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ABSTRACT

The autonomous surface vehicle (ASV) owned by the University of Rhode

Island currently uses a PID controller that is insufficient for its maneuvering goals.

The goal was to develop a robust linear controller based on state space dynamic

positioning models that is able to follow a given path with minimal error in the

presence of environmental disturbances and model perturbations. A controller

was designed for the linear Cybership II model in MATLAB and then tested in

Simulink with these disturbances on a nonlinear Cybership II model. The linear

controller uses a feedfoward inverse filter to follow a desired elliptical path with high

accuracy and uses new methods for choosing feedback gains to provide greater H∞

robustness than MATLAB’s place function. It was found that these new methods

tracked the desired ellipse with lower error than existing pole placement methods.

These methods show promise for real world implementation of linear controllers

on URI’s ASV and other surface vehicles.
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CHAPTER 1

Introduction

1.1 Overview

As linear control techniques have advanced, little research has been done on

linear control of marine systems. This is due to the inherent nonlinear nature of

marine systems that arises from rotation in the global reference frame, changes

in hydrodynamic properties at different speeds, and nonlinear wave disturbances

[1]. Great advancements have been made in nonlinear marine control and these

techniques are still being researched. While these control methods are impressive,

their implementations are often limited to academic settings due to their complex-

ity. Therefore, a reassessment of linear state space controllers [2] with updated

design techniques could widen the accessibility of marine control to those with

knowledge of linear state space control.

The first types of control systems that were developed were heading con-

trollers after the gyrocompass was invented. These heading autopilots use a con-

stant speed, a compass, and heading controller with feedback to steer. Position

controllers were made possible after the invention of local and global position-

ing systems (GPS). This allowed for more advanced maneuvers such as waypoint

tracking, trajectory tracking, and path following. Which type of controller that is

used depends on the application, but the more interesting control problem involves

precisely controlling position and orientation in a global reference frame.

A common control system that is used frequently because of its simple im-

plementation and lack of a need for a model is a proportional-integral-derivative

(PID) controller. Gains for the controller can be adjusted until desired results are

obtained. This non model-based approach is not very scientific and could take a

while to tune gains. There exist methods [3] for choosing gains if various parame-

1



ters are known, which can sometimes be difficult to determine. However, it is still

useful when a quick controller is needed under relatively small disturbances and

no previous model to build on. PID heading controllers can also be used with a

simple heading model that uses a single rudder input [4] [5]. This approach needs

only a few model parameters and there are well established methods for designing

this controller [6].

Heading controllers fall short when doing precise waypoint navigation or path

following. This is where position controllers become useful, allowing for much more

complex maneuvers. This project will focus on these position controllers. Due to

the hydrodynamics of marine vessels, many different state space models of varying

complexity exist for use with position controllers [7]. Models that assume low

operating speed or position holding are called dynamic positioning (DP) models

[8], while higher speeds require more complex maneuvering models. This project’s

focus will be on DP models because the target vehicle will need to move at low

speeds in order to do other processing.

The linear DP model has been used successfully for marine control, but it

has limited application because of a few assumptions. The DP model assumes low

speed and low yaw rate in order for the state space model to be accurate. It is

also important for the vehicle to be fully-actuated or over-actuated to generate

forces in each direction. For example, in three degrees of freedom (x, y, heading),

there needs to be at least three inputs that can apply forces in each direction. In

state space control, the gain selection has a unique solution for single-input, single-

output (SISO) systems using pole placement. The DP model in our case has three

inputs for the forces in x and y directions, as well as about the z-axis. The model

also has 3 outputs for the position, making the model multiple-input, multiple-

output (MIMO). In this case there are an infinite number of gain matrices, all of
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which yield the desired closed-loop pole locations. There are new techniques for

selecting the gain matrix for maximum robustness and other techniques that im-

prove tracking system accuracy. These new techniques have not been investigated

in marine control literature [9].

1.2 Motivation

The ocean engineering department at the University of Rhode Island has an

autonomous surface vehicle (ASV) that currently uses a primitive proportional-

integral-derivative (PID) controller. The use of this controller limits the maneuver-

ing capabilities [10] of the vehicle and negatively impacts the vehicle’s performance

in the annual RoboBoat competition. It has been decide by the ASV team that

an improved control system is needed to stay competitive in the annual RoboBoat

competition.

1.3 Objective and Scope

The objective of this thesis is to develop a robust state space linear dynamic

position controller that will improve the maneuverability of URI’s ASV. Robustness

is important because the linear controller will have to cope with the inaccuracies

of the linear model and disturbances. New linear state space methods will be used

that have not previously tested on marine vehicles. This includes the development

of an inverse filter that will allow the tracking system to follow the desired input

with increased accuracy and a method for choosing robust feedback gains based

on pole placement [9]. These results will be compared to those commonly used in

linear control design, such as MATLAB’s place function.

Due to lack of modeling parameters for URI’s ASV, testing will be done on a

model of the Cybership II in Simulink [11]. The methods used in this thesis can be

generalized to function with any fully-actuated marine surface vehicle. Simulation
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will be made realistic by including a nonlinear boat model, external disturbances,

and measurement noise. The controller will be tested by following an elliptical

path similar to [1]. Results will be analyzed based on how well the position and

heading follow the desired track for each method under disturbances and model

perturbations.
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CHAPTER 2

Background and Literature Review

2.1 State Space Representation

In state space control, the time-domain system is modeled as a set of input,

output, and state variables that are related by first-order differential equations. To

use varying numbers of inputs, outputs, and states, it is useful to represent these as

vectors. A linear time-invariant system can use matrices to express the differential

and algebraic equations. This compact form (1) will be used throughout this thesis

for continuous systems.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

(1)

The vectors are u for input, y for output, and x for the state, where there are p

inputs, q outputs, and n state variables. The A matrix is the n× n state matrix,

B is the n × p input matrix, C is the q × n output matrix, and D is the q × p

feedthrough matrix. Lastly, ẋ(t) is the time derivative of the state, x(t). All

vectors and matrices in this thesis will be bold.

When implementing a state space controller, it is common to convert a model

to discrete time based on a sampling time T . Then the controller can be updated

at a fixed interval by a digital computer.

x[k + 1] = Φx[k] + Γu[k]

y[k] = Cx[k] +Du[k]

(2)

The continuous state matrix A and input matrix B are transformed into the

discrete matrices Φ and Γ, while C and D remain the same for the discrete form.

The discrete state space equation (2) is obtained by calculating the zero-order hold
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for the continuous system, which can be done using (3).

Φ = eAT

Γ =

(∫ T

0

eAτ dτ

)
B

(3)

2.2 State Space Control

Before beginning control design on a system, it is important to test the system

to see if it is controllable. This will determine if control techniques can be used

to stabilize the system. A common way to test this is to form the controllability

matrix and check its rank.

Wc =
[
Γ ΦΓ Φ2Γ . . . Φn−1Γ

]
(4)

If Wc has full rank, the system is controllable. Note that in equation 4 the discrete

system was tested, however, the controllability of the continuous system could also

be checked. Similarly, observability can be be checked by forming the observability

matrix in (5). If Wo has full rank, then the system is observable.

Wo =


C
CΦ
CΦ2

...
CΦn−1

 (5)

2.2.1 Stability

A stable system is one that will not give unbounded output when given a

bounded input. It is possible for this system to oscillate forever, but it will be

remain bounded between some values. This is also known as bounded-input,

bounded-output (BIBO) stability. A stronger form of stability is asymptotic sta-

bility. This is when a system’s state, x(t), approaches an equilibrium point xe

(usually 0) as t→∞.
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A simple way to determine the stability of a linear system is to look at the

eigenvalues, or poles, of the A matrix. For continuous systems, the system is

stable if the eigenvalues of A do not have positive real parts. The system is

asymptotically stable if the eigenvalues of A have strictly negative real parts. For

discrete systems, the eigenvalues of Φ (discrete form of A) must be inside or on the

unit circle for stability. Asymptotic stability requires the eigenvalues to be inside

the unit circle. Note that stability has nothing to do with robustness to modeling

errors (see section 2.2.5) or how quickly the system reaches equilibrium.

2.2.2 Poles and Settling Time

The settling time of a system is how quickly the system reaches its equilibrium

to within some percentage, usually 1% or 2%, and is determined by the location of

the poles. Assuming a continuous system is stable, the more negative the real part

of the poles are, the faster the response due to that pole will settle. For example, if

a system has two poles, one at -12 and another at -3, the response of the pole at -3

will settle more slowly, making it the dominant pole and determining the system’s

overall settling time. Settling time for the pole at -3 can be estimated by using

equation 6 for a tolerance of 1%.

Ts ≈
ln(tolerance)

<(slowest pole)
=

ln(0.01)

−3
≈ 1.5sec (6)

Special types of poles that are known to have nice properties [1] are called Bessel

poles. They are the roots of the Bessel polynomials and can be generated using

the formula in equation 7.

Besseln(x) =
n∑
k=0

(2n− k)!

(n− k)!k!

xk

2n−k
(7)

The roots of each Bessel polynomial have different settling times. Normalizing

these roots to one second settling time allows the roots be scaled to the desired

7



settling time.

sn =
roots(Besseln(x))

Ts
(8)

The normalized Bessel poles for polynomials n = 1 . . . 6 are given in Table 1. These

Bessel poles will be used when no other suitable poles can be chosen for controller

design.

s1 -4.6200
s2 -4.0530 ± j2.3400
s3 -5.0093 -3.9668 ± j3.7845
s4 -4.0156 ± j5.0723 -5.5281 ± j1.6553
s5 -6.4480 -4.1104 ± j6.3142 -5.9268 ± j3.0813
s6 -4.2169 ± j7.5300 -6.2613 ± j4.4018 -7.1205 ± j1.4540

Table 1: The roots of normalized Bessel polynomials with Ts = 1 from [1]

2.2.3 Control System Structures

For the simplest case, a system can have no controller applied to it. This

is called the open-loop system because it has no feedback for control. This sys-

Figure 1: An open-loop state space system.

tem could be asymptotically stable, but we have no control over how quickly the

system will settle. If the open-loop system is not stable, does not settle in the

desired amount of time, or does not have desired robustness, then it is useful to

introduce a feedback gain L to get desired pole locations, and therefore settling

time. This is called a state-feedback regulator. A regulator will drive the system

to an equilibrium point. This state-feedback regulator assumes that all states can

be measured directly; i.e., C = I, and D = 0. To design the regulator, we choose

8



Figure 2: A state-feedback regulator

desired poles for the closed-loop system and calculate the gain matrix L to obtain

a system that has those poles.

In many cases all of the states cannot be measured. To deal with this an

observer needs to be designed that will use the input to the plant and its output

to estimate the state. In addition to the state feedback gains, L, the observer

gains, K, need to be calculated so that the observer settles quicker than the plant.

This means that the plant states need to be estimated correctly before the system

can be regulated to equilibrium. The architectures discussed so far have only been

Figure 3: A state-feedback regulator with full order observer

designed to regulate to a fixed equilibrium point. A more useful control system

would be one that could be take a desired output for the plant and drive the

output of the system to that reference input. This is called a tracking system. In

a tracking system the output of the plant is subtracted from the desired output

to obtain an error term. This error term is fed into what is called the additional

dynamics block [1] to generate the needed input to the plant. The L gain for

the entire system is now split into two parts, where the gain matrix L1 is used to
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regulate the plant and has columns equal to the number of plant states, and L2

is used for the additional dynamics and has columns equal to the number of plant

outputs.

L =
[
L1
p×n

L2
p×q

]
(9)

The additional dynamics Aa and Ba implement an integrator similar to the I

term in PID controllers and can also reject disturbances if designed to do so.

Figure 4: A tracking system

The next logical step would to combine the tracking system and observer to

form an even more useful linear controller. A tracking system with an observer can

follow any reference input with minimal measured states thanks to the work of the

observer. Due to the separation principal in regards to control and estimation, the

tracking system and observer can be designed separately. The closed-loop poles

of the overall system are the tracking system poles L combined with the observer

poles K. However, to obtain an observer-based tracking system with acceptable

stability margins, the tracking system gains must be taken into account when

calculating the observer gains.

2.2.4 Norms

A norm of a vector is the size or length of a vector in a vector space. The

norm of a vector x is represented as ‖x‖ and has the following properties.

1. ‖x‖ = 0 iff x = 0
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Figure 5: An observer-based tracking system

2. ‖αx‖ = α‖x‖, ∀ α > 0

3. ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖

There are a few different types of norms. The L2 norm is the most intuitive type

of norm and is the distance from the origin to the vector x that arises from the

Pythagorean theorem. The Lp norm is a generalized norm that is equal to the

L2 norm for p = 2 and is defined for p ≥ 1. Lastly, there is the L∞ norm,

or maximum norm. For a vector u(t) = [u1(t)...un(t)]ᵀ the signal norms are as

defined in equations 10-12.

L2 norm : ‖u(t)‖L2 =

√∫ ∞
0

uᵀ(t)u(t) dt (10)

Lp norm : ‖u(t)‖Lp =

(∫ ∞
0

‖u(t)‖p dt

) 1
p

(11)

L∞ norm : ‖u(t)‖L∞ = sup
t

{
max
i
|ui(t)|

}
(12)

2.2.5 Input-Output Stability and Robustness

A system H with input u(t) and output y(t) is said to be finite-gain L-stable

if there exits a gain called δ <∞ and a constant positive bias β such that equation

13 is satisfied. The T subscript stands for the truncation operator, which sets the
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continuous function uT (t) = 0 for t > T .

‖yT (t)‖ ≤ δ‖uT (t)‖+ β (13)

The gain δ is an upper bound and can be calculated for the case of L2 signal

norms. This result is called the system infinity norm of the system. If the system

is described by the transfer function matrix G(jω), then the system infinity norm

is

δ = G∞ norm = sup
ω
{σ1 (G(jω))} (14)

where σ1 is the maximum singular value of a matrix. In other words, the G∞ norm

is the maximum singular value over all frequencies of the transfer function matrix

G(jω). For SISO systems, this is the maximum value of the Bode magnitude plot.

For a state space model the transfer function matrix is shown in equation 15.

G(jω) = C(jωI −A)−1B +D (15)

The H∞ norm, when combined with the Small Gain Theorem (SGT) [2], allows

us to define a measure of robustness for a control system. The SGT states that

for two systems H1 and H2 connected as shown in figure 6, if δ1δ2 < 1 then the

system from u(t) = [u1(t)
ᵀ,u2(t)

ᵀ]ᵀ to y(t) = [y1(t)
ᵀ,y2(t)

ᵀ]ᵀ is finite gain stable.

Figure 6: The Small Gain Theorem: Feedback interconnection of H1 and H2

For this thesis, only the special case when u2 = 0 is needed. The upper bound

for δ1 is maximized when δ2 is minimum because the product of norms must be
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less than 1. Therefore, it can be concluded from the SGT that minimizing the H∞

norm of H2 will result in the largest allowable H∞ norm of H1. If H1 is an unknown

perturbation of the plant model with norm of δ, then minimizing δ2 results in the

greatest stability robustness. This guarantees that the closed-loop system will be

stable if

δ < δmax =
1

δ2
(16)

2.3 Marine Models

For marine vehicles, many models exist of varying complexity [3]. Marine

systems are inherently nonlinear because of hydrodynamic forces being a function

of velocity, the Coriolis effect at different velocities, rotation from body coordinates

to global coordinates, and buoyancy forces. The most complex 6 degree of freedom

(DOF) model for marine motion in body coordinates is expressed in equation 17.

η̇ = JΘ(η)ν

MRBν̇ +MAν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr + g(η) + g0 = τ + τdisturb

(17)

All other models are justified simplifications of this motion model. It is rare that

this model is used directly in control design because of its complexity. Instead, it

is used for simulating the full dynamics of the system. The notation for marine

vehicles and different model options will be discussed in the following sections.

2.3.1 Notation and Reference Frames

For a full 6 DOF system, the notation for positions, velocities, and forces that

are defined by the Society of Naval Architects and Marine Engineers (SNAME) are

presented in Table 2. For surface vehicles such as the CyberShipII and URI’s ASV,

the majority of motion occurs in the first, second, and sixth DOF. For this reason,

surface vehicles are said to have 3 DOF and most controllers for surface vehicles
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DOF
Forces and
moments

Linear and
angular

velocities

Positions
and angles

1 motion in x direction (surge) X u x
2 motion in y direction (sway) Y v y
3 motion in z direction (heave) Z w z
4 rotation about x axis (roll) K p φ
5 rotation about y axis (pitch) M q θ
6 rotation about z axis (yaw) N r ψ

Table 2: The SNAME notation for marine vehicles

are designed with this in mind. In some cases roll and pitch are important motions

in control, but this thesis does not focus on those situations. It is convenient to

split the state variables into vectors for positions, velocities, and forces as shown

for 6 DOF in equation 18.

η =


x
y
z
φ
θ
ψ

 ,ν =


u
v
w
p
q
r

 , τ =


X
Y
Z
K
M
N

 (18)

The vehicle’s position and orientation is represented by η, the vehicle’s velocity

in each direction is ν, and the forces acting on the vehicle are represented by τ .

These vectors allow the same equations to be used for different degrees of freedom.

For example, 3 DOF only includes states representing positions, velocities, and

forces in the xy-plane. The vector equations would be the same but the vectors

would only include the first, second and sixth rows (19). From now on all vector

representations will be in 3 DOF because this thesis is only investigating the control

of surface vehicles.

η =

xy
ψ

 ,ν =

uv
r

 , τ =

XY
N

 (19)

Before jumping into all of the possible marine models, reference frames must be

discussed. The two reference frames that are important for control on a small scale
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are the North-East-Down (NED) and body-fixed (BODY) reference frames.

The NED reference frame {n} = {xn, yn, zn} has origin on and is defined as a

tangent plane on the Earth’s surface. The xn-axis points towards true North, the

yn-axis points towards East, and the zn-axis points into the Earth. This causes the

heading to be defined as positive clockwise about the origin and 0 degrees at true

North. This reference frame is used for marine vehicles that stay at approximately

the same latitude and longitude. In this thesis the NED reference frame will used

for global positions and all commanded positions.

The body-fixed reference frame {b} = {xb, yb, zb} has origin ob which is fixed

to a point on the vehicle close to the center of gravity and rotates with the marine

vehicle. The xb-axis is directed from aft to fore, the yb-axis is directed from port to

starboard, and the zb axis is directed from top to bottom. Velocities ν and forces

τ on the vehicle are expressed these BODY coordinates, while the position η of

the vehicle must be expressed in the global NED reference frame.

Figure 7: NED and Body reference frames
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2.3.2 Rigid-Body Kinetics

The first part of equation 17 that will be discussed is the motions of rigid

bodies derived from Newtonian physics [3]. These kinetics are represented by

MRBν̇ +CRB(ν)ν = τRB (20)

The MRB matrix is the rigid-body mass matrix and the CRB(ν) matrix is the

velocity dependent Coriolis and centripetal matrix due to rotation of the BODY

reference frame about the global NED reference frame. The velocity vector ν =

[u, v, r]ᵀ and force vector τ = [X, Y,N ]ᵀ are in reference to the BODY frame. The

rigid-body mass matrix is unique and defined by equation 21.

MRB =

 m 0 −myg
0 m mxg

−myg mxg Iz

 (21)

In MRB, m is the mass of the vehicle, xg and yg are the distances to the center

of gravity (CG) from body origin ob, and Iz is the moment of inertia about the

zb-axis. In practice the CG is on the yb-axis, making yg = 0. These variables are

among the easiest to obtain because they can be measured directly. Methods for

estimating Iz can be found in [4].

Unlike the rigid-body mass matrix, the rigid-body Coriolis and centripetal

matrix is not unique. In this paper the equation derived by Fossen in [3] will be

used.

CRB(ν) =

 0 0 −m(xgr + v)
0 0 −m(ygr − u)

m(xgr + v) m(ygr − u) 0

 (22)

The CRB(ν) matrix in equation 22 is nonlinear and depends on the velocity of the

vehicle.

2.3.3 Hydrodynamic Forces

The hydrodynamic effects result from the added mass and Coriolis-centripetal

forces due to the rotation of the vehicle relative to the NED frame as well as
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viscous damping. Motion of a marine vehicle will induce some motion in the

surrounding water, displacing it and then settling back after the vehicle has passed

through. This gives the fluid kinetic energy, causing the added mass and Coriolis-

centripetal terms. Linear damping comes from potential damping and skin friction

and nonlinear damping is caused by quadratic damping and higher order terms.

−MAν̇r −CA(νr)νr −D(νr)νr = τhyd (23)

νr = ν − νc (24)

The hydrodynamic forces are combined in equation 23 where νr is the relative

velocity and vc = [uc, vc, 0]ᵀ is an irrotational ocean current. The full added mass

matrix is expressed in equation 25.

MA = −

Xu̇ Xv̇ Xṙ

Yu̇ Yv̇ Yṙ
Nu̇ Nv̇ Nṙ

 (25)

The hydrodynamic derivatives in MA are consistent with SNAME notation. For

example, the hydrodynamic added mass force X along the x-axis due to sway

acceleration v̇ is represented by Xv̇. The added mass matrix is positive semi-

definite for a rigid body at rest or moving at positive forward speed. Methods for

identifying these coefficients are presented in [5].

For the added Coriolis-centripetal matrix CA(ν), the full form is expressed in

equation 26.

CA(ν) =

 0 0 Yu̇u+ Yv̇v + Yṙr
0 0 −Xu̇u−Xv̇v −Xṙr

−Yu̇u− Yv̇v − Yṙr Xu̇u+Xv̇v +Xṙr 0

 (26)

For most surface vehicles the surge and steering dynamics can be decoupled due to

xz-plane symmetry. This reduces the added mass matrix to four unknowns shown

in equation 27. Note that due to symmetry Nv̇ = Yṙ.

MA = −

Xu̇ 0 0
0 Yv̇ Yṙ
0 Yṙ Nṙ

 (27)
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This assumption also reduces the added Coriolis-centripetal matrix to equation 28.

CA(ν) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 (28)

The total damping on a marine vehicle can be split into linear damping and

nonlinear quadratic damping. It is difficult to separate these effects in practice,

but it is convenient for analysis and control.

D(νr) = D +Dn(νr) (29)

The linear damping matrixD can be written in full using SNAME notation similar

toMA. The difference is that the force is caused by velocity instead of acceleration.

D = −

Xu Xv Xr

Yu Yv Yr
Nu Nv Nr

 (30)

Under the same assumption of xz-plane symmetry the damping matrix reduces to

equation 31.

D = −

Xu 0 0
0 Yv Yr
0 Nv Nr

 (31)

Nonlinear damping assuming xz-plane symmetry is shown in equation 32.

Dn(ν) = −

X|u|u|u| 0 0
0 Y|v|v|v|+ Y|r|v|r| Y|v|r|v|+ Y|r|r|r|
0 N|v|v|v|+N|r|v|r| N|v|r|v|+N|r|r|r|

 (32)

All of the hydrodynamic derivatives in this section are dependent on the path of

the vehicle and vehicle velocities. If these values are determined during a specific

maneuver under certain conditions, they may not be valid for other speeds or

paths. Therefore it is important to design a robust controller that can handle the

natural uncertainty and nonlinearity of these marine systems.

2.3.4 Dynamic Positioning Models

Dynamic Positioning (DP) models assume zero or low speed. The models

presented in this section will be valid for low speed maneuvering up to 2 m/s [3].
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The DP model can be derived from the advanced model shown in equation 17. The

g0 and g(η) terms that represent buoyancy and restoring forces can be dropped

because they are not relevant for 3 DOF models. In addition, the rigid-body mass

and added mass can be combined into one M matrix (33).

MRB +MA = M (33)

The rotation matrix can be simplified from the general rotation matrix JΘ(η) to

the rotation matrix R(ψ) about the z-axis due to the reduction to 3 DOF.

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (34)

This gives the nonlinear result in equation 35 which is suitable for simulation, but

difficult to work with for control design.

η̇ = R(ψ)ν

Mν̇ +CRB(ν)ν +CA(νr)νr +D(νr)νr = τ + τdisturb

(35)

The nonlinear DP equation can be linearized by making some assumptions. It is

known that at zero speed, nonlinear damping can be ignored and control design

can use linear damping D [3]. The relative velocity νr can be ignored if ocean

currents are treated as a slowly varying bias vector b which can be compensated

by the integral action of the controller. To remove the rotation matrix the position

η is typically replaced by vessel parallel coordinates ηp.

ηp = Rᵀ(ψd)η (36)

η̇p = r

 0 1 0
−1 0 0
0 0 0

ηp + ν ≈ ν (37)

The vessel parallel coordinate system [6] is used for designing linear controllers. It

defines a fixed coordinate system that is translated to the desired position (xd, yd)
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and rotated to the desired heading ψd. The vessel parallel reference frame is

temporary and changes based on the desired position input to the controller. Notice

that for low yaw rates r ≈ 0 the rate of change of the vessel parallel position is

approximately equal to velocity.

This results in the following linear DP model which will be used for the design

of a state space controller.

η̇p = ν

Mν̇ +Dν = Rᵀ(ψ)b+ τ + τdisturb

(38)

2.3.5 Thrusters

A simple thruster model assumes there is a way to generate a force in each

direction, also known as fully actuated. It takes into account the limitations of

propellers by modeling the actuators using time constants for each direction in the

diagonal matrix Athr.

Athr = −


1

Tsurge
0 0

0 1
Tsway

0

0 0 1
Tyaw

 (39)

τ̇ = Athr(τ − τcom) (40)

The time constants represent how quickly the thrusters reach their commanded

input τcom. The higher the time constant, the slower the propeller is.

To get the generalized forces in each direction the vehicle must be fully actu-

ated and have a thruster configuration matrix Tc. This process is called control

allocation. The configuration matrix has a column for each actuator that splits

the force into components of surge, sway, and yaw. Some examples are below.

tmain prop =

 1
0
−lyi

 , tazmuth thruster =

 cos(αi)
sin(αi)

lxi sin(αi)− lyi cos(αi)

 (41)

The distance from ob in the x and y direction for the i-th actuator is represented

by lxi and lyi , respectively, and the angle of the i-th propeller is represented by
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αi. Each thruster is combined into Tc and multiplied by a force coefficient matrix

Kf = diag(K1, . . . , Kn) and the control input u to get the desired thrust.

τ = Tc(α)Kfu (42)

2.4 Current Marine Control Techniques

Industrial control systems tend to use linear control methods because of their

simplicity and ease of implementation, while the majority of academic marine

control techniques are nonlinear. A few reasons for this are discussed by Strand

[7]. The inherent properties of the mechanical system are nonlinear and certain

system properties can be exploited in nonlinear control design. Linearization is

always an approximation, hence it is easier to design a robust controller with

nonlinear design. Strand also argues that nonlinear control is simpler for marine

systems because it requires no linearization or gain scheduling methods. Now that

that has been said, this thesis will attempt to show that robust linear techniques

will be sufficient for marine systems under certain operating conditions.

2.4.1 Nonlinear

A simple technique used in the MSS toolbox [8] is a nonlinear DP PID con-

troller with a passive wave filter to prevent wear on thrusters. Adaptive control

[9] has been implemented for the CyberShip II for a DP controller under wave dis-

turbances. Fossen [3] presents many examples of DP control, including PID with

acceleration feedback, linear quadradic optimal control, integrator backstepping ,

and sliding-mode control.

2.4.2 Linear

For reduced models, such as the linear Nomoto model [10], there has been

significant research in the system identification of the Nomoto Indicies [11, 12].

These models are often good enough for quick implementations of heading autopi-
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lots under constant forward velocity. This model is not sophisticated enough to

achieve the maneuvering goals of URI’s ASV and this thesis.

Linear DP controllers have been proposed using vessel parallel coordinates by

Fossen [3] which will be investigated in this thesis.
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CHAPTER 3

Materials and Methods

For this thesis, all design and experimentation was done in MATLAB and

Simulink. MATLAB was used to calculate controller gains and Simulink was used

to connect control blocks and run experiments. Controller design was aided by us-

ing the digcontr library [1] provided by Dr. Vaccaro, a professor at the University

of Rhode Island. This library contains functions for designing regulators, tracking

systems, and observers using robust pole placement to calculate controller gains.

These functions were designed to provide improved H∞ robustness for MIMO sys-

tems compared with the place function provided by MATLAB.

The Marine Systems Simulator (MSS) library developed at the Norwegian

University of Science and Technology (NTNU) was used for marine models and

Simulink examples of guidance, navigation, and control (GNC). The GNC section

of this library contains models for the CyberShip II, a dynamic positioning (DP)

control example for the CyberShip II, and many other useful marine control blocks.

These Simulink blocks aided in the development of realistic marine simulations for

testing state space control systems.

3.1 The Model

The maneuvering objectives of URI’s ASV dictate that a DP model in 3 DOF

should be used to design the control system. If the state of the model is assumed

to be x = [ηᵀ
p ,ν

ᵀ]ᵀ, the input is u = τ , and the position ηp is measured, then

the linear time-invariant state space model can be derived using the DP model in

equation 38,

ẋ = Ax+Bu+Eτdisturb

y = Cx

(43)
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L 1.255 m Xu̇ -2.0 kg Xu -0.72253 kg/s
B 0.29 m Yv̇ -10.0 kg Yv -0.88965 kg/s
m 23.8 kg Yṙ -0.0 kgm Yr -7.250 kgm/s
Iz 1.76 kgm2 Nv̇ -0.0 kgm Nv 0.0313 kgm/s
xg 0.046 m Nṙ -1.0 kgm2/s Nr -1.900 kgm2/s
X|u|u -1.3274 kg/m Xuuu -5.8664 kgs/m2 Tsurge 0.1
Y|v|v -36.4729 kg/m N|v|v 3.9565 kg Tsway 0.11
Y|r|v -0.805 km N|r|v 0.130 kgm Tyaw 0.12
Y|v|r -0.845 km N|v|r 0.080 kgm
Y|r|r -3.450 kgm N|r|r -0.750 kgm

Table 3: CyberShip II experimentally identified parameters

where the matrices A, B, C, and E are expressed in (44).

A =

[
0 I
0 −M−1D

]
, B =

[
0

M−1

]
, C =

[
I 0

]
, E =

[
0

M−1

]
(44)

An alternative representation includes the thrusters τ in the state x and uses the

commanded thrust τcom (see section 2.3.5) as the input u. The state becomes

x = [ηᵀ
p ,ν

ᵀ, τ ᵀ]ᵀ and u = τcom, making the model in (45).

A =

0 I 0
0 −M−1D M−1

0 0 Athr

 , B =

 0
0
Athr

 , C =
[
I 0 0

]
, E =

 0
M−1

0


(45)

Adding thruster dynamics to the model is a good approximation for the unknown

behavior of the nonlinear thrusters. A controller designed with this model should

be robust to unmodeled dynamics.

To fill in these models and design the controller, parameters need to be ob-

tained for M and D. Thankfully, system identification has been done on the

CyberShip II which is similar in size to the target ASV. A controller designed us-

ing these parameters should be able to serve as a guide for the URI ASV when its

parameters are determined. The parameters for the CyberShip II [2] are found in

Table 3. All damping parameters except those requiring yaw motion (Yr, Nr, Y|r|v,

...) were identified experimentally by Skjetne [3] during tow tests. The thruster
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Xu -2.0 kg/s
Yv -7.0 kg/s
Yr -0.1 kgm/s
Nv -0.1 kgm/s
Nr -0.5 kgm2/s

Table 4: CyberShip II estimated parameters from MSS

dynamics were estimated using engineering judgment by the author. The other

parameters were identified by Skjetne using an adaptive maneuvering controller

while performing an ellipse maneuver. Before this system identification was done,

these parameters were estimated and used for control in a CyberShip II DP ex-

ample from MSS [4]. These parameters are shown in table 4. Now that a suitable

model has been filled, it is possible design the linear state space control system.

3.2 Controller Design

The goal of the controller is to take a reference input such as a track of an

ellipse and follow it with minimal error. As a test, a full state space regulator can

be designed as shown in figure 2 to hold the vehicle at the origin. For a regulator,

it is assumed that all states x = [ηᵀ
p ,ν

ᵀ]ᵀ are measured and the sampling rate is

T . Poles were selected based on the rules in [5] to achieve the settling time Ts.

Closed-Loop Regulator Pole Selection Methods

1. Use sufficiently damped plant poles: <(pole) < s1
Ts

2. Use added damping poles if the pole is not sufficiently damped and has

complex parts: s1
Ts
< pole < 0. Replace the pole’s real part with s1

Ts
to damp

the pole while keeping the imaginary part the same: pole = s1
Ts

+ =(pole).

3. For unstable poles of A, if −|<(pole)| < s1
Ts

, then it can be used as a closed-

loop pole.

4. Use normalized Bessel poles scaled by settling time: sn
Ts

These continuous s-plane poles must be converted to the z-plane before being used
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to calculate gains for a digital system. This is done using

zpole = eT ·spole (46)

Once the closed-loop pole locations have been selected to obtained the desired

settling time, the L gains can be calculated. For SISO systems, any method can be

used to calculate these gains because there is a single solution. In the case of this

MIMO systems there are infinite solutions to the pole placement problem. This

means that there needs to be a method for assessing the quality of the gains chosen.

Classical stability margins don’t take into account perturbations in multiple inputs

simultaneously. Instead of using these classical methods the H∞ norm is used to

test the robustness of the gains chosen from pole placement. This theory is based

on input-output stability of control systems as shown in section 2.2.5.

The rfbg function, an experimental function under development for inclusion

in the digcontr library, optimizes the robustness norm of the system and places

the desired closed-loop poles. The resulting robustness norm δ for the discrete

feedback system with the gains L can then be compared with other methods. A

good measure as to what qualifies as a acceptable robustness is that δ should be

≥ 0.5. Also, tenths matter. For example, a δ of 0.7 is noticeably better than 0.6.

A tracking system will allow the system to follow a given input such as a

desired path. For a tracking system, the additional dynamics must first be chosen.

The main roll of the additional dynamics is to integrate the error signal to track

the desired input and reject constant or slowly varying error. To accomplish this,

a SISO discrete additional dynamics can simply be Φa = 1, Γa = 1.The additional

dynamics can also be selected to reject a specific disturbance such as waves and

then replicated for each input. For example a wave spectrum transfer function of

the form in (47) can be canceled by choosing the roots of the denominator of G(s)
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to be the eigenvalues of Aa.

G(s) =
2λω0σ

s2 + 2λω0s+ ω2
0

(47)

After the additional dynamics have been chosen, the open-loop design model

for the system can be calculated by forming the combined state xd = [xᵀ,xᵀ
a]

ᵀ.

Ad o =

[
A 0
BaC Aa

]
, Bd o =

[
B
0

]
, Cd o =

[
C 0

]
(48)

Poles must be selected for design model using the pole selection method below [5].

Closed-Loop Tracking System Pole Selection Methods

1. If the plant has slow stable zeros: <(zero) > 4 s1
Ts

, then choose this as a pole.

The pole won’t affect the settling time of the tracking system because it will

be canceled by the plant zero.

2. Use any of the rules for choosing regulator poles.

The poles that were chosen for the design model can be fed with Ad o and

Bd o into the rfbg function to obtain gains Ld.

Ld =
[
L1 L2

]
(49)

Robustness of this closed loop system can be calculated by using the input

perturbation model [6] for error. This is done by introducing a system ∆ with

input f and output w at the input of the design model and calculating the system

from w to f .

Figure 8: A tracking system with input perturbation ∆
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To do this, start with the formulas for the plant and additional dynamics and

reduce the equations until only the states (x, xa) and the input w and output

f remain. The reference input is set to 0 for this derivation. This means that

robustness is not affected by any other blocks attached to the reference input,

such as the FIF. An example derivation for the tracking system is given below.

ẋ = Ax+Bu

ẋ = Ax+B(w + f)

ẋ = Ax+B(w + v −L1x)

ẋ = Ax+B(w +L2xa −L1x)

ẋ = (A−BL1)x+BL2xa +Bw

ẋa = Aaxa +Bae

ẋa = Aaxa −BaCx

f = v −L1x

f = L2xa −L1x

(50)

This results in the matrix from of the design model fromw to f shown in (51).

Now the results of section 2.2.5 can be applied with the system ∆ representing H1.

Minimizing the H∞ norm of the system fromw to f results in the greatest stability

robustness.

Ad r =

[
A−BL1 BL2

−BaC Aa

]
, Bd r =

[
B
0

]
, Cd r =

[
−L1 L2

]
(51)

The experimental rfgb function from the digcontr library directly minimizes

the H∞ norm of the robustness design model from w to f , such as the one in

equation 51. This function optimizes the gain matrices L1 and L2 until maximum

robustness is achieved. MATLAB’s place function uses a different method to

attempt to choose acceptable gains. The place function tries to make the closed

loop eigenvectors as orthogonal as possible. This is only indirectly related to

robustness [7]. Therefore, rfbg produces gains that have higher robustness than

place.
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The final resulting closed-loop design from r to y for the tracking system is

Ad c =

[
A−BL1 BL2

−BaC Aa

]
, Bd c =

[
0
Ba

]
, Cd c =

[
C 0

]
(52)

3.3 Observer Design

Up to now it has be assumed that all plant states are measured. However,

this is rarely the case in real systems. When only some states can be measured

the rest of the states must be estimated using an observer. Designing the observer

is similar to regulator and tracking system design. The rules for choosing pole

locations of the observer are below [5].

Observer Pole Selection Methods

1. If the plant has zeros with <(zero) < 0, then use these for observer poles.

2. If the plant has zeros with <(zero) > 0, then use the reflection of the zero

about the imaginary axis: pole = −<(zero) + =(zero).

3. Use normalized Bessel poles that are three to five time faster than the desired

settling time of the control system.

Use obg ts, another experimental function under development for inclusion

in the digcontr library, to design the observer with these desired closed-loop poles

for the tracking system. The robustness of this system can again be determined

by forming the model from w to f with states xd = [xᵀ, x̂ᵀ,xᵀ
a]

ᵀ by inserting the

unknown model ∆ at the input u. The resulting model is

Ad r =

 A −BL1 BL2

KC A−KC −BL1 BL2

−BaC 0 Aa

 , Bd r =

B0
0

 ,
Cd r =

[
0 −L1 L2

]
, Dd r = D

(53)

The closed-loop design model from r to y which will be used to calculate the
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inverse filter is

Ad c =

 A −BL1 BL2

KC A−KC −BL1 BL2

−BaC 0 Aa

 , Bd c =

 0
0
Ba

 ,
Cd c =

[
C 0 0

]
, Dd c = D

(54)

3.4 Feedforward Inverse Filter

To ensure that the designed observer-based tracking system tracks the desired

input exactly, a feedforward inverse filter (FIF) [8] can be designed. The inverse

filter is an exact inverse of the design model and generates an input to the con-

troller that will produce the desired position with a delay of d samples, where d

is calculated in (55). Using the discrete design model (Φd, Γd, Cd, Dd) the exact

inverse filter (Φf , Γf , Cf , Df ) can be calculated using (55).

d = min
d

(CdΦ
d−1
d Γd 6= 0)

Df = (CdΦ
d−1
d Γd)

−1

Cf = −DfCdΦ
d
d

Γf = ΓdDf

Φf = Φd + ΓCf

(55)

When creating the inverse filter, the zeros and poles of the design model will become

the poles and zeros of the filter respectively to create an exact inverse. If there are

high frequency zeros in the design model caused by sampling, then the inverse filter

will attempt to cancel these out resulting in high frequency oscillations. This can

be remedied by choosing appropriate initial conditions, as outlined in section 3.6.

These oscillations die out after a while and therefore can be canceled out completely

by choosing good initial conditions. A simple way to do this is to simulate the

commanded input backwards through the inverse filter until the oscillations are no

longer present in the filter output. Then take the final state of the inverse filter,
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now the initial state, and negate it to get the new initial state. Simulating the

filter forward with the reference input and the new initial state should result in no

unwanted oscillations.

If the design model has eigenvalues outside of the unit circle, then the resulting

inverse filter will be unstable. This can be fixed by incrementing d by one. This

creates a band-limited inverse filter that is valid for low frequencies. To prevent

high frequencies from being input into the FIF, care should be taken to smooth

the input to the filter. Notice that the FIF is not in the feedback loop and does

not affect the robustness calculations.

3.5 Track Generation

The goal maneuver was to perform an ellipse similar to Fossen in [3]. The

desired path can generated using the parametric equation of the ellipse centered

at the origin with semi-major axis a and semi-minor axis b. Recall that x is north

and y is east and notice that yd is inverted so that the ellipse turns clockwise.

xd(t) = b sin(t)

yd(t) = −a cos(t)

ψd(t) = tan−1(
a

b
tan(t))

ηd(t) =
[
xd(t) yd(t) ψd(t)

]ᵀ
(56)

To generate a single rotation about the ellipse the parametric variable t can be

replaced by a vector from 0 to 2π that has number of elements equal to TS where

T is the sampling interval and S is the amount of time to travel along the ellipse.
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3.6 Initial Conditions

The initial conditions for η are simply ηd(0) and the initial velocities and

accelerations can be calculated by taking derivatives of the parametric equations.

ẋd(t) = b cos(t)

ẏd(t) = a sin(t)

rd(t) =
ab

a2 sin(t)2 + b2 cos(t)2

ν0 =
[
ẋd(0) ẏd(0) rd(0)

]ᵀ
(57)

ẍd(t) = −b sin(t)

ÿd(t) = a cos(t)

ṙd(t) =
2ab(b2 − a2) sin(2t)

(a2 sin(t)2 + b2 cos(t)2)2

ν̇0 =
[
ẍd(0) ÿd(0) ṙd(0)

]ᵀ
(58)

The initial thrust can be calculated using the linear DP model and the initial

acceleration and velocities.

u0 = τ0 = M ν̇0 +Dν (59)

Now the initial state x0 can be used to calculate the initial state of the additional

dynamics.

xa0 = Lᵀ
2(L2L

ᵀ
2)
−1(L1x0 + u0) (60)

The initial observer state x̂0 can be initialized to match the initial plant state x0.

3.7 Implementation in Simulink

Simulink was used to simulate the designed controller and boat model. Dis-

turbances were added to simulate waves, wind, and measurement noise to make

the simulation more realistic. Many debugging tools such as scopes to view signals,

outputs to the MATLAB workspace, and switches to toggle elements were used.
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3.7.1 The Controller

To build the tracking system controller, two Simulink blocks were made with-

out model connections so that models could be swapped later. The first control

block uses full state feedback while the other uses a full-order observer. In each

case discrete state space blocks were used for the designed additional dynamics,

gain blocks were used for the L1 gains and the output selection matrix C, and

initial conditions were set based on section 3.5. When the observer was used, a

discrete state space block was implemented with input uo = [u,Cx]ᵀ by the use

of a multiplexer, and B = [K,Γ]. The full state feedback tracking system and

observer-based tracking system were connected as in (4) and (5) respectively.

(a) The full state feedback tracking system

(b) The observer-based tracking system

Figure 9: The two controller blocks without plant models

3.7.2 Models

First a linear boat model based on vessel parallel coordinates was created as

a continuous state space block. This is the same model that the controller was
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designed for and was used to verify that the controller was functioning as expected.

It is a rough approximation of the actual real world vehicle.

For the nonlinear CyberShip II model, a previous Simulink block from the

MSS library was modified to add nonlinearities and thruster dynamics. Orange

blocks are modifications to the MSS model and include the thruster machineries

for each DOF and the nonlinear matrices Dn(ν), CRB(ν), and CA(ν). An input

for external disturbances and an output for total force were added to the model

as well. The simulation model was based on equation 35 and includes switches to

toggle all nonlinear elements for testing purposes. Care was taken to initialize the

integrators with appropriate initial velocity and acceleration.

Figure 10: The nonlinear model used in simulation

The thrusters were modeled as time constants in surge, sway, and yaw (see

equation 40). A thrust configuration matrix was not used because it is assumed

that the necessary thrust can be generated. This means that the model can be the

same for any fully actuated vehicle.
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Figure 11: The thruster model

3.7.3 Feedforward Inverse Filter

The FIF was added between the desired input and the control system to

enhance its performance. Its implementation was a simple discrete state space

block. A switch was added to enable and disable the FIF to observe its effects on

the control system. The desired path was input into the FIF from the MATLAB

workspace, transformed to ηp coordinates, and then sent into the controller.

Figure 12: The Feedforward Inverse Filter with transformation of ηd to ηp

3.7.4 Visualizations and Disturbances

Scopes were added for viewing signals such as position, velocity, and error

in real time. An xy-plot of the vehicle position displays the marine vehicle as it

travels along the desired path.

Disturbances were added for waves, wind, and measurement noise, with

switches to toggle each on and off. Waves were implemented as band-limited white

noise passed through a second-order wave spectrum transfer function as described

by equation 47. Wind was implemented as a constant direction force acting on the

model. To do this, the force had to be rotated from the global frame so that it

always acted on the boat in the same direction. For example, if the wind direction

is from south to north and the boat is facing north, then the boat is going to be
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pushed in the positive surge direction. If the boat turns to the east, then the boat

will be pushed in the negative sway direction.

The measurement noise was added to the output of the model before the

transformation to vessel parallel coordinates was performed to simulate how the

controller would actually be implemented. Separate white noise blocks were used

to simulate noise for the GPS position and orientation from the compass so that

they could be adjusted individually.

Figure 13: The disturbances available

3.7.5 The Full Simulation

The controller, model, FIF, disturbances, and visualizations were connected

to form a versatile testing platform for any surface vehicle. The output of the non-

linear model is η, so it needed to be transformed back to vessel parallel coordinates

ηp using equation 36 before being sent back into the controller. A three sample

delay was needed for calculating error and converting to vessel parallel coordinates

due to the effects of the feedforward inverse filter described in 3.4. Unneeded mod-

ules can be easily disabled via switches and others can be added if needed. There

are a total of four different simulations using the ellipse path. Two models for a

full state feedback tracking system with and without the thrusters in the state and

two for an observer-based tracking system with and without thrusters.
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Figure 14: The full observer-based tracking system with thruster model
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CHAPTER 4

Results and Discussion

4.1 Calculating the Controller

The plant model that includes the thrusters in the state (45) was chosen

because it was most accurate description of the physical system. The model pa-

rameters used were those from table 3 and damping parameters were chosen to be

the estimated parameters in table 4. This way the real parameters can be used

during simulation to test robustness. The resulting continuous matrices for the

CyberShip II become

A =

0 I 0
0 −M−1D M−1

0 0 Athr

 , B =

 0
0
Athr

 , C =
[
I 0 0

]
, E =

 0
M−1

0


(61)

The continuous model can then be converted to discrete time using the zohe func-

tion from the digcontr library or MATLAB’s c2d function.

The sampling time used in the controller design was T = 0.1 seconds and

the settling time was chosen as Ts = 5 seconds. The discrete additional dynamics

matrices were chosen to act as a simple integrator replicated three times, one for

each tracked output signal which results in an identity matrix for Φa and Γa.

Φa =

1 0 0
0 1 0
0 0 1

 , Γa =

1 0 0
0 1 0
0 0 1

 (62)

The closed-loop poles for the additional dynamics can be chosen to be a re-

peated pole at s1/Ts. The A matrix for the CyberShip II has three sufficiently

damped poles caused by the thrusters, which settle in about 0.5 seconds. In this

case, we choose these as closed-loop poles and resort to the second and fourth

normalized Bessel poles scaled by the settling time for the rest. Combining these,
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the twelve continuous closed-loop poles end up being

spoles =

[
−0.9240 −0.9240 −0.9240 −10.0 −9.0909 −8.3333 . . .

−0.8106± 0.4680i −0.8031± 1.0145i −1.1056± 0.3311i
] (63)

The continuous poles can be converted to discrete time using equation 46 and

used to calculate the digital L gains can be calculated. This is achieved using

the experimental rfbg function from Vaccaro [1]. This function optimizes the

robustness norm of the system and places the desired closed-loop poles. The gains

for this discrete system end up being

L1 =

57.7263 4.5533 −0.9538 62.2768 4.6527 −0.5890
6.8580 89.2700 1.4620 2.6220 82.8885 1.9821
−4.5006 4.0262 10.3562 −0.5318 6.4055 8.5309

0.1650 −0.0213 −0.1775
0.0030 0.1323 −0.2589
0.0062 0.0751 0.5068

 (64)

L2 =

 1.8549 −0.0331 −0.0676
0.3968 3.0575 −0.0025
−0.3427 0.0833 0.4511

 (65)

The resulting maximum robustness norm δ for the designed discrete tracking

system using rfbg which stands for robust feedback gains, is 0.7287.

A four times faster full-order observer with settling time Ts/4 was designed to

estimate the state variables from the three measured positions. The plant has no

special properties to aid in selecting pole locations, so the Bessel poles are used.

The second, third, and fourth Bessel poles are scaled to the observer settling time.

opoles =

[
−3.2424± 1.8720i −3.1734± 3.0276i −4.0074

−3.2124± 4.0578i −4.4225± 1.3243i
] (66)

Next, the plant model, plant gains, and observer poles are used to calculate

the observer gains K using the obg ts function. Similar to rfbg, the obg ts
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function optimizes the robustness of the controller.

K =



−0.55535 −0.42743 −0.55101
−0.22118 0.04152 −0.20381
1.77202 1.23628 1.58549
4.74671 1.39377 1.81438
0.51974 1.77561 0.46327
−1.58401 −0.88016 0.07099
−1307.78 −527.104 −657.944
−187.864 −438.014 −180.830
91.0399 53.2962 49.8671


(67)

This results in a final robustness of 0.5160.

Now the design model for the observer-based tracking system can be formed

using equation 54 and the inverse filter can be calculated using equation 55. The

resulting FIF has a delay of three samples and is a band-limited inverse that is

valid for low frequencies.

The above procedure can be repeated using the same poles and MATLAB’s

place function. The results for the tracking system gains are

L1 =

 68.9017 −5.4295 3.6896 69.9811 −2.0964 1.8248
4.9876 80.6543 2.7687 1.8553 82.5026 2.7194
−16.4466 7.0581 8.8568 −9.7805 5.9246 7.6167

0.2090 −0.0035 0.0515
0.0143 0.2439 0.0327
−0.0468 0.0430 0.3410

 (68)

L2 =

 2.2919 −0.3114 0.1852
0.3145 2.5721 0.1101
−0.7378 0.3139 0.3630

 (69)

The resulting robustness norm of the tracking system is 0.5927. The observer gains

were then calculated to be
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K =



0.3290 −0.1215 0.0283
0.0922 0.3668 0.2368
0.0255 −0.1650 0.3759
1.8069 0.0964 −0.1352
−0.1153 1.2876 −0.1502
−0.0780 0.0742 1.3270
−271.2921 −85.6188 40.7033

77.2658 −187.3975 162.9843
4.5341 −13.0532 −8.5007


(70)

This resulted in a final robustness of 0.2483. Again, the FIF has a delay of three

samples.

4.2 Simulations

Once the two controllers were designed using the place and rfgb methods,

simulations were run to test robustness. The desired path was an ellipse with

semi-major axis a = 20 and semi-minor axis b = 10 (56) that takes 200 seconds

to complete a single revolution. This ellipse is translated to the east by a meters

so that the initial position is the origin and the boat travels clockwise around the

ellipse.

t = 0 : T : 200

xd(t) = 10 sin(t
2π

200
)

yd(t) = 20− 20 cos(t
2π

200
)

ψd(t) = tan−1(2 tan(t
2π

200
))

ηd(t) =
[
xd(t) yd(t) ψd(t)

]ᵀ
(71)

The average forward velocity U was calculated to be 0.48 m/s, with a maximum of

0.62 m/s around the top and bottom of the ellipse. The average yaw rate around

the ellipse is 1.8 deg/s, with a maximum of 3.6 deg/s. These were calculated

directly from the derivatives of the parametric equations derived in equation 57.

The linear model is linearized about U = 0, r = 0. Plots of these are shown in

figure 15.
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Figure 15: The forward speed and yaw rate around an ellipse in 200 seconds

The first set of simulations were run on the nonlinear model with no distur-

bances or perturbations of the plant model. Without the feedforward inverse filter,

the controller goes unstable for both pole placement methods at this relatively high

speed. The results can be found in figure 16.

Figure 16: An example of when the FIF is not used

When the FIF is enabled the boat is able to travel the entire perimeter of the

ellipse even when disturbances and model perturbations are introduced. For this

testing, the wave spectrum had parameters σ = 0.5m, ω0 = 0.8 rad/s, and λ = 0.1.

The resulting wave disturbance had an amplitude of 0.1 Newton. The wind was

chosen as a force constantly pushing the boat to the Northeast with magnitude
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1 Newton. Measurement noise was modeled as white noise which was kept very

low due to its high frequency component. Compass noise had a peak amplitude of

about about 0.001 radians and GPS noise had a peak amplitude of 0.003 meters.

Model perturbations were chosen to be realistic measurement errors and

roughly correspond to how difficult the parameters are to measure. The hydrody-

namic derivatives adaptability and experimentally identified previously by Skjetne

were used as perturbations because the controller was designed with the estimated

parameters by Fossen in the Cybership II example from the MSS. Table 5 shows

the perturbations of the model parameters.

param model simulation difference
m 23.800 27.800 4.0
Iz 1.760 2.160 0.4
xg 0.046 0.246 0.2
Xu -2.0 -0.72253 1.2775
Yv -7.0 -0.88965 6.1104
Yr -0.1 -7.250 -7.1500
Nv -0.1 0.03130 0.1313
Nr -0.5 -1.900 -1.4000
Xu̇ -2.0 -1.0 1.0
Yv̇ -10.0 7.0 3.0
Yṙ 0.0 -1.0 -1.0
Nv̇ 0.0 -1.2 -1.2
Nṙ -1.0 -1.8 -0.8
Tsurge 0.1 0.3 0.2
Tsway 0.11 0.41 0.3
Tyaw 0.12 0.32 0.2

Table 5: CyberShip II model perturbations

The results for the poles placed by rfbg and place are given in table 6 when

simulated on a nonlinear model with no disturbances, wind and wave disturbances,

and disturbances with model perturbations from table 5. Error is calculated as

the difference between ηd and η with a three sample delay to account for the FIF.

Standard deviations were calculated over the entire simulation for x, y, and ψ.
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The maximum error is also displayed for each signal.

Standard Deviations
method signal no disturb disturb disturb, perturb
place x (m) 0.0204 0.0228 0.0823

y (m) 0.0216 0.0275 0.0937
heading (deg) 1.3135 3.1442 8.3100

rfbg x (m) 0.0234 0.0239 0.0443
y (m) 0.0240 0.0247 0.0342
heading (deg) 1.1399 2.0326 6.7626

Absolute Maximum Error
method signal no disturb disturb disturb, perturb
place x (m) 0.1190 0.1209 0.2450

y (m) 0.1138 0.1200 0.5008
heading (deg) 4.5330 11.5593 19.2981

rfbg x (m) 0.1134 0.1111 0.1188
y (m) 0.1011 0.1078 0.1683
heading (deg) 4.5620 5.3811 14.2147

Table 6: CyberShip II standard deviations and maximum errors with different
disturbances

Plots of the error over time for each simulation using MATLAB’s place func-

tion are displayed in the figures below. It is important to note the the thrust

input was limited by the saturation of 3 Newtons in the sway direction when all

disturbances and perturbations were used. Results are split into position error and

heading error.

A comparison of both methods under all disturbances and perturbations is

best viewed in the xy plots in Figure 17. The actual path of the simulated vehicle

is shown.
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(a) place (b) rfbg

Figure 17: xy plots of the ellipse maneuver under all disturbances and perturba-
tions

A second set of simulations were done with different model perturbations

shown in table 7. The parameters were altered more modestly and the zero values

in the mass and damping matrices were altered to be small, but nonzero.

MRB =

 m −0.003 0.001
0.002 m mxg
−0.005 mxg Iz

 , MA = −

 Xu̇ −0.002 0.003
−0.003 Yv̇ Yṙ
−0.001 Nv̇ Nṙ

 ,
D = −

 Xu −0.004 −0.002
−0.003 Yv Yr
−0.001 Nv Nr


(72)

The values for MA and D were chosen to be positive so that the resulting matrix

was positive definite. These nonzero values account for errors in the symmetry

assumptions that were made previously when deriving the model in section 2.3.4.

The results with only model perturbations are displayed in the plots below in

49



the same fashion as before. Error plots are split into position and heading error

and table 8 shows the standard deviation and absolute maximum errors for the

place and rfbg gain methods.

param model simulation difference
m 23.800 25.800 2.0
Iz 1.760 2.060 0.3
xg 0.046 0.096 0.05
Xu -2.0 -1.0 1.0
Yv -7.0 -5.0 2.0
Yr -0.1 -0.13 -0.03
Nv -0.1 -0.12 -0.02
Nr -0.5 -0.7 -0.2
Xu̇ -2.0 -1.0 1.0
Yv̇ -10.0 -7.0 3.0
Yṙ 0.0 -0.2 -0.2
Nv̇ 0.0 -0.3 -0.3
Nṙ -1.0 -1.8 -0.8
Tsurge 0.1 0.3 0.2
Tsway 0.11 0.41 0.3
Tyaw 0.12 0.32 0.2

Table 7: CyberShip II model perturbations (second)

Error with second set of perturbations
method signal std deviation max error
place x (m) 0.0266 0.1253

y (m) 0.0276 0.1146
heading (deg) 4.9671 13.6058

rfbg x (m) 0.0232 0.1257
y (m) 0.0240 0.1005
heading (deg) 1.0628 4.5007

Table 8: CyberShip II errors with second model perturbations

4.3 Analysis

Right away it easy to see that feedforward inverse filter is an absolute necessity

when using this DP model and speed. Without the FIF, the controller goes off
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path when going around the tighter arc of the ellipse. This is where the yaw rate is

at its maximum and the furthest point from the origin. The linear approximation

made by converting to vessel parallel coordinates assumes that the boat is close to

the origin and has a yaw rate close to 0. The FIF is able to adjust the desired input

to the controller so that the marine vehicle never strays too far from the desired
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ellipse. With the FIF enabled, the error is still at its maximum when the boat

is farthest away from the origin and turning the quickest. Previous state space

controllers would have to constrain their speed to where the linearization is more

accurate, while the FIF allows for greater maneuvering speed.

Both pole placement methods were able to make it around the entire ellipse

without becoming unstable when using the FIF. However, rfbg produced gains

that had a measurably greater robustness than place. The robustness norm was

0.5160 using rfbg and 0.2483 using place, which is a difference of 0.2677. This

difference is much greater than the 0.1 difference that is required to view a measur-

able difference. This was apparent from the standard deviation results in tables 6

and 8. The controller using robust feedback gains consistently had lower standard

deviations and lower maximum errors. When tested under the first set of model

perturbations and all disturbances, the maximum position error only rose to 0.1683

meters in the y direction when using rfbg and using place resulted in more than

double that, with 0.5008 meters. With the second set of perturbations, the gains

produced by place resulted in heading standard deviation of over 4 times greater

than rfbg.

The most noticeable result from each error plot is the oscillations in each

state caused by disturbances and model perturbations. Without any disturbances,

the boat will follow the desired trajectory with minimal error as expected. The

addition of the second set model perturbations causes oscillations as shown in

the second set of plots. The lower the robustness of the designed controller is,

the more pronounced the oscillations are. This is likely due to the controller

overcompensating for unmodeled perturbations when trying to get back on track.

The heading was affected the most by these oscillations, while the position error is

relatively small. If the goals for the application vehicle depend highly on heading,
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then more care must be taken to estimate parameters accurately. However, for

path following, position is more robust to modeling errors and disturbance. Using

rfbg the error never exceeded 0.17 meters for position, while the heading error

never exceeded 14.25 degrees.

The improved robustness of rfbg over place, when combined with the feed-

foward inverse filter, produces acceptable results when simulated on the nonlinear

CyberShip II model under disturbances, measurement noise, and significant model

perturbations. Robustness can be improved further if maneuvering speed and yaw

rate is reduced to where linearizations are more accurate. All theory is applicable

to other marine surface vehicles, including URI’s ASV.

4.3.1 Improvements and Application to URI’s ASV

From these simulations we see that a few things can be done to improve the

performance of the linear controller. It is possible to gain schedule with respect

to forward speed or yaw rate if higher speeds are desired. A design consideration

when path planning could be cap the maximum speed and yaw rate that is sent

into the controller to prevent the controller from entering highly nonlinear regions.

As the marine vehicle operates for an extended period of time, it may venture

far from the origin where the coordinate change to vessel coordinates is less accu-

rate. To prevent issues, the origin of the controller can be translated to a new point

close to the vehicle. When doing this, the states xa and x̂ of the controller would

need to be calculated to fit the new origin to avoid large jumps from the controller

adjusting. This includes integrators accumulating and the observer settling to the

correct state.

The simulation could be improved slightly by adjusting the measurement noise

models so that high frequencies are removed by use of a high pass filter. This is

more realistic because most sensors have some filters built. Wind noise could also
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be made sightly more realistic by adding a noise element or gusts.

URI’s ASV currently has two trolling motors, which means that it is under

actuated. The controller designed assumes that the vehicle is fully-actuated or

over-actuated, so one or more motors would need to be added that produce forces

in a different direction that the first two. The current motor controller takes

forward thrust and turning commands and mixes them internally using an unknown

method. In other words, it is not certain what input commands produces a certain

output force. This means the motors would need to be modeled or a new motor

controller would be needed.

The current computing power and code structure will allow for the computa-

tions needed to implement the modest requirements of this controller. The matrix

multiplications are small enough that they will be able to be completed in less

than a sampling period T = 0.1.

System identification for the ASV will need to be done to obtain approximate

parameters for the DP model. This thesis has shown that even if the estimated

parameters are not 100% correct, the linear controller is robust enough to handle

these perturbations.
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CHAPTER 5

Conclusion

Methods for designing a robust linear DP controller for a marine surface ve-

hicle were presented. This included a feedforward inverse filter (FIF) to better

track the desired input and a robust feedback gain calculation. Simulation on

the nonlinear model of the CyberShip II around an ellipse showed that the FIF

was necessary to provide stability at higher speeds. Robust feedback gain cal-

culation improved path tracking in the presence of wind and wave disturbances,

measurement noise, and model perturbations when compared to MATLAB’s pole

placement function. Further improvements can be made by using gain scheduling

and translating the control origin so that the boat model remains close to the

origin where the linearized transformation to vessel parallel coordinates is valid.

All work done in this thesis can be applied to URI’s ASV. The developed con-

troller would be an improvement over the current controller and allow for greater

maneuverability. To implement the controller on the ASV, a rough system identi-

fication is needed to estimate parameters of the DP model. The ASV must also be

modified so that it can produce forces and moments in each direction by adding

actuators.

The MATLAB code and Simulink model that was developed during this thesis

is applicable to a variety of marine surface vehicles. The code can be modified for

other models so that others can test their marine system. The Simulink models

were constructed with a modular element so that parts can be enabled and disabled

using switches.

To summarize, these results show that linear controllers are sufficient for DP

controllers under higher speeds provided that an inverse filter and robust controller
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is designed. This widens the accessibility of marine control to those that have

knowledge of linear theory, but may have limited knowledge of nonlinear systems.
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APPENDIX

Code

A.1 Control Design

1 % Cal cu l a t e s feedback ga ins f o r cyber sh ip i i us ing a va r i e t y o f
methods

2 % and models .
3 %
4 % author : Thomas DeRensis
5

6 addpath ( ’ d i g cont r ’ )
7 addpath ( ’ e l e503 ’ )
8 load ( ’ s r o o t s . mat ’ ) ;
9

10 ul = 0 ;
11 %ul = mean(U) ;
12 v l = 0 ;
13 r l = 0 ;
14 %r l = mean( r ) ;
15 [A, B, C, D, E] = . . .
16 chooseModel (BoatID . CybershipII , ModelID .

LinearizedDPThrusters , ul , vl , r l ) ;
17

18 T = 0 . 1 ; % Sampling i n t e r v a l ( s )
19 sampleTime = T;
20 Ts = 5 . 0 ; % Time to s e t t l e ( s )
21 nStates = length (A) ; % num plant s t a t e s
22 mStates = 3 ; % num measured s t a t e s
23

24 f p r i n t f ( ’ Plant has %d s t a t e s and %d measured s t a t e s .\n ’ ,
nStates , mStates ) ;

25 f p r i n t f ( ’ Using %.2 f s ec sampling i n t e r v a l and %.1 f s ec s e t t l i n g
time .\n ’ , T, Ts ) ;

26

27 % Compute zero order hold equ iva l en t model ( s im i l a r to c2d )
28 [ phi , gamma] = zohe (A, B, T) ;
29

30 f p r i n t f ( ’ Checking Con t r o l l a b i l i t y . . . ’ )
31 Wc = ctrb ( phi , gamma) ;
32 i f ( rank (Wc) == length ( phi ) )
33 f p r i n t f ( ’The system i s c o n t r o l l a b l e \n ’ ) ;
34 e l s e
35 f p r i n t f ( ’ERROR: Not c o n t r o l l a b l e !\n ’ ) ;
36 end
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37

38 f p r i n t f ( ’ Checking Obse rvab i l i t y . . . ’ )
39 Wo = obsv ( phi , C) ;
40 i f ( rank (Wo) == length ( phi ) )
41 f p r i n t f ( ’The system i s obse rvab l e \n ’ ) ;
42 e l s e
43 f p r i n t f ( ’ERROR: Not obse rvab l e !\n ’ ) ;
44 end
45

46 [ spo l e s , p l a n tMu l t i p l i c i t y ] = . . .
47 choosePlantPoles (A, Ts , PoleMethod . AddedDamping) ;
48

49 [ phia , gammaa , spo l e s ad , addMu l t i p l i c i t y ] = . . .
50 chooseAddit ionalDynamicsPoles ( f a l s e , true , Ts , T) ;
51

52 s p o l e s = [ spo l e s ad spo l e s ] ; % Combine de s i r ed c losed−loop
po l e s

53 %spo l e s = [ms1/Ts ms2/Ts ms4/Ts]%ms3/Ts ] ;
54 zpo l e s = exp (T∗ s p o l e s ) ;
55 mu l t i p l i c i t y = [ addMu l t i p l i c i t y p l a n tMu l t i p l i c i t y ] ;
56

57 i f T == 0
58 [ L1 , L2 , d e l t a ] = . . .
59 choosePlantGains (A, B, C, phia , gammaa , spo l e s , T, . . .
60 GainMethod .RFBG2, mu l t i p l i c i t y ) ;
61 e l s e
62 [ L1 , L2 , d e l t a ] = . . .
63 choosePlantGains ( phi , gamma, C, phia , gammaa , zpo le s , T

, . . .
64 GainMethod . Place , mu l t i p l i c i t y ) ;
65 end
66

67 %% Observer
68 %%%%%%%%%%%
69 useObserver = true ;
70 K = 0 ;
71 i f useObserver
72 observerSpeed = 4 . 0 ;
73 Tso = Ts/ observerSpeed ;
74 f u l lO rde r = true ;
75 opo l e s = chooseObserverPoles (A, B, C, Tso , . . .
76 PoleMethod . PlantZeros , fu l lOrder , mStates ) ;
77

78 i f f u l lO rde r
79 zopo l e s = exp (T∗ opo l e s ) ;
80 i f T == 0
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81 K = obg ts (A, B, C, phia , gammaa , L1 , L2 , opoles , T
) ;

82 %K = place (A’ , C’ , opo l e s ) ’ ;
83 de l t a = robustTSOB(A, B, C, phia , gammaa , L1 , L2 , K

, T) ;
84 e l s e
85 %K = obg ts ( phi , gamma, C, phia , gammaa , L1 , L2 ,

zopo les , T) ;
86 K = place ( phi ’ , C’ , z opo l e s ) ’ ;
87 de l t a = robustTSOB( phi , gamma, C, phia , gammaa , L1 ,

L2 , K, T) ;
88 end
89 e l s e
90 C1 = eye ( mStates ) ;
91 Cm = [C1 ze ro s (mStates , n−mStates ) ] ;
92 zopo l e s = exp (T∗ opo l e s ) ;
93 [ F ,G,H,K,P]= roo ( phi , gamma,Cm, zopo l e s ) ;
94 L11 = L1 ( : , 1 : s i z e (Cm) ) ;
95 L12 = L1 ( : , s i z e (Cm)+1:end ) ;
96 de l t a = robustTS RDOB( phi , gamma, Cm, C, phia , gammaa ,

F , G, H, L11 , L12 , L2 , K, T) ;
97 end
98 f p r i n t f ( ’ Robustness with obse rve r : %f \n ’ , d e l t a ) ;
99 end

100

101 i f useObserver
102 i f T == 0
103 sys = designTSOB(A, B, C, phia , gammaa , L1 , L2 , K, T) ;
104 e l s e
105 sys = designTSOB( phi , gamma, C, phia , gammaa , L1 , L2 , K

, T) ;
106 end
107 e l s e
108 i f T == 0
109 sys = designTS (A, B, C, phia , gammaa , L1 , L2 , T) ;
110 e l s e
111 sys = designTS ( phi , gamma, C, phia , gammaa , L1 , L2 , T) ;
112 end
113 end
114 S = s t e p i n f o ( sys , ’ Sett l ingTimeThreshold ’ , 0 . 0 1 ) ;
115 Ts0 = S . Sett l ingTime ;
116 f p r i n t f ( ’ F ina l s e t t l i n g time : %f \n ’ , Ts0 ) ;
117

118 %%
119 % Feedthrough Inve r s e F i l t e r
120 i f T ˜= 0
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121 [ A f , B f , C f , D f ] = . . .
122 create Inver seFeedthrough ( phi , gamma, C, phia , gammaa ,

. . .
123 L1 , L2 , K, T, useObserver ) ;
124 end
125

126 f p r i n t f ( ’Done de s i gn ing con t r o l system .\n ’ ) ;
127

128 genVesselTrack
129 i c

A.2 Create the Model

1 f unc t i on [A, B, C, D, E] = chooseModel ( boatID , modelID , u , v , r
)

2

3 switch ( boatID )
4 case BoatID . Cybersh ipI I
5 % Cybership I I parameters
6 i n i tCybe r sh ip
7

8 case BoatID .URI ASV
9 % TODO: get URI ASV parameters

10 L = 1 . 8288 ; % length (m) − 6 f e e t
11 B = 0 . 9144 ; % width (m) − 3 f e e t
12 mass = 43 . 0913 ; % weigth ( kg ) − 95 l b s
13

14 otherwi se
15 e r r = MException ( ’ chooseModel : Inval idBoatID ’ , ’ I nva l i d

boat ID %d ’ , boatID ) ;
16 throw ( e r r )
17 end
18

19 switch (modelID )
20 case ModelID . LinearizedDP
21 %%%
22 % Linea r i z ed Dynamic Po s i t i on i ng (DP) Model ( p157 )
23 % Assumptions :
24 % − low speed
25 % − b ia s vec to r b used to r ep r e s en t quadrat i c

v e l o c i t y terms
26 % − po s i t i o n r epre s en ted in v e s s e l p a r a l l e l

c oo rd ina t e s
27

28 % eta p = transpose (R( phi ) ) ∗ eta
29 % eta p dot = v
30 % M∗ v dot + D∗v = transpose (R( phi ) ) ∗b + tau
31 % B dot = 0
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32 % tau = B∗u
33 %%%
34

35 % Form model
36 A = [ ze ro s (3 ) eye (3 ) ;
37 z e r o s (3 ) −inv (M) ∗Damp ] ;
38 B = [ ze ro s (3 ) ;
39 inv (M) ] ;
40 C = [ eye (3 ) z e ro s (3 ) ] ; % output i s p o s i t i o n
41

42 D = ze ro s (3 ) ;
43

44 E = B;
45 case ModelID . LinearizedDPYaw
46 S = [ 0 1 0 ;
47 −1 0 0 ;
48 0 0 0 ] ;
49

50 % Form model
51 A = [ r ∗S eye (3 ) ;
52 z e r o s (3 ) −inv (M) ∗Damp ] ;
53 B = [ ze ro s (3 ) ;
54 inv (M) ] ;
55 C = [ eye (3 ) z e ro s (3 ) ] ; % output i s p o s i t i o n
56

57 D = ze ro s (3 ) ;
58

59 E = B;
60 case ModelID . Linear izedManeuver ing
61 %%%
62 % Linea r i z ed Maneuvering Equation ( p131 )
63 % Assupt ions :
64 % − r e s t o r i n g f o r c e s neg l e c t ed
65 % − non l inea r C o r i o l i s and c e n t r i p e t a l f o r c e s are

l i n e a r i z e d about the
66 % c ru i s e speed U
67 % − non l inea r damping i s approximated by a l i n e a r

damping matrix D
68 % − ocean cu r r en t s neg l e c t ed
69

70 % (M RB + M A) ∗ v dot + (C∗ RB + C∗ A + D) ∗v = tau
71 % M∗ v dot + N∗v = tau
72 %%%
73

74 % Rigid body Co r i o l i s ( l i n e a r i z e d about U)
75 C RB = [ 0 0 0 ;
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76 0 0 mass∗U ;
77 0 0 mass∗x g ∗U ] ;
78 % Added Co r i o l i s ( l i n e a r i z e d about U)
79 C A = −[ 0 0 0 ;
80 0 0 Y vdot∗U ;
81 0 0 Y rdot∗U ] ;
82

83 N = C RB + C A + Damp;
84

85 % Form model
86 A = [ ze ro s (3 ) eye (3 ) ;
87 z e r o s (3 ) −inv (M) ∗N ] ;
88 B = [ ze ro s (3 ) ;
89 inv (M) ] ;
90 C = [ eye (3 ) z e ro s (3 ) ] ; % output i s p o s i t i o n
91

92 D = ze ro s (3 ) ;
93

94 E = B;
95 case ModelID . Linear izedDPThrusters
96 %%%
97 % Linea r i z ed Dynamic Po s i t i on i ng (DP) Model with

th ru s t e r ( p157 )
98 % Assumptions :
99 % − low speed

100 % − b ia s vec to r b used to r ep r e s en t quadrat i c
v e l o c i t y terms

101 % − po s i t i o n r epre s en ted in v e s s e l p a r a l l e l
c oo rd ina t e s

102

103 % eta p = transpose (R( phi ) ) ∗ eta
104 % eta p dot = v
105 % M∗ v dot + D∗v = transpose (R( phi ) ) ∗b + tau
106 % B dot = 0
107 % tau = B∗u
108 %%%
109 f p r i n t f ( ’ L i n e a r i z i n g about u = %f , v = %f , r = %f \n ’ , u

, v , r ) ;
110 S = [ 0 1 0 ;
111 −1 0 0 ;
112 0 0 0 ] ;
113 % Rigid body Co r i o l i s ( l i n e a r i z e d about U)
114 %C RB = [ 0 0 0 ;
115 % 0 0 mass∗U ;
116 % 0 0 mass∗x g ∗U ] ;
117 % Added Co r i o l i s ( l i n e a r i z e d about U)
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118 %C A = −[ 0 0 0 ;
119 % 0 0 Y vdot∗U ;
120 % 0 0 Y rdot∗U ] ;
121 C RB = [ 0 0 −mass ∗( x g ∗ r + v ) ;
122 0 0 mass∗u ;
123 mass ∗( x g ∗ r+v ) −mass∗u 0 ] ;
124 C A = [0 0 Y vdot∗v+Y rdot∗ r ;
125 0 0 −X udot∗u ;
126 −Y vdot∗v−Y rdot∗ r X udot∗u 0 ] ;
127 N = C RB + C A + Damp;
128 % Form model
129 A = [ r ∗S eye (3 ) z e ro s (3 ) ;
130 %A = [ ze ro s (3 ) eye (3 ) z e r o s (3 ) ;
131 z e r o s (3 ) −inv (M) ∗N inv (M) ;
132 z e r o s (3 ) z e r o s (3 ) A thr ] ;
133 B = [ ze ro s (3 ) ;
134 z e r o s (3 ) ;
135 −A thr ] ;
136 C = [ eye (3 ) z e ro s (3 ) z e ro s (3 ) ] ; % output i s p o s i t i o n
137

138 D = ze ro s (3 ) ;
139

140 E = [ ze ro s (3 ) ;
141 inv (M) ;
142 z e r o s (3 ) ] ;
143 otherwi se
144 e r r = MException ( ’ InvalidParam ’ , ’ I nva l i d model ID %d ’ ,

modelID ) ;
145 throw ( e r r )
146 end

A.3 CyberShip II Parameters

1 % Cybership I I parameters
2 l en = 1 . 2 5 5 ; % m ( length )
3 width = 0 . 2 9 ; % m (width )
4 mass = 23 . 8 00 ; % kg (mass )
5 I z = 1 . 7 6 0 ; % kgmˆ2
6 x g = 0 . 0 4 6 ; % m
7

8 X udot = −2.0; % kg
9 Y vdot = −10.0; % kg

10 Y rdot = 0 . 0 ; % kgm
11 N vdot = 0 . 0 ; % kgm
12 N rdot = −1.0; % kgmˆ2
13

14 % Use these f o r s imu la t i on
15 X u = −0.72253; % kg/ s
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16 Y v = −0.88965; % kg/ s
17 Y r = −7.250; % kgm/ s
18 N v = 0 .03130 ; % kgm/ s
19 N r = −1.900; % kgm/ s
20

21 % Use these f o r des ign
22 X u = −2; % from Fossen s imul ink
23 Y v = −7; % from Fossen s imul ink
24 Y r = −0.1; % from Fossen s imul ink
25 N v = −0.1; % from Fossen s imul ink
26 N r = −0.5; % from Fossen s imul ink
27

28 X uu = −1.32742; % kg/m
29 X uuu = −5.8664; % kgs/mˆ2
30 Y vv = −36.4729; % kg/m
31 Y rv = −0.805; % kg
32 Y vr = −0.845; % kg
33 Y rr = −3.450; % kgm
34 N vv = 3 .95645 ; % kg
35 N rv = 0 . 1 3 0 ; % kgm
36 N vr = 0 . 0 8 0 ; % kgm
37 N rr = −0.750; % kgm
38

39

40

41 % Rigid body mass
42 MRB = [ mass 0 0 ;
43 0 mass mass∗x g ;
44 0 mass∗x g I z ] ;
45 % Added mass − s t r i c t l y p o s i t i v e
46 MA = −[ X udot 0 0 ;
47 0 Y vdot Y rdot ;
48 0 Y rdot N rdot ] ;
49

50 M = MRB + M A;
51

52 % Damping ( l i n e a r ) − s t r i c t l y p o s i t i v e
53 Damp = −[ X u 0 0 ;
54 0 Y v Y r ;
55 0 N v N r ] ;
56 % Time cons tant s ( about 0 .5 second s e t t l i n g time )
57 T surge = 0 . 1 ;
58 T sway = 0 . 1 1 ;
59 T yaw = 0 . 1 2 ;
60

61 A thr = −[ 1/T surge 0 0 ;

64



62 0 1/T sway 0 ;
63 0 0 1/T yaw ] ;

A.4 CyberShip II Perturbation

1 % Cybership I I parameters
2 l en = 1 . 2 5 5 ; % m ( length )
3 width = 0 . 2 9 ; % m (width )
4 mass = 23.800 + 4 ; % kg (mass )
5 I z = 1.760 + 0 . 4 ; % kgmˆ2
6 x g = 0.046 + 0 . 2 ; % m
7

8 X udot = −2.0 + 1 ; % kg
9 Y vdot = −10.0 + 3 ; % kg

10 Y rdot = 0 .0 − 1 ; % kgm
11 N vdot = 0 .0 − 1 . 2 ; % kgm
12 N rdot = −1.0 − 0 . 8 ; % kgmˆ2
13

14 % Use f o r s imu la t i on
15 X u = −0.72253; % kg/ s
16 Y v = −0.88965; % kg/ s
17 Y r = −7.250; % kgm/ s
18 N v = 0 .03130 ; % kgm/ s
19 N r = −1.900; % kgm/ s
20

21 X uu = −1.32742; % kg/m
22 X uuu = −5.8664; % kgs/mˆ2
23 Y vv = −36.4729; % kg/m
24 Y rv = −0.805; % kg
25 Y vr = −0.845; % kg
26 Y rr = −3.450; % kgm
27 N vv = 3 .95645 ; % kg
28 N rv = 0 . 1 3 0 ; % kgm
29 N vr = 0 . 0 8 0 ; % kgm
30 N rr = −0.750; % kgm
31

32 % Rigid body mass
33 MRB = [ mass 0 0 ;
34 0 mass mass∗x g ;
35 0 mass∗x g I z ] ;
36 % Added mass − s t r i c t l y p o s i t i v e
37 MA = −[ X udot 0 0 ;
38 0 Y vdot Y rdot ;
39 0 N vdot N rdot ] ;
40

41 M = MRB + M A;
42

43 % Damping ( l i n e a r ) − s t r i c t l y p o s i t i v e
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44 Damp = −[ X u 0 0 ;
45 0 Y v Y r ;
46 0 N v N r ] ;
47 % Time cons tant s
48 T surge = 0 .1+0 .2 ;
49 T sway = 0.11+0 .3 ;
50 T yaw = 0.12+0 .2 ;
51

52 A thr = −[ 1/T surge 0 0 ;
53 0 1/T sway 0 ;
54 0 0 1/T yaw ] ;

A.5 CyberShip II Perturbation 2

1 % Cybership I I parameters
2 l en = 1 . 2 5 5 ; % m ( length )
3 width = 0 . 2 9 ; % m (width )
4 mass = 23.800 + 2 ; % kg (mass )
5 I z = 1.760 + 0 . 3 ; % kgmˆ2
6 x g = 0.046 + 0 . 0 5 ; % m
7

8 X udot = −2.0 + 1 ; % kg
9 Y vdot = −10.0 + 3 ; % kg

10 Y rdot = 0 .0 − 0 . 2 ; % kgm
11 N vdot = 0 .0 − 0 . 3 ; % kgm
12 N rdot = −1.0 − 0 . 8 ; % kgmˆ2
13

14 % Use f o r s imu la t i on
15 %X u = −0.72253; % kg/ s
16 %Y v = −0.88965; % kg/ s
17 %Y r = −7.250; % kgm/ s
18 %N v = 0 .03130 ; % kgm/ s
19 %N r = −1.900; % kgm/ s
20

21 % Use these f o r des ign
22 X u = −2 +1; % from Fossen s imul ink
23 Y v = −7+2; % from Fossen s imul ink
24 Y r = −0.1−0.03; % from Fossen s imul ink
25 N v = −0.1−0.02; % from Fossen s imul ink
26 N r = −0.5−0.2; % from Fossen s imul ink
27

28 X uu = −1.32742; % kg/m
29 X uuu = −5.8664; % kgs/mˆ2
30 Y vv = −36.4729; % kg/m
31 Y rv = −0.805; % kg
32 Y vr = −0.845; % kg
33 Y rr = −3.450; % kgm
34 N vv = 3 .95645 ; % kg
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35 N rv = 0 . 1 3 0 ; % kgm
36 N vr = 0 . 0 8 0 ; % kgm
37 N rr = −0.750; % kgm
38

39 % Rigid body mass
40 MRB = [ mass −0.003 0 .001 ;
41 0 .002 mass mass∗x g ;
42 −0.005 mass∗x g I z ] ;
43 % Added mass − s t r i c t l y p o s i t i v e
44 MA = −[ X udot −0.002 −0.003 ;
45 −0.003 Y vdot Y rdot ;
46 −0.001 N vdot N rdot ] ;
47

48 M = MRB + M A;
49

50 % Damping ( l i n e a r ) − s t r i c t l y p o s i t i v e
51 Damp = −[ X u −0.004 −0.002 ;
52 −0.003 Y v Y r ;
53 −0.001 N v N r ] ;
54 % Time cons tant s
55 T surge = 0 .1+0 .2 ;
56 T sway = 0.11+0 .3 ;
57 T yaw = 0.12+0 .2 ;
58

59 A thr = −[ 1/T surge 0 0 ;
60 0 1/T sway 0 ;
61 0 0 1/T yaw ] ;

A.6 Choose Plant Poles

1 f unc t i on [ spo l e s , mu l t i p l i c i t y ] = choosePlantPo les (A, Ts ,
poleMethod )

2

3 addpath ( ’ d i g cont r ’ ) ;
4 addpath ( ’ e l e503 ’ ) ;
5 load ( ’ s r o o t s . mat ’ ) ;
6

7 n = length (A) ;
8

9 f p r i n t f ( ’ Choosing p lant po l e s . . . ’ ) ;
10

11 switch poleMethod ;
12 case PoleMethod . Bes s e l
13 f p r i n t f ( ’ Using Bes s e l po l e s s%d\n ’ , n )
14 s p o l e s = g e t s p o l e s (n) /Ts ;
15 case PoleMethod . Besse lOptimal
16 f p r i n t f ( ’ Using optimal Bes s e l po l e s \n ’ )
17 s p o l e s = getOpt imalBesse lPo le s (n , Ts ) ;
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18 case PoleMethod . Suf f i c i ent lyDamped
19 f p r i n t f ( ’ Using s u f f i c i e n t l y damped po l e s \n ’ )
20 sdp = getSu f f i c i ent lyDampedPo le s (A, Ts ) ;
21 num sdp = length ( sdp ) ;
22 f p r i n t f ( ’Found %d s u f f i c i e n t l y damped po l e s \n ’ , num sdp

) ;
23 s p o l e s = [ sdp getOpt imalBesse lPo le s (n − num sdp ) ] ;
24 case PoleMethod . AddedDamping
25 f p r i n t f ( ’ Using added damping po l e s \n ’ )
26 add = getAddedDampingPoles (A, Ts ) ;
27 num add = length ( add ) ;
28 f p r i n t f ( ’Found %d added damping po l e s \n ’ , num add) ;
29 sdp = getSu f f i c i ent lyDampedPo le s (A, Ts ) ;
30 num sdp = length ( sdp ) ;
31 [ u , ˜ , idx ] = unique ( sdp ) ;
32 mu l t i p l i c i t y = accumarray ( idx ( : ) , 1 , [ ] ,@sum) ’ ;
33 sdp = u ;
34 f p r i n t f ( ’Found %d s u f f i c i e n t l y damped po l e s \n ’ , num sdp

) ;
35 s p o l e s = [ add sdp getOpt imalBesse lPo le s (n − num add −

num sdp , Ts ) ] ;
36 otherwi se
37 f p r i n t f ( ’ERROR: Unimplemented po le s e l e c t i o n method : %d

\n ’ , . . .
38 poleSe lect ionMethod ) ;
39 re turn
40 end
41

42 mu l t i p l i c i t y = [ mu l t i p l i c i t y ones (1 , n−sum( mu l t i p l i c i t y ) ) ] ;

A.7 Choose Additional Dynamics Poles

1 f unc t i on [Aa , Ba , spo l e s , mu l t i p l i c i t y ] =
chooseAddit ionalDynamicsPoles (waves , repeat , Ts , T)

2

3 load ( ’ s r o o t s . mat ’ ) ;
4

5 f p r i n t f ( ’ Choosing add i t i ona l dynamics po l e s . . . ’ ) ;
6

7 i f waves
8 f p r i n t f ( ’ Cance l ing waves . . . ’ ) ;
9 % wave d i s turbance

10 lambda = 0 . 1 ;
11 w 0 = 0 . 8 ;
12 spo l e s w1 = roo t s ( [ 1 2∗ lambda∗w 0 w 0∗w 0 ] ) ;
13 spo l e s w2 = roo t s ( [ 1 2∗ lambda∗w 0 w 0∗w 0 ] ) − 0 . 0 001 ;
14 spo l e s w3 = roo t s ( [ 1 2∗ lambda∗w 0 w 0∗w 0 ] ) + 0 . 0001 ;
15 zpo les w1 = exp (T∗ spo l e s w1 ) ;
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16

17 alphad1 = r e a l ( zpo les w1 (1 ) ) ;
18 betad1 = imag ( zpo les w1 (1 ) ) ;
19 phia1 = [ 1 0 0 ; 0 alphad1 betad1 ; 0 −betad1 alphad1 ] ;
20 gammaa1 = [1 1 1 ] ’ ;
21 Aa = kron ( eye (3 ) , phia1 ) ;
22 Ba = kron ( eye (3 ) , gammaa1) ;
23

24 i f r e a l ( spo l e s w1 (1 ) ) > s1 /Ts
25 f p r i n t f ( ’Added damping po l e s . . . ’ )
26 spo l e s w1 = s1 /Ts + 1 j ∗ imag ( spo l e s w1 ) ;
27 spo l e s w2 = s1 /Ts + 1 j ∗ imag ( spo l e s w2 ) − 0 . 0 001 ;
28 spo l e s w3 = s1 /Ts + 1 j ∗ imag ( spo l e s w3 ) + 0 . 0001 ;
29 e l s e
30 di sp ( ’ S u f f i c i e n t l y damped po l e s . . . ’ )
31 end
32

33 % Use wave po l e s and b e s s e l
34 i f r epeat
35 f p r i n t f ( ’ Repeated po l e s \n ’ ) ;
36 s p o l e s = [ s1 /Ts spoles w1 ’ ] ;
37 mu l t i p l i c i t y = [3 3 3 ] ;
38 e l s e
39 f p r i n t f ( ’ Unique po l e s \n ’ ) ;
40 s p o l e s = [ spoles w1 ’ spoles w2 ’ spoles w3 ’ s2 /Ts s1 /Ts

] ;
41 end
42 e l s e
43 i f T == 0
44 Aa = ze ro s (3 ) ;
45 Ba = eye (3 ) ;
46 e l s e
47 Aa = eye (3 ) ;
48 Ba = eye (3 ) ;
49 end
50 i f r epeat
51 f p r i n t f ( ’ Using repeated Bes s e l s1 /Ts po le \n ’ ) ;
52 s p o l e s = s1 /Ts ;
53 mu l t i p l i c i t y = 3 ;
54 e l s e
55 f p r i n t f ( ’ Using Bes s e l s1 s2 po l e s \n ’ ) ;
56 s p o l e s = [ s1 /Ts s2 /Ts ] ;
57 end
58 end
59

60 sv = svd ( [ Ba Aa∗Ba Aa∗Aa∗Ba ] ) ;
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61 f p r i n t f ( ’ Ratio o f s i n gu l a r va lue s ( lower i s b e t t e r ) : %f \n ’ , sv
(1 ) / sv ( end ) ) ;

A.8 Calculate Tracking System Gains

1 f unc t i on [ L1 , L2 , d e l t a ] = . . .
2 choosePlantGains (A, B, C, Aa , Ba , po les , T, gainMethod ,

mu l t i p l i c i t y )
3

4 f p r i n t f ( ’ Choosing feedback ga ins . . . ’ ) ;
5

6 switch gainMethod
7 case GainMethod . Place
8 f p r i n t f ( ’ Using p lace \n ’ ) ;
9 [ L1 , L2 , d e l t a ] = . . .

10 mts (A, B, C, Aa , Ba , po les , mu l t i p l i c i t y , T, ’ p l ace
’ ) ;

11 case GainMethod .FBG
12 f p r i n t f ( ’ Using fbg \n ’ ) ;
13 [ L1 , L2 , d e l t a ] = . . .
14 mts (A, B, C, Aa , Ba , po les , mu l t i p l i c i t y , T, ’ fbg ’ )

;
15 case GainMethod .RFBG
16 f p r i n t f ( ’ Using r fbg \n ’ ) ;
17 [ L1 , L2 , d e l t a ] = . . .
18 mts (A, B, C, Aa , Ba , po les , mu l t i p l i c i t y , T, ’ r fbg ’

) ;
19 case GainMethod .RFBG2
20 f p r i n t f ( ’ Using r fbg2 \n ’ ) ;
21 [ L1 , L2 , d e l t a ] = . . .
22 mts (A, B, C, Aa , Ba , po les , mu l t i p l i c i t y , T, ’ r fbg2

’ ) ;
23 otherwi s e
24 f p r i n t f ( ’ERROR: Unimplemented feedback gain method : %d\

n ’ , . . .
25 gainMethod ) ;
26 re turn
27 end
28

29 f p r i n t f ( ’ Ful l−s t a t e feedback robus tnes s norm : %f \n ’ , d e l t a ) ;

A.9 Create Feedforward Inverse Filter

1 f unc t i on [ A f , B f , C f , D f ] = . . .
2 create Inver seFeedthrough (A, B, C, Aa , Ba , L1 , L2 , K, T, . . .
3 useObservers )
4

5 % Ful l des ign model
6 i f useObservers
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7 sys = designTSOB(A, B, C, Aa , Ba , L1 , L2 , K, T) ;
8 e l s e
9 sys = designTS (A, B, C, Aa , Ba , L1 , L2 , T) ;

10 end
11 A d = sys .A;
12 B d = sys .B;
13 C d = sys .C;
14 D d = sys .D;
15

16 f p r i n t f ( ’ Checking z e ro s o f the des ign model\n ’ ) ;
17 t z e r o s = tz e r o (A d , B d , C d , D d) ;
18 f o r tz = tze ro s ’
19 i f abs ( tz ) > 1
20 f p r i n t f ( ’WARNING: %.4 f + %.4 f i i s ou t s id e the un i t

c i r c l e \n ’ , . . .
21 r e a l ( tz ) , imag ( tz ) ) ;
22 end
23 end
24

25 f p r i n t f ( ’ Ca l cu l a t ing i nv e r s e feedfoward f i l t e r \n ’ ) ;
26

27 i f T == 0
28 % Continuous
29 f o r d = 1:10
30 cond i t i on = cond (C d∗A dˆ(d−1)∗B d) ;
31 i f ( c ond i t i on >0 && cond i t i on ˜= In f )
32 f p r i n t f ( ’ de lay = %d cond = %f \n ’ ,d , cond i t i on ) ;
33 %break ;
34 end
35 % Calcu la te i nv e r s e feedthrough
36 D f = inv (C d∗A dˆ(d−1)∗B d) ;
37 C f = −D f∗C d∗A dˆd ;
38 B f = B d∗D f ;
39 A f = A d + B d∗C f ;
40 s t ab l e = 1 ;
41 f o r l a = e i g ( A f ) ’
42 i f abs ( l a ) > 1
43 s t ab l e = 0 ;
44 end
45 end
46 i f s t a b l e == 1
47 break ;
48 end
49 end
50 e l s e
51 f o r d = 2:100
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52 cond i t i on = cond (C d∗A dˆ(d−1)∗B d) ;
53 i f ( c ond i t i on >0 && cond i t i on ˜= In f )
54 f p r i n t f ( ’ de lay = %d cond = %f \n ’ ,d , cond i t i on ) ;
55 end
56 % Calcu la te i nv e r s e feedthrough
57 D f = inv (C d∗A dˆ(d−1)∗B d) ;
58 C f = −D f∗C d∗A dˆd ;
59 B f = B d∗D f ;
60 A f = A d + B d∗C f ;
61 s t ab l e = true ;
62 e i g ( A f ) ;
63 f o r e = e i g ( A f ) ’
64 i f abs ( e ) >= 1
65 s t ab l e = f a l s e ;
66 end
67 end
68 i f s t a b l e == true
69 break ;
70 end
71 end
72 end

A.10 FIF Initial Conditions

1 %load i n v e r s e f i l t e r
2 %load e l l i p s e
3 p s i I n ( end )=2∗pi ;
4 r e f =[ northIn ea s t In p s i I n ] ;
5 r e f 1 =[ r e f ; r e f ( end : −1 : 1 , : ) ; r e f ] ;
6 t1=[ t ; t+t ( end )+T ] ;
7 t1=[ t1 ; t+t1 ( end )+T ] ;
8 i n s y s=s s ( A f , B f , C f , D f ,T) ;
9 [ y1 , t2 , x]= l s im ( insys , r e f1 , t1 , z e r o s ( l ength ( A f ) ,1 ) ) ;

10 xf0=−x (2∗ l ength ( p s i I n ) , : ) ’ ;
11 [ y , t3 , x3]= ls im ( insys , r e f , t , x f0 ) ;
12 s i g 1 =[ t r e f ( : , 1 ) ] ;
13 s i g 2 =[ t r e f ( : , 2 ) ] ;
14 s i g 3 =[ t r e f ( : , 3 ) ] ;

A.11 TSOB Design Model

1 f unc t i on sys = designTSOB(A, B, C, Aa , Ba , L1 , L2 , K, T)
2 % sys = designTSOB(A, B, C, Aa , Ba , L1 , L2 , K, T)
3 %
4 % Cal cu l a t e s the des ign model f o r the t ra ck ing system with f u l l

order
5 % observer .
6 %
7 % INPUT
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8 % A, B, C Plant Model
9 % Aa, Ba Addi t iona l Dynamics model

10 % L1 Plant ga ins
11 % L2 Addi t iona l dynamics ga ins
12 % K Observer ga ins
13 % T Sampling time
14 % OUPUT
15 % sys The des ign model
16 %
17 % AUTHOR: t d e r e n s i s
18

19 [ n , m] = s i z e (B) ;
20 q = length (Aa) ;
21

22 A d = [ A −B∗L1 B∗L2 ;
23 K∗C (A−K∗C−B∗L1) B∗L2 ;
24 −Ba∗C ze ro s (q , n) Aa ] ;
25 B d = [ z e ro s (2∗n , m) ;
26 Ba ] ;
27 C d = [C ze ro s (m, n+q) ] ;
28 D d = ze ro s (m) ;
29 sys = s s (A d , B d , C d , D d , T) ;

A.12 TSOB Robust Model

1 f unc t i on [ d e l t a ] = robustTSOB(A, B, C, Aa , Ba , L1 , L2 , K, T)
2 % [ de l t a ] = robustTS (A, B, C, Aa , Ba , L1 , L2 , T)
3 % INPUT
4 % A, B, C − Plant matr i ce s
5 % Aa, Ba − Addit iona l dynamics matr i ce s
6 % L1 − Plant ga ins
7 % L2 − Addit iona l dynamics ga ins
8 % K − Observer gain
9 % T − Sampling Time

10 % OUTPUT
11 % de l t a − Mul t i va r i ab l e robus tne s s norm
12 %
13 % Cal cu l a t e s the mu l t i v a r i ab l e robus tne s s norm of the system

us ing the
14 % input per tubat ion model .
15 %
16 % author : t d e r e n s i s
17

18 [ n , p]= s i z e (B) ;
19 [ q ,m]= s i z e (Ba) ;
20

21 AA = [ A −B∗L1 B∗L2 ;
22 K∗C (A−K∗C−B∗L1) B∗L2 ;
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23 −Ba∗C ze ro s (q , n) Aa ] ;
24

25 % Check f o r s t a b i l i t y
26 f o r i = e i g (AA) ’
27 i f abs ( i ) > 1
28 de l t a = 0 ;
29 re turn
30 end
31 end
32

33 BB = [ B ;
34 z e r o s (n , p) ;
35 z e r o s (q ,m) ; ] ;
36

37 CC = [ ze ro s (p , n) −L1 L2 ] ;
38

39 sys=s s (AA,BB,CC, z e ro s (p , p) ,T) ;
40 de l t a=1/norm( sys , i n f ) ;
41

42 re turn

A.13 Generate Ellipse

1 % Create a v e s s e l t rack
2

3 simTime = 200 ;
4 t = [ 0 :T: simTime ] ’ ;
5 s c a l e = (2 . 0∗ pi /simTime ) ;
6

7 % El ip s e
8 a = 20 . 0 ;
9 b = 10 . 0 ;

10 ea s t In = a−a∗ cos ( t ∗ s c a l e ) ;
11 dEastIn = a∗ s c a l e ∗ s i n ( t ∗ s c a l e ) ;
12 ddEastIn = a∗ s c a l e ˆ2∗ cos ( t ∗ s c a l e ) ;
13 northIn = b∗ s i n ( t ∗ s c a l e ) ;
14 dNorthIn = b∗ s c a l e ∗ cos ( t ∗ s c a l e ) ;
15 ddNorthIn = −b∗ s c a l e ˆ2∗ s i n ( t ∗ s c a l e ) ;
16 U = sqr t ( dEastIn .ˆ2 + dNorthIn . ˆ 2 ) ;
17 dU = ( s c a l e ˆ2∗( aˆ2−bˆ2) ∗ s i n (2∗ t ∗ s c a l e ) ) . / ( 2∗ s q r t ( ( a∗ s i n ( t ∗ s c a l e

) ) . ˆ2 + (b∗ cos ( t ∗ s c a l e ) ) . ˆ 2 ) ) ;
18 %dU = sqr t ( ddEastIn .ˆ2 + ddNorthIn . ˆ 2 ) ;
19

20 p s i I n = atan2(−dEastIn , −dNorthIn )+pi ;
21 p s i I n ( end ) = 0 ;
22 %ps i I n = atan2 ( a∗ tan ( t ∗(2∗ pi /simTime ) ) ,b ) ∗180/ p i ;
23 %ps i I n ( f l o o r ( end/4+1) : f l o o r (3∗ end/4+1) ) = ps i I n ( f l o o r ( end/4+1) :

f l o o r (3∗ end/4+1) ) + 180 ;

74



24 %ps i I n = mod( ps i In , 360) ;
25

26 % yawRate
27 r = ( a∗b∗ s c a l e ) . / ( aˆ2∗ s i n ( s c a l e ∗ t ) .ˆ2+bˆ2∗ cos ( s c a l e ∗ t ) . ˆ 2 ) ;
28

29 ra = (2∗ a∗b∗ s c a l e ˆ2∗(bˆ2−a ˆ2) ∗ s i n (2∗ s c a l e ∗ t ) ) . / ( aˆ2∗ s i n ( s c a l e ∗ t
) .ˆ2+bˆ2∗ cos ( s c a l e ∗ t ) . ˆ 2 ) . ˆ 2 ;

30

31 ves se lTrack . time = t ;
32 ves se lTrack . s i g n a l s . va lue s = [ northIn , east In , p s i I n ] ;
33 ves se lTrack . s i g n a l s . d imensions = 3 ;

A.14 Initial Conditions

1 % i n i t i a l c ond i t i on s
2 ang = ps i I n (1 ) ;
3 eta0 = [ northIn (1 ) ea s t In (1 ) p s i I n (1 ) ] ’ ;
4 nu0 = [ dNorthIn (1 ) dEastIn (1 ) r (1 ) ] ’ ;
5 nu dot0 = [ ddNorthIn (1 ) ddEastIn (1 ) ra (1 ) ] ’ ;
6 u0 = M∗nu dot0+Damp∗nu0 ;
7 tau0 = −M∗nu dot0 + Damp∗nu0 ;
8 dtau0 = A thr ∗( tau0−u0 ) ;
9 x0 = [ eta0 ’ nu0 ’ tau0 ’ ] ’ ;

10 %x0 = [ northIn (1 ) ea s t In (1 ) ang 0 0 0 ] ’ ;
11 ro t = [ cos ( ang ) −s i n ( ang ) 0 ;
12 s i n ( ang ) cos ( ang ) 0 ;
13 0 0 1 ] ;
14 m = zero s (3 , l ength ( p s i I n ) ) ;
15 f o r i = 1 : l ength ( p s i I n )
16 ro t = [ cos ( p s i I n ( i ) ) −s i n ( p s i I n ( i ) ) 0 ;
17 s i n ( p s i I n ( i ) ) cos ( p s i I n ( i ) ) 0 ;
18 0 0 1 ] ;
19 m( : , i ) = rot ∗ [ northIn ( i ) ; e a s t In ( i ) ; p s i I n ( i ) ] ;
20 end
21 % rota t e to v e s s e l p a r a l l e l c oo rd ina t e s
22 x0 ( 1 : 3 ) = rot ’∗ x0 ( 1 : 3 ) ;
23

24 % i n i t i a l add i t i ona l dynamics ( c o n t r o l l e r must be des igned
f i r s t )

25 xa0 = L2 ’∗ inv (L2∗L2 ’ ) ∗(L1∗x0+u0 ) ;
26 xo0 = x0 ;
27 i nv e r s e IC

A.15 Boat ID

1 c l a s s d e f BoatID
2 enumeration
3 CybershipII , URI ASV
4 end
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5 end

A.16 Model ID

1 c l a s s d e f ModelID
2 enumeration
3 LinearizedDP , LinearizedDPYaw , LinearizedManeuvering ,
4 Linear izedDPThrusters
5 end
6 end

A.17 Gain Selection Method

1 c l a s s d e f GainMethod
2 enumeration
3 Place , FBG, RFBG, RFBG2
4 end
5 end

A.18 Pole Selection Method

1 c l a s s d e f PoleMethod
2 enumeration
3 Besse l , BesselOptimal , Suf f ic ient lyDamped , AddedDamping ,

PlantZeros
4 end
5 end
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