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Quantum Invariants: Topographical Map of Quantized
Actions

Niraj Srivastava 1 and Gerhard Müller 1

1 Department of Physics, University of Rhode Island, Kingston RI 02881, USA

For Hamiltonian systems with two degres of freedom, quantum invariants as constructed via time averages
of dynamical variables in energy eigenstates provide a convenient representation of quantum nonintegrability
effects in the form of a topographical map of quantized actions.

Quantum chaos stands at the junction of two major developments in physics which have taken
place during the past decade:

� the realization by the physics community at large that deterministic chaos in dynamical
systems with few degrees of freedom is of paradigmatic significance, and that its ramifications
for the dynamics of microscopic physical systems are of fundamental importance;

� the enormous refinement of experimental techniques in atomic and molecular physics, now
allowing for extremely detailed studies of the dynamics of real quantum systems with few
degrees of freedom

� to illuminate the still obscure connection between (i) classical Hamiltonian chaos defined as
deterministic randomness and (ii) quantum nonintegrability effects identified and analyzed
in quantum model systems;

� to establish a firm and transparent connection between (ii) evident quantum nonintegrability
effects and (iii) experimental results for specific dynamical properties of real quantum few-
body systems.

At present the pivotal links (i) ↔ (ii) ↔ (iii) are fairly indirect for the most part, dictated by
matters of practicality. The most convenient formulation used for the description of items (i), (ii),
(iii) are often sufficiently different to invite some degree of ambiguity in interpretation. Under these
circumstance it is imperative that the exploration of new representations for the study of quantum
nonintegrability effects be continued vigorously for the purpose of more direct comparisons.

One such representation, which turns out to be quite useful and illuminating for the analysis
of quantum manifestations of Hamiltonian chaos in systems with two degrees of freedom, is the
topographical map of quantized actions in the form of quantum invariants. In the following, we give
a brief description and illustration of this representation for a system consisting of two exchange-
coupled spins with biaxial exchange and single-site anisotropy,

Ĥ = ~2
∑
µ=xyz

{
−Jµσ̂µ1 σ̂

µ
2 +

1
2
Aµ

[(
σ̂µ1
)2 +

(
σ̂µ2
)2]}

. (1)

It defines, in the limit ~ → 0, σ → ∞, ~
√
σ(σ + 1) = s, ~σ̂µl = Sµl , an autonomous classical

Hamiltonian system H(S1,S2) with two degrees of freedom for a pair of 3-component vectors Sl
of length s. The classical integrability condition is nontrivial, (Ax − Ay)(Ay − Az)(Az − Ax) +
J2
x(Ay − Az) + J2

y (Az − Ax) + J2
z (Ax − Ay) = 0 and a 2nd integral of them motion I(S1,S2) is

explicitly known for the integrable cases [1,2].
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Integrability of the classical 2-spin cluster implies that the flow in four-dimensinal (4d) phase
space is confined to 2d tori. The phase space is densely foliated by such tori. Each torus is speci-
fied by the values of two action variables J1, J2, and the two independent analytic invariants are
functions of these two action variables: H(S1,S2) = E(J1, J2), I(S1,S2) = I ′(J1, J2). The corre-
sponding quantum energy spectrum Eλ is then naturally catalogued as a two-parameter family in
terms of quantum numbers m1,m2, −σ,−σ + 1, . . . , σ, k = 1, 2 in accordance with semiclassical
quantization.

This implicit 2d order of the eigenvalue sequence Eλ in terms of the two quantized action
variables can be displayed even if the function E(J1, J2) is not explicitly known. Consider the
energy eigenvalues Eλ and the eigenvalues Iλ of the quantum invariant Î, the quantum version of
I(S1,S2). In a diagram Iλ versus Eλ, the 2d array of points then forms a regular pattern, a fully
intact 2d web with four bonds per vertex. This invariant-web is likely to be visually distorted due
to the generally complicated nonlinear dependence of E and I ′ on J1, J2.

The main plot of Fig. 1 shows such an invariant-web. There we have plotted the eigenvalues
I
(M)
λ of the second invariant ÎM (to be specified) versus the eigenvalues Eλ for an integrable case of
the 2-spin model (1) (see caption for specification). The vertices represent all eigenvalues Eλ > 0
of the states (for σ = 35) which transform according to the irreducible representations A1A or

Figure 1. Quantum invariant I(M)
λ versus energy Eλ for all eigenstates (with Eλ > 0) of symme-

try classes A1A (full circles) and B1S (open squares) of the integrable case Jx = 1.2, Jy =
0.8, Jz = 0, Ax = Ay = Az = 0 of the quantum 2-spin model (1) for s = 1 and spin
quantum number σ = 35. The inset shows the same quantities for the nonintegrabe case
Jx = Jy = 1, Jz = 0, Ax = −Ay = −0.4, Az = 0 of Hamiltonian (1), but only for quantum
states within a window of given size in the (Eλ, I

(M)
λ )-plane.
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B1S of the symmetry group D2 ⊗ S2, where S2 is the permutation group of the two spins and D2

contains all twofold rotations about the coordinate axes [3].
In the action plane, each quantized torus claims a square of area ~2, in accordance with the

uncertainty principle. Those squares map onto the meshes of the invariant-web. The threads of
the web can be interpreted as lines of constant action and the meshes along one such line as
incremental marks in units of hbar for the other action variable. Note that one set of threads
change from positive to negative slope going through a point of infinite slope if the quantum states
are smoothly interpolated. Interpreting this set of threads as lines of constant J2, it follows that
one of two fundamental frequencies of the classical time evolution, ω1 = ∂E(J1, J2)/∂J1, slows
down to zero at the point of infinite slope, which signals the presence of a separatrix in the action
plane. All this is suggestive of the name “topographical map of quantized actions,” which we have
given to this representation of quantum invariants.

We could have constructed our 2nd invariant Î directly from the classical integral of the motion
as derived in Ref. 1. Instead, following an idea of Peres [4], we construct Î from some arbitrary
dynamical variable via time average: Take any dynamical variable Â which is independent of Ĥ
(e.g. choose Â such that [Â, Ĥ] 6= 0), and consider the matrix elements of Â(t) in the energy
representaion, 〈λ|Â(t)|λ′〉 = 〈λ|Â|λ′〉 exp[(Eλ − Eλ′)t/~]. Performing the time average eliminates
all off-diagonal elements and thus defines the quantum invariant ÎA, which is diagonal in the
energy representation as it should be: 〈λ|Â(t)|λ′〉 = 〈λ|Â|λ′〉δλλ′ ≡ I

(A)
λ δλλ′ . In the case where

degenerate energy levels occur, the eigenvectors in the invariant subspaces must be chosen such
that all off-diagonal elements 〈λ|Â|λ′〉 are zero.

Throughout this study we use the quantum invariant I(M)
λ =

√
〈λ|M̂2

z |λ〉 with M̂z = ~(σ̂z1 +
σ̂z2)/2, which is, for the integrable cases of (1), a valid substitute for the invariant operators derived
from the explicitly known classical analytic invariant I(S1,S2). The fully intact web in Fig. 1
illustrates this situation. However, I(M)

λ can also be constructed for nonintegrable cases of (1), cases
for which the classical analytic invariant I(S1,S2) does not exist. Not surprisingly, the properties
of I(M)

λ depend sensitively on whether the classical integrability condition is satisfied or not.
Figure 1 shows in juxtaposition the characteristic properties of quantum invariants in the

vicinity of a separatrix for an integrable model (main plot) and a near-integrable model (inset).
The two models (see caption for specifications) have exactly the same symmetries. A distinctive
feature of the nonintegrable case is that nearly degenerate states (of the same symmetry class)
tend to resonate in the vicinity of the separatrix line, which in this case is the quantum image of
a narrow chaotic band in phase space. Several such resonances – some strong, some weak – can be
observed in the inset to Fig. 1.

If we change the model parameters such as to generate a wider band of chaos along the separa-
trix in the classical phase flow, more and more resonances make their appearance in the associated
quantum invariant-web. As the number of resonances increases, they begin to overlap. This situ-
ation is illustrated in the web depicted in the main plot of Fig. 2. The overlap of resonances was
introduced by Chirikov [5] as a criterion for widespread chaos in the context of classical perturba-
tion theory, and quantum analogs of that concept have since been used in a number of different
applications [6].

The inset to Fig. 2 shows a situation in which the chaotic band along the classical separatrix is
so wide as to cause the complete disintegration of the corresponding quantum invariant-web. No
individual resonances can be identified any more. Within the chaotic region, the quantum states
now tend to cluster in short strips along lines which interpolate one set of threads across the chaotic
separatrix line, leaving sizable areas of th (Eλ, I

(M)
λ )-plane almost depleted of states. Within any

one of these small clusters, the quantum states are slightly displaced sideways, enough to account
for the effect of level repulsion after projection on to the Eλ-axis [7].

Note that classical Hamiltonian chaos, even though it is dense everywhere in phase space, does
not manifest itself in quantum mechanics as long as the chaotic regions are small compared to the
mesh size of the quantum-invariant web. This describes the situation in the two regular regions on
both sides of the separatrix in Fig. 2.
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Figure 2. Quantum invariant I
(M)
λ versus energy Eλ for all eigenstates (with Eλ > 0)

of symmetry classes A1A (full circles) and B1S (open squares) of the nonintegrable case
Jx = Jy = 1, Jz = 0, Ax = −Ay = −0.45, Az = 0 of the quantum 2-spin model (1) for
s = 1 and spin quantum number σ = 35. The inset shows the same quantities for the case
Jx = Jy = 1, Jz = 0, Ax = −Ay = −0.5, Az = 0 of the same model but only for quantum states
within a window of given size in the (Eλ, I

(M)
λ )-plane.

In summary, the topographical map of quantized actions as obtained from quantum invariants
is a convenient representation for the study of integrable and nonintegrable Hamiltonian systems
with two degrees of freedom. It provides unmistakable quantum images of the most conspicuous
phenomena of classical Hamiltonian chaos such as resonances between nonlinear modes and the
breakdown of invariant tori in the classical phase flow.

Acknowledgment: This work was supported in part by the U.S. National Science Foundation
Grant DMR-86-03036 and by Sigma Xi. the Scientific Research Society. The numerical calculations
were performed on the CRAY-2 of the National Center for Supercomputing Applications, University
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