 0 0 0 - 0 0 0 0 - 0 - - 
6 0 0 0 - 0 0 0 0 - 0 - - 
7 0 0 0 - 0 0 0 0 - 0 - - 
8 0 0 0 - 0 0 0 0 - 0 - - 
9 0 0 0 - 0 - 0 0 - 0 - - 
10 0 0 0 - 0 - 0 0 - 0 - - 
11 0 0 0 - 0 - 0 0 - 0 - - 
12 0 0 0 - 0 - 0 0 - 0 - - 
13 0 - 0 - 0 - - 0 - 0 - - 
14 0 - 0 - 0 - - 0 - 0 - - 
15 0 - 0 - 0 - - 0 - 0 - - 
16 0 - 0 - 0 - - 0 - 0 - - 
17 0 - 0 - - - - 0 - 0 0 - 
18 0 - 0 - - - - 0 - 0 0 - 
19 0 - 0 - - - - 0 - 0 0 - 
20 0 - 0 - - - - 0 - 0 0 - 
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Table 2.  Number of M. menidia larvae collected with the quadrat, aquarium net, small plankton net, and large plankton net from the 
Upper Pettaquamscutt River and Upper Point Judith Pond on June 14, 2012 and after.  A dash indicates that the device was not used. 
 

Quadrat Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
6/15/12 6/17/12 6/19/12 6/21/12 6/23/12 6/25/12 6/14/12 6/16/12 6/18/12 6/20/12 6/22/12 6/24/12 

1 0 0 0 0 0 - 0 0 1 0 0 0 
2 0 0 0 0 0 - 0 0 0 0 0 0 
3 0 0 0 0 0 - 0 0 0 0 0 0 
4 0 0 0 0 0 - 0 0 0 0 0 0 
5 0 0 0 0 0 - - - - - - - 
6 0 0 0 0 0 - - - - - - - 
7 0 0 0 3 0 - - - - - - - 
8 1 0 0 0 0 - - - - - - - 
9 0 0 0 0 0 - - - - - - - 

10 0 0 0 0 0 - - - - - - - 
11 0 0 0 0 0 - - - - - - - 
12 0 0 0 0 0 - - - - - - - 
13 0 0 0 0 0 0 - - - - - - 
14 0 0 0 0 0 0 - - - - - - 
15 0 0 0 0 0 0 - - - - - - 
16 0 4 0 0 0 0 - - - - - - 
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Table 2 cont’d. 
 

Aquarium 
Net Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
6/15/12 6/17/12 6/19/12 6/21/12 6/23/12 6/25/12 6/14/12 6/16/12 6/18/12 6/20/12 6/22/12 6/24/12 

1 0 1 0 0 0 - 1 0 1 0 0 0 
2 0 0 0 0 0 - 1 0 0 3 0 0 
3 0 0 0 0 0 - 0 0 0 11 0 1 
4 0 0 0 0 0 - 0 0 0 1 1 4 
5 0 0 0 0 0 - - - - - - - 
6 0 0 0 1 0 - - - - - - - 
7 0 0 0 0 0 - - - - - - - 
8 3 0 0 0 0 - - - - - - - 
9 0 0 0 0 1 - - - - - - - 
10 0 0 1 0 0 - - - - - - - 
11 0 0 0 0 0 - - - - - - - 
12 0 1 0 0 2 - - - - - - - 
13 0 0 0 0 0 0 - - - - - - 
14 0 0 0 0 0 0 - - - - - - 
15 0 0 0 0 0 0 - - - - - - 
16 0 0 15 0 0 0 - - - - - - 
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Table 2 cont’d.  
 

Small 
Plankton 

Net 
Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
6/15/12 6/17/12 6/19/12 6/21/12 6/23/12 6/25/12 6/14/12 6/16/12 6/18/12 6/20/12 6/22/12 6/24/12 

1 0 0 0 0 0 - 0 0 0 0 0 0 
2 0 0 0 0 0 - 0 0 0 0 0 0 
3 0 0 0 0 0 - 0 0 0 0 0 0 
4 0 1 1 0 0 - 0 0 0 0 0 0 
5 0 0 0 0 0 - - - - - - - 
6 0 0 0 0 0 - - - - - - - 
7 0 0 0 0 0 - - - - - - - 
8 0 0 0 0 0 - - - - - - - 
9 0 0 0 0 0 - - - - - - - 

10 0 0 0 0 0 - - - - - - - 
11 0 0 0 0 0 - - - - - - - 
12 0 0 0 0 0 - - - - - - - 
13 0 0 0 0 0 0 - - - - - - 
14 0 0 0 0 0 0 - - - - - - 
15 0 0 0 0 0 0 - - - - - - 
16 0 0 0 0 0 0 - - - - - - 
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Table 2 cont’d. 
 

Large 
Plankton 

Net 
Upper Pettaquamscutt River Upper Point Judith Pond 

Number 
of 

Replicates 
6/15/12 6/17/12 6/19/12 6/21/12 6/23/12 6/25/12 6/14/12 6/16/12 6/18/12 6/20/12 6/22/12 6/24/12 

1 0 - 0 0 0 - 0 0 0 0 0 0 
2 0 - 0 0 0 - 0 0 0 0 0 0 
3 0 - 0 0 0 - 0 0 0 0 0 0 
4 0 - 0 0 0 - 0 0 0 0 0 0 
5 0 - - 0 0 - - - - - - - 
6 0 - - 0 - - - - - - - - 
7 0 - - 0 - - - - - - - - 
8 0 - - 0 - - - - - - - - 
9 0 - 0 0 0 - - - - - - - 

10 0 - 0 0 0 - - - - - - - 
11 0 - 0 0 0 - - - - - - - 
12 0 - 0 0 0 - - - - - - - 
13 0 - 0 0 0 - - - - - - - 
14 0 - 0 0 0 - - - - - - - 
15 0 - 0 0 0 - - - - - - - 
16 0 - 0 0 0 - - - - - - - 
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