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Abstract

Background

Early recognition of dengue, particularly patients at risk for plasma leakage, is important to

clinical management. The objective of this study was to build predictive models for dengue,

dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) using structural

equation modelling (SEM), a statistical method that evaluates mechanistic pathways.

Methods/Findings

We performed SEM using data from 257 Thai children enrolled within 72 h of febrile illness

onset, 156 with dengue and 101 with non-dengue febrile illnesses. Models for dengue, DHF,

and DSS were developed based on data obtained three and one day(s) prior to fever resolu-

tion (fever days -3 and -1, respectively). Models were validated using data from 897 subjects

who were not used for model development. Predictors for dengue and DSS included age,

tourniquet test, aspartate aminotransferase, and white blood cell, % lymphocytes, and plate-

let counts. Predictors for DHF included age, aspartate aminotransferase, hematocrit, tourni-

quet test, and white blood cell and platelet counts. The models showed good predictive

performances in the validation set, with area under the receiver operating characteristic

curves (AUC) at fever day -3 of 0.84, 0.67, and 0.70 for prediction of dengue, DHF, and

DSS, respectively. Predictive performance was comparable using data based on the timing

relative to enrollment or illness onset, and improved closer to the critical phase (AUC 0.73 to

0.94, 0.61 to 0.93, and 0.70 to 0.96 for dengue, DHF, and DSS, respectively).

Conclusions

Predictive models developed using SEM have potential use in guiding clinical management

of suspected dengue prior to the critical phase of illness.
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Author summary

Dengue virus infection is one of the most critical public health issues, particularly in tropi-

cal and subtropical regions. This study developed statistical predictive models using the

data obtained from 257 Thai children for dengue, dengue hemorrhagic fever, and dengue

shock syndrome using structural equation modelling (SEM). We performed SEM based

on clinical and laboratory factors on three and one day(s) prior to fever resolution. Our

SEM models showed that age, tourniquet test, aspartate aminotransferase, and white

blood cell, % lymphocytes, and platelet counts on three days prior to fever resolution were

important risk factors for dengue and dengue hemorrhagic fever. Age, aspartate amino-

transferase, hematocrit, tourniquet test, and white blood cell and platelet counts were

important risk factors for dengue shock syndrome. Our predictive models showed good

performances in the validation subjects (n = 897) who were not used for SEM, and thus

we concluded that our predictive models can be practically used to guide clinical manage-

ment of suspected dengue patients. Our study also showed that SEM can be used to pre-

dict the developments or severities of other illnesses.

Introduction

Dengue virus (DENV) infection is a major public health issue worldwide particularly in tropi-

cal and subtropical regions. An estimated 390 million new DENV infections and 90 million

cases of dengue illnesses are estimated to occur in more than 100 endemic countries, resulting

in 20,000 deaths annually [1, 2]. In the past 50 years, the incidence of dengue has increased

30-fold [1, 3, 4].

DENV infection may result in a wide spectrum of disease severity ranging from asymptom-

atic infection to dengue fever (DF) and dengue hemorrhagic fever (DHF) [5]. DHF is charac-

terized by fever, plasma leakage, bleeding diathesis, and thrombocytopenia, that in severe cases

leads to shock (dengue shock syndrome, DSS) [5]. The mortality rate of DSS, up to 20% [6], is

substantially reduced by timely replacement of intravascular fluid and blood losses, highlight-

ing the importance of timely diagnosis of dengue, DHF, and DSS.

Several studies have developed diagnostic tools to predict the severity of an acute dengue ill-

ness [7–13]. Potts et al. developed predictive models using logistic regression analysis based on

maximum or minimum levels of clinical laboratory variables during the illness [7] and classifica-

tion and regression tree (CART) analysis based on clinical laboratory data on the day of presenta-

tion [8]. Chadwick et al. used logistic regression models based on clinical laboratory data within

the first 2 days of presentation [9]. Brasier et al. used both logistic regression and a classification

and regression tree analyses based on laboratory data on the day of presentation [10]. Recently,

Nguyen et al. used logistic regression models based on laboratory data and nonstructural protein

1 rapid antigen testing on the day of presentation within�72 hours of fever [12]. These model-

ing approaches do not consider the underlying mechanisms of illness, are likely to overlook pre-

dictors for which opposite, indirect effects may offset one another, and cannot consider the

relationship among covariates longitudinally. Predictive models which attempt to capture under-

lying mechanistic pathways might be a more biologically reliable and robust approach.

Progression of acute dengue illness is characterized by interdependent clinical and labora-

tory factors which change over the course of illness. Predictive models developed using struc-

tural equation model (SEM) have an advantage over models developed by general regression

analysis because SEM can determine interdependent relationships among predictors and how

they impact outcomes [14]. No studies have been performed to apply SEM approaches to
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predict dengue illness severity. The objective of this study was to construct statistical predictive

models for dengue, DHF, and DSS by developing a series of SEMs.

Methods

Study setting

Data are from a longitudinal observational investigation at two hospitals in Thailand. Detailed

descriptions of this investigation are provided elsewhere [7, 8]. Briefly, 1,384 children between 6

months and 15 years of age who presented with temperature of at least 38.5˚C for less than 72

hours without any other identified source of infection were enrolled at Queen Sirikit National

Institute of Child Health (QSNICH) in 1994–1997 (n = 506), 1999–2002 (n = 347), and 2004–

2007 (n = 337) and the Kamphaeng Phet Provincial Hospital (KPPPH) in 1994–1997 (n = 194).

Mean ages of each cohort were 8.9, 6.9, 7.8, and 8.9 years, respectively. In each cohort, 67.6%

(DHF = 31.2%, DSS = 4.1%), 43.0% (DHF = 18.6%, DSS = 3.3%), 39.7% (DHF = 12.4%, DSS =

2.7%), and 61.4% (DHF = 18.3%, DSS = 3.8%) were diagnosed as having dengue, respectively.

Most subjects were enrolled from the outpatient clinic. Each child was hospitalized per protocol

and monitored in hospital until clinically stable and at least 1 day after defervescence. Children

who had signs of shock at the first visit, chronic disease, or an initial alternate non-dengue diag-

nosis were excluded. All participants’ parents provided written informed consent prior to enroll-

ment. This study followed the Ethical Principles for Medical Research Involving Human

Subjects as defined by the Declaration of Helsinki and was approved by the Institutional Review

Boards of the Ministry of Public Health (numbers: 102/2546, 71/2552, and 104/2552), Thailand,

the US Army (numbers of Walter Reed Army Institute of Research: 436, 436b, and 1077/1620),

and the University of Massachusetts Medical School (number: H-2222). Material has been

reviewed by the Walter Reed Army Institute of Research. There is no objection to its presenta-

tion and/or publication. The opinions or assertions contained herein are the private views of the

author, and are not to be construed as official, or as reflecting true views of the Department of

the Army, the Department of Defense, or the National Institutes of Health. The investigators

have adhered to the policies for protection of human subjects as prescribed in AR 70–25.

Definitions

Fever day 0 was defined as the day of defervescence, when the temperature was less than 38˚C

for a consecutive 12 hours; days before and after defervescence were numbered consecutively.

Study day 1 was defined as the day a child was enrolled in the study. Illness day 1 was defined

as the day of onset of symptoms. Subjects (or their parent/guardian) were asked to identify the

date of onset of their illness. This usually was the date of onset of fever.

Based on review of the medical records including study laboratory tests (see below), a physi-

cian who was not involved in patient care assigned a final clinical diagnosis as DF or DHF

grade I to IV, guided by the 1997 World Health Organization guidelines [5].

Laboratory testing

A venous blood specimen was collected daily. Plasma samples were tested for levels of aspar-

tate aminotransferase (AST), alanine aminotransferase (ALT), and albumin using a Clinical

System Analyzer (model 700; Beckmann Instruments, Brea, CA). Total white blood cell

(WBC) count, platelet count, and hematocrit values were determined using a T540 hemato-

logic analyzer (Coulter Electronics, Hialeah, FL). A tourniquet test was performed with the

right and left arms alternately each day and the number of petechiae within a 1 sq in template

(up to 20) was recorded; daily testing was stopped if the maximum value of 20 petechiae was
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recorded. Dengue was confirmed by viral isolation by mosquito inoculation and/or detection

of viral RNA by reverse transcription polymerase chain reaction in plasma, and/or by serologi-

cal assays (immunoglobulin M/G enzyme-linked immunosorbent assay and hemagglutination

inhibition assay) of paired acute-convalescent plasma samples as described [15].

Statistical analysis

Our statistical analysis focused on the predictive value of clinical and laboratory data that are

well validated for testing in typical clinical settings: tourniquet test, AST, ALT, albumin, WBC

count, WBC differential, hematocrit, and platelet count. Outcomes of interest (dengue, DHF,

or DSS) were defined as occurring at fever day +1, the final day of data collection and the day

that a decubitus chest X-ray was performed to detect plasma leakage. To develop the predictive

models, we used data from children who had all these variables obtained two and four days

earlier (i.e., on fever days -3 and -1). There was a large amount of missing data on fever day -3

or -1 (totally 79.3%, ranging from 19.1% to 71.0% across variables) in 1,244 subjects who had a

diagnosis of dengue or other non-dengue febrile illness and any laboratory data between fever

day -3 and +1 (Fig 1). We therefore determined to perform complete analyses to build SEMs

using the data from 257 subjects who had the complete data of predictors on fever day -3 or -1.

To assess the sensitivity of our SEMs to missing data, we then employed multiple imputation

for the full 1,244 subjects. We performed the Markov-chain Monte Carlo method to create 50

imputed data sets with no missing data. The results were pooled across the complete datasets.

SEMs were built using Mplus 8 statistical software (Muthén and Muthén 1998–2017). SEM

parameters were estimated using the weighted least squares means and variances adjusted esti-

mator with the theta parameterization. SEMs for dengue, DHF, and DSS were constructed

based on the hypothesized mechanisms (Fig 2A). The minimum sample size for our SEMs was

estimated as 207, together with degree of freedom of 66, significance level of 0.05, and desired

statistical power of 0.80, on the basis of model-fitting with the root mean square error of

approximation (RMSEA) [16, 17]. Our subjects for developing the predictive models exceeded

the minimum required to achieve the desired power level. Significant predictors were retained

in the final SEMs. AST, ALT, WBC count, hematocrit, platelet count, and tourniquet test were

natural log-transformed after adding integer 1 to improve the distribution and homogeneity of

variance. RMSEA below 0.07 and the comparative fit index (CFI) that exceed 0.95 indicate

good model fit [18]. However, we did not use the criterion for the χ2 test, because the χ2 test is

very sensitive to the large sample size [19]. In the sensitivity analyses using multiple imputa-

tion, we used the same criteria of RMSEA and CFI.

SEMs were used to develop the predictive models (see S1 Supporting Information). To

achieve the earliest prediction, we used total effects of significant predictors at fever day -3 on

the outcome of interest diagnosed at fever day +1. The performance of predictive models was

examined by the receiver operating characteristic (ROC) curves and the area under the curves

(AUCs) of the dataset acquired from 897 children who were not used to develop models in this

study. The sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative pre-

dictive value (NPV) at the Youden index-based optimal cut-offs were calculated. Statistical

analysis was performed using SAS 9.4 statistical software (SAS Institute, Cary, NC, USA), with

exception of SEM. A P value < 0.05 was considered to be statistically significant. All data were

anonymously analyzed.

Results

Of the 257 children used to develop SEMs; 60.7% (n = 156), 19.8% (n = 51), and 3.5% (n = 9)

of these children were diagnosed as dengue, DHF, and DSS, respectively. At fever days -3 and
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-1, AST, ALT, WBC count, hematocrit, platelet count, and tourniquet test were significantly

different between groups (non-dengue, dengue but non-DHF, DHF but non-DSS, and DSS,

Table 1). Pearson correlation coefficients among predictors and outcomes are presented in S2

Fig 1. Study participants.

https://doi.org/10.1371/journal.pntd.0006799.g001
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Supporting Information. Children who were used to develop SEMs (n = 257) were not signifi-

cantly different from those used for validation of SEM-based predictive models (n = 897) with

respect to age (8.1 vs. 7.8 years), sex (48.3 vs. 43.6% girls), and the proportions of cases with

DHF [17.3% (n = 155) for the validation set] and DSS [3.2% (n = 29) for the validation set] (P
values of t-test or χ2 test>0.05). Moreover, the characteristics of 257 children used to develop

SEMs were not significantly different from the 987 (= 1,244–257) children who had a diagnosis

of dengue or non-dengue febrile illness and any laboratory data between fever day -3 and +1

but were not used to develop SEMs, in terms of age, sex, and the proportions of cases with

DHF and DSS (P values of t-test or χ2 test >0.05). A higher percentage of subjects in the

Fig 2. (A) Hypothesized pathways for developing dengue, DHF, or DSS and structural equation models predicting (B) dengue, (C) DHF, and (D) DSS. (B) The

model fits were RMSEA = 0.057 and CFI = 0.979. (C) The model fits were RMSEA = 0.000 and CFI = 1.000. (D) The model fits were RMSEA = 0.095 and CFI = 0.937.

Arrows indicate hypothetically significant positive or negative associations in (A). Solid and dotted arrows indicate significant positive and negative associations,

respectively, in (B), (C), and (D). Unstandardized (= B) and standardized (= β) coefficients are shown next to the arrows. Correlations were omitted from the diagram.

Unit: age, y; AST, U/mL; ALT, U/mL; WBC, cells/mm3; Lymphocytes, %; Albumin, g/dL; Hematocrit, %; Platelets, cells/mm3; Tourniquet test, petechiae/in2. AST,

ALT, WBC, hematocrit, platelets, and tourniquet test were ln-transformed. Thickness of arrows was determined by standardized coefficients. �P value<0.05, ��P
value<0.01, ���P value<0.001.

https://doi.org/10.1371/journal.pntd.0006799.g002
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validation set were enrolled at KPPPH (8.6 vs. 13.5% for developing and validation sets, respec-

tively; P value of χ2 test = 0.035).

The SEM for any dengue illness included age, AST, WBC count, % lymphocytes, platelet

count, and tourniquet test at fever day -3 and AST, WBC count, and tourniquet test at fever

day -1 (Fig 2B). AST, WBC count, and tourniquet test at fever day -3 were strongly predictive

of their corresponding values at fever day -1. In addition, WBC and platelet counts were nega-

tive predictors of AST at fever day -1 and % lymphocytes was a positive predictor of WBC

count at fever day -1. Taking both direct and indirect effects into account in SEM, the total

effects of age, AST, and tourniquet test at fever day -3 were significantly related to an increased

risk of any dengue illness, while WBC count, % lymphocytes, and platelet count were inversely

related to risk of any dengue illness (Table 2).

The SEM for DHF included age, AST, WBC count, hematocrit, platelet count, and tourniquet

test at fever day -3 and AST, hematocrit, platelet count, and tourniquet test at fever day -1 (Fig

2C). AST, hematocrit, platelet count, and tourniquet test at fever day -3 were strongly correlated

with their corresponding values at fever day -1. In addition, WBC count and platelet count were

negative predictors of AST at fever day -1 and WBC count was a positive predictor of platelet

count at fever day -1. Taking both direct and indirect effects into account, the total effects of age,

AST, hematocrit, and tourniquet test at fever day -3 were related to increased risk of DHF at fever

day +1, while WBC and platelet counts were inversely related to risk of DHF (Table 2).

The SEM for DSS included age, AST, WBC count, % lymphocytes, platelet count, and tour-

niquet test at fever day -3 and AST, WBC count, and platelet count at fever day -1 (Fig 2D).

Table 1. Characteristics of study participants (n = 257).

Non-dengue Dengue,

non-DHF

DHF,

non-DSS

DSS P value

n 101 (39.3%) 105 (40.9%) 42 (16.3%) 9 (3.5%)

Sex (= girl) 51 (50.5%) 51 (48.6%) 14 (33.3%) 8 (88.9%) 0.018

Age, yr 6.8 (6.2–7.3) 8.9 (8.4–9.5)b 9.3 (8.3–10.4)b 8.5 (6.1–10.9) <0.001

At fever day -3

AST, U/mLa 35.8 (33.4–38.3) 45.9 (42.0–50.3)b 47.7 (39.8–57.2)b 65.7 (33.5–128.1)b <0.001

ALT, U/mLa 18.6 (17.2–20.1) 23.0 (20.6–25.7)b 23.3 (18.9–28.7) 31.7 (15.4–64.4)b 0.003

WBC, 1,000 cells/mm3,a 7.4 (6.7–8.2) 4.2 (3.8–4.5)b 4.0 (3.4–4.6)b 4.2 (2.9–6.1)b <0.001

Lymphocytes, % 27.1 (23.5–30.7) 24.3 (21.6–27.0) 23.6 (17.9–29.4) 24.6 (9.3–39.8) 0.57

Albumin, g/dL 4.6 (4.6–4.7) 4.7 (4.6–4.8) 4.8 (4.6–4.9) 4.4 (4.1–4.8) 0.33

Hematocrit, %a 38.3 (37.7–38.8) 38.9 (38.3–39.5) 39.8 (38.8–40.8)b 37.4 (34.8–40.2) 0.031

Platelets, 1,000 cells/mm3,a 228 (212–244) 190 (176–206)b 167 (136–205)b 158 (114–219) <0.001

Tourniquet test, petechiae/in2,a 4.6 (3.6–5.8) 6.4 (5.1–7.9) 9.9 (7.4–13.1)b 8.4 (4.9–13.9) 0.002

At fever day -1

AST, U/mLa 37.6 (33.8–41.7) 70.2 (61.4–80.2)b 95.1 (76.4–118.3)b,c 137.5 (75.2–250.8)b,c <0.001

ALT, U/mLa 19.1 (17.3–21.1) 33.5 (29.0–38.7)b 38.9 (30.5–49.4)b 60.6 (23.8–152.0)b <0.001

WBC, 1,000 cells/mm3,a 5.3 (4.9–5.9) 2.7 (2.5–2.9)b 2.7 (2.4–3.1)b 4.3 (2.8–6.5)c,d <0.001

Lymphocytes, % 38.7 (35.2–42.1) 38.7 (36.3–41.2) 33.5 (29.2–37.7) 35.9 (23.8–48.0) 0.23

Albumin, g/dL 4.4 (4.4–4.5) 4.4 (4.3–4.5) 4.4 (4.2–4.6) 4.0 (3.4–4.5)b 0.06

Hematocrit, %a 37.3 (36.6–38.1) 38.4 (37.7–39.2) 40.6 (39.3–41.8)b,c 42.0 (38.1–46.3)b <0.001

Platelets, 1,000 cells/mm3,a 206 (190–223) 140 (128–153)b 110 (93–131)b,c 69 (40–118)b,c,d <0.001

Tourniquet test, petechiae/in2,a 3.3 (2.4–4.3) 8.4 (6.7–10.5)b 12.2 (9.6–15.4)b 18.9 (16.2–22.1)b <0.001

Data represent arithmetic or geometrica mean (95% confidence interval) or n (proportion, %). b, c, and d Significantly different from non-dengue, dengue but non-DHF,

and DHF but non-DSS, respectively, P value <0.05. P values were estimated by Fisher’s exact tests or analysis of variance followed by Bonferroni post hoc test.

https://doi.org/10.1371/journal.pntd.0006799.t001
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AST, WBC count, and platelet count at fever day -3 were strongly predictive of their corre-

sponding values at fever day -1. In addition, WBC and platelet counts were negative predictors

of AST at fever day -1, AST was a positive predictor of WBC count at fever day -1, and WBC

count was a positive predictor of platelet count at fever day -1. Taking both direct and indirect

effects into account, the total effect of AST at fever day -3 was positively significant in diagnosis

of DSS at fever day +1, but that of platelet count was negatively significant (Table 2).

For all three SEMs, fever day -1 parameters were predicted by fever day -3 parameters (see

S3 Supporting Information). Therefore, we reasoned that data from a single time point might

be sufficient for prediction of outcome. Using the regression coefficients for fever day -1 data,

we derived revised SEM equations for dengue (vs. non-dengue illness), DHF (vs. all other diag-

noses) and DSS (vs. all other diagnoses). The equations are available in S4 Supporting Informa-

tion. The raw data used for SEM is available in S5 Supporting Information. We tested the

predictive model over a range of fever days from -3 to 0; AUCs of the predictive model for den-

gue were in the range of 0.84 to 0.94 (Fig 3A). AUCs of the predictive model for DHF were in

the range of 0.67 to 0.93 over fever days -3 to 0 (Fig 3B). Finally, AUCs of the predictive model

for DSS were in the range of 0.70 to 0.96 over fever days -3 to 0 (Fig 3C). The proposed SEMs

for dengue and DHF demonstrated good fit of the data, while the model for DSS demonstrated

adequate fit of the data (Fig 2). In the sensitivity analyses using multiple imputations for miss-

ing values, our SEMs did not show good fits, but it was acceptable (RMSEA: 0.080 to 0.119,

CFI: 0.896 to 0.953).

Although the SEMs performed well over a range of fever day values, this parameter is

defined retrospectively; therefore, we sought to further assess the performance of these models

Table 2. Total effect of predictors at fever day -3 in developing dengue, DHF, and DSS based on SEMs.

Outcome Predictor Unstandardized coefficient (= B) Standardized coefficient (= β) Odds ratio (95% confidence interval) P value

Dengue

Age, y 0.298 0.140 1.35 (1.20–1.52) <0.001

AST, U/mL 1.191 0.265 3.29 (2.30–4.70) <0.001

WBC, cells/mm3 -1.422 -0.378 0.24 (0.14–0.42) <0.001

Lymphocytes, % -0.009 -0.067 0.991 (0.983–0.999) 0.034

Platelets, cells/mm3 -0.199 -0.042 0.82 (0.72–0.93) 0.002

Tourniquet test, petechiae/in2 0.271 0.117 1.31 (1.07–1.60) 0.008

DHF

Age, y 0.110 0.079 1.12 (1.06–1.18) <0.001

AST, U/mL 0.380 0.129 1.46 (1.10–1.94) 0.008

WBC, cells/mm3 -0.352 -0.135 0.70 (0.58–0.85) <0.001

Hematocrit, % 2.453 0.138 11.62 (2.11–64.08) 0.005

Platelets, cells/mm3 -0.289 -0.092 0.75 (0.63–0.89) 0.001

Tourniquet test, petechiae/in2 0.305 0.205 1.36 (1.10–1.67) 0.004

DSS

Age, y -0.012 -0.009 0.99 (0.95–1.03) 0.52

AST, U/mL 0.652 0.237 1.92 (1.07–3.44) 0.028

WBC, cells/mm3 0.339 0.139 1.40 (0.80–2.45) 0.23

Lymphocytes, % 0.007 0.087 1.007 (0.999–1.015) 0.11

Platelets, cells/mm3 -0.527 -0.184 0.59 (0.42–0.83) 0.003

Tourniquet test, petechiae/in2 -0.081 -0.063 0.92 (0.84–1.01) 0.08

Total effect was the sum of direct and indirect effects. AST, WBC, hematocrit, platelets, and tourniquet test were ln-transformed. AST, ALT, WBC, hematocrit, platelets,

and tourniquet test were ln-transformed.

https://doi.org/10.1371/journal.pntd.0006799.t002
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under typical clinical scenarios, by testing the models based on study day (time relative to pre-

sentation for medical care) and illness day (time relative to illness onset). AUCs of the predic-

tive model for dengue were in the range of 0.88 to 0.92 and 0.73 to 0.94 for study days 1 to 3

(Fig 4A) and illness days 2 to 5 (Fig 5A), respectively. AUCs of the predictive model for DHF

were in the range of 0.81 to 0.91 and 0.61 to 0.87 for study days 1 to 3 (Fig 4B) and illness days

Fig 3. ROC curves for external validation employing fever days: (A) dengue, (B) DHF, and (C) DSS. n = 878 (nfever day -3 = 143, nfever day -2 = 366, nfever day -1 =

590, and nfever day 0 = 617).

https://doi.org/10.1371/journal.pntd.0006799.g003

Fig 4. ROC curves for external validation employing study days: (A) dengue, (B) DHF, and (C) DSS. n = 896 (nstudy day 1 = 880, nstudy day 2 = 579, and nstudy day 3

= 318).

https://doi.org/10.1371/journal.pntd.0006799.g004
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2 to 5 (Fig 5B), respectively. AUCs of the predictive model for DSS were in the range of 0.76 to

0.92 and 0.74 to 0.86 for study days 1 to 3 (Fig 4C) and illness days 2 to 5 (Fig 5C), respectively.

Discussion

We sought to develop predictive models to determine the probability of dengue, DHF, or DSS

based on clinical and laboratory data available prior to the critical phase of illness which typi-

cally occurs within 24 hours of defervescence. We used SEMs to impose a hypothetical struc-

ture on the associations between these parameters. This approach allowed us to identify

predictors at a single time point as early as fever day -3 which could predict the progression of

disease. We further demonstrated that the SEM equations performed well using data from a

wide range of time points during illness. The predictive accuracy of the SEMs improved using

data collected at later time points, consistent with the progression of clinical and laboratory

abnormalities in dengue.

Our SEMs identified elevated AST levels and decreased platelet count as significant predic-

tors of all three outcomes of dengue, DHF, and DSS (Table 2). Previous studies observed that

AST and ALT are commonly elevated in dengue and correlate with the severity of illness [15,

20, 21]. In our study, because these biomarkers were highly correlated (e.g., Pearson r at illness

day -3 = 0.76), only AST remained in the SEMs. Our findings of an inverse relationship

between platelet count and risk of dengue illness are also consistent with previous studies [7, 8,

12, 22, 23]. Decreased platelet count might be mechanistically linked to plasma leakage

through its effects on vascular barrier function [24–26].

In the present study, older age, decreased WBC count, and increased number of petechiae

in a tourniquet test were common significant risk factors for dengue and DHF. Although a

meta-analysis reported an increased risk of DSS in younger children [23], which was attributed

to their more permeable and fragile microvasculature [27], other studies reported contrasting

findings [28]. These inconsistent results may be due to the differences in approaches to

Fig 5. ROC curves for external validation employing illness days: (A) dengue, (B) DHF, and (C) DSS. n = 885 (nillness day 2 = 267, nillness day 3 = 481, nillness day 4 =

572, and nillness day 5 = 377).

https://doi.org/10.1371/journal.pntd.0006799.g005
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adjustment for potential confounders in statistical models. Indeed, several studies showed a

significant association of severe dengue with age in univariable analyses but not in multivari-

able analyses [7, 12]. Although decreased WBC count was significantly associated with

increased risks for dengue and DHF, this association was not significant for DSS. Both leuko-

penia and leukocytosis have been described in dengue, depending on the timing during illness

[11, 29, 30]. Our findings for the tourniquet test were consistent with other studies which

showed a crucial role for this clinical parameter in predictive models for acute dengue illnesses

[7, 15, 31].

A novel aspect of SEM is the ability to identify correlations between factors contributing to

prediction of the final outcome, which implies a mechanistic relationship. For example, all

three models showed negative associations between WBC and platelet counts at fever day -3

and AST at fever day -1, and the models for DHF and DSS showed positive associations

between WBC count at fever day -3 and platelet count at fever day -1. The positive association

between WBC and platelet counts can potentially be explained by common mechanisms such

as bone marrow suppression [30]. The negative association of WBC and platelet counts with

AST is less clear, and may point to other mechanistic pathways such as immune activation

[32].

Our predictive models showed good performance for identifying children who progressed

to dengue, DHF, and DSS. We provided Se, Sp, PPV, and NPV at the Youden index-based

optimal cut-offs, however, cut-off points may need to be modified depending on the objectives:

for example, to increase Se for detecting a lethal condition. To capture all DSS cases using our

SEM model with data from study day 3, it would be necessary to use a cut-off of 0.0172, with

correspondingly lower Sp (55.3%) and PPV (10.6%) (Fig 5C).

Our study followed the case classification of DF, DHF, and DSS in use during the study

period (and still in use in QSNICH and some other countries) rather than the alternative clas-

sification of dengue and severe dengue published in 2009 [33]. Our DSS cases correspond to

severe dengue as defined in 2009, as there were no cases in our study with significant respira-

tory distress, clinically significant bleeding, or significant organ dysfunction. We did not col-

lect data specifically for identification of cases as dengue with warning signs as defined in the

2009 classification.

To our knowledge, this is the first study to apply SEM to address the potential mechanisms

as they evolve in acute dengue illnesses and to build predictive models based on clinical and

laboratory data at various time points in the illness. Another strength of this study is that cau-

sality may be better ascertained through the prospective longitudinal study design. Further,

our predictive models were developed based on easily obtained laboratory data and predictive

performance of the models were evaluated over a variety of time criteria. Inclusion of biomark-

ers could further efforts to discern the mechanisms of disease. While we focused on acute den-

gue illnesses, our approach is likely to be generalizable to other acute illnesses.

Our study does have several limitations. First, in model development, selection bias might

have arisen from the use of data on only 257 of 1,384 participants. Second, the model fit for

DSS was borderline. DSS was a rare event (3.5%), and this likely resulted in instability of the

SEM model. Third, PPVs in some DSS models were low, but this may also be attributed to the

low prevalence of DSS [34]. Fourth, our predictive models were derived from Thai children,

which may limit our ability to generalize these findings to patients in other areas.

In conclusion, our findings highlight the importance of AST and platelet count early in ill-

ness as indicators of dengue, DHF, and DSS. We also identified other early clinical indicators

which can be used to predict outcomes. Our approach may serve as a methodological template

to investigate the mechanisms of other illnesses using SEM.
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