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Quantum Spin Chains: Simple Models with Complex
Dynamics

Gerhard Müller

Department of Physics, University of Rhode Island, Kingston RI 02881, USA

Dedicated to Professor Harry Thomas on the occasion of his 60th birthday

The present study highlights some of the complexities observed in the dynamical properties of one-dimensional
quantum spin systems. Exact results for zero-temperature dynamic correlation functions are presented for two
contrasting situations: (i) a system with a fully ordered ferromagnetic ground state; (ii) a system at a Tc = 0
critical point. For both situations it is found that the exact results are considerably more complex than has
been anticipated on the basis of approximate approaches which are considered to be appropriate and reliable
for such situations. A still higher degree of complexity is expected for the dynamics of quantum spin systems
which are nonintegrable. The paper concludes with some observations concerning nonintegrability effects and
quantum chaos in spin systems.

1. Introduction

Quantum spin chains with short-range interaction are strongly fluctuating statistical systems
at all temperatures. Any spontaneous magnetic long-range order (LRO) is destabilized by ther-
mal fluctuations at all nonzero temperatures. Even at T = 0, the order parameter is in general
considerably reduced due to the presence of quantum fluctuations. In some cases, the quantum
fluctuations prevent the onset of magnetic ordering entirely.

Quantum spin chains continue to surprise us with new unexpected features in their Tc = 0 criti-
cal behavior and T = 0 phase transitions as functions of various parameters (exchange or single-site
anisotropy, magnetic field). One outstanding example has been Haldane’s [1] challenging prediction
that the one-dimensional (1D) spin-s Heisenberg antiferromagnet has a gap in the excitation spec-
trum for integer s but no gap for half-integer s, a prediction which has gained substantial support
from numerical calculations even though a rigorous proof of the gap does not appear to be within
reach. Moreover, some of the theoretical studies concerned with the verification and clarification
of Haldane’s prediction have uncovered new puzzleswhich call for further investigations (see Sect.
6 below).

For a number of cases, the T = 0 phase transitions of quantum spin chains map onto phase
transitions of certain 2D classical statistical models in which the variable parameter is the tem-
perature and in which the role of quantum fluctuations is taken over by thermal fluctuations. One
such mapping will be discussed in Sect. 3.

Perhaps the most fascinating aspect of quantum spin chains is its dynamics. Even the most
simple 1D quantum spin models turn out to reveal a degree of complexity in their dynamical
properties which is hardly describable in the language of the approximation techniques commonly
employed and which is frequently ignored in the interpretation of experimental measurements.
Quantum spin chains are, in fact, physically realized in quasi-1D magnetic insulators for a large
variety of simple models [2, 3]. Typically these are compounds in which the magnetic ions are
arranged in chains along one crystallographic axis such that the exchange interaction between
ions within a chain is very much stronger than the interaction between ions belonging to different
chains. Two of the most important experimental techniques which probe dynamical properties of
quasi-1D magnetic insulators very directly and their connection to dynamic two-spin correlation
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functions are the following:
(i) The inelastic scattering cross section for magnetic scattering of neutrons is directly propor-

tional to the dynamic structure factor [2]:

d2σ

dΩdω
∝ Sµµ(q, ω) =

+∞∑
n=−∞

e−iqn
∫ +∞

−∞
dt eiωt〈Sµl (t)Sµl+n〉. (1.1)

(ii) In situations where a hydrogen ion is crystallographically located suitably close to the
(electron) spin chain, the NMR spin-lattice relaxation rate 1/T1 of that proton is dominated by
the local fluctuations of the unpaired electrons of the nearest magnetic ion [4]. It is proportional
to the frequency-dependent autocorrelation function at the nuclear Larmor frequency ωN :

1
T1
∝ Φµµ0 (ωN ) =

∫ +∞

−∞
dt eiωN t〈Sµl (t)Sµl 〉. (1.2)

Finally, I should like to mention Anderson’s [5] proposition that magnetic singlet states of the type
realized in the 1D Heisenberg antiferromagnet might be the correct starting point for a theory of
the high-temperature superconductivity recently discovered in doped lanthanum copper oxides.

2. Zero-Point Fluctuations

For the purpose of illustrating the role of zero-point fluctuations in quantum spin dynamics let
us consider two typical situations.

(i) The 1D Heisenberg ferromagnet (FM)

HFM = −J
N∑
l=1

Sl · Sl+1 (2.1)

has a fully ordered FM ground state ↑↑↑ · · · ↑↑ irrespective of whether the spins are treated
classically or quantum mechanically. It is a state without correlated fluctuations. Furthermore, the
FM spin waves with dispersion ωFM (q) = 2sJ(1− cos q) are genuine small-amplitude solutions of
the classical equations of motion [6] as well as exact eigenstates of the quantum Hamiltonian HFM

for arbitrary s. In both cases, the implication is that the T = 0 dynamic structure factor has a
sharp peak at the spin-wave frequency:

Sµµ(q.ω) = πsδ
(
ω − ωFM (q)

)
(2.2)

where µ labels any spin component perpendicular to the order parameter.
(ii) In the case of the 1D Heisenberg antiferromagnet (AFM)

HAFM = J

N∑
l=1

Sl · Sl+1 (2.3)

the fully ordered Néel state ↑↓↑ · · · ↑↓ is the ground state for classical spins but not even an
eigenstate of HAFM for quantum spins.

For s = 1/2, the true ground state of HAFM is a Tc = 0 critical point characterized by
an algebraically decaying two-spin correlation function [7]: 〈Sl · Sl+n〉 ∼ (−1)n/n. For s = 1,
by contrast, the true ground state is predicted to be a nonmagnetic singlet characterized by an
exponentially decaying two-spin correlation function [1]: 〈Sl · Sl+n〉 ∼ n−1/2e−n/ξ. In both cases,
zero-point fluctuations are responsible for a dramatic alteration of the ground state with respect to
the classical Néel state. The AFM spin-waves with dispersions ωAFM (q) = 2sJ | sin q| are genuine
small-amplitude solutions of the classical equations of motion [6], but there are no eigenstates of
the quantum Hamiltonian HAFM which could be justifiably called AFM spin waves [8]. As a direct
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consequence of these properties, the dynamic structure factors Sµµ(q, ω) are much more complex
than in the FM case.

For the spin-l/2 Heisenberg AFM chain, Sµµ(q, ω) is dominated, for fixed wave number q, by a
continuum of excitations rather than by a single spin-wave mode. The spectrum of these dominant
excitations has been determined exactly by means of the Bethe ansatz, but the function Sµµ(q, ω)
has so far eluded any exact determination [8-10]. No detailed properties of Sµµ(q, ω) are known for
the spin-1 chain, which is not amenable to the Bethe ansatz, but AFM spin-waves are certainly
a very poor representation of the true excitation spectrum. Nevertheless, it is expected that for
increasing s, the complex structure ofSµµ(q, ω) gradually gives way to an increasingly sharp peak
at the AFM spin-wave frequency as the quantum fluctuations become weaker and, finally, die out
in the classical limit [10]. The classical spin-wave analysis yields the following expression for the
dynamic structure factor [11]:

Sµµ(q, ω) = πs tan
q

2
δ
(
ω − ωAFM (q)

)
. (2.4)

In summary, the two situations discussed previously strongly suggest that there is, not too
surprisingly, a correlation between the degree of ordering in the ground state and the degree
of complexity in the T = 0 dynamic structure factor. Specifically, in the presence of saturated
magnetic LRO, which is realized in HFM for all s and in HAFM for s → ∞ only, Sµµ(q, ω) has a
very simple structure characterized by a δ-function at the spin-wave frequency. These observations
have contributed substantially but misleadingly to the nearly all-embracing confidence in the results
of the linear spin-wave analysis for 3D FM and AFM systems, where the magnetic ordering is always
very strong at low temperatures except in the presence of competing interactions. The fact is that
the reliability of the results obtained from the linear spin-wave analysis is by no means guaranteed
by a sufficiently complete magnetic ordering in the system, i.e. by a sufficiently small amount of
(quantum or thermal) fluctuations in the state of the system. It can indeed be demonstrated by
rigorous calculations (see Sect. 4) that even in the presence of a fully ordered (ferromagnetic or
spin flop) state the dynamic structure factors Sµµ(q, ω) can assume a nontrivial structure, which
differs dramatically from the expression produced by the linear spin-wave analysis [12, 13].

3. The Anisotropic XY Model

In the following I shall present a comparative study of the complexities observed in dynamic
correlation functions of a 1D quantum spin system at T = 0 for two contrasting situations: (i)
a situation in which the model has a fully ordered ferromagnetic ground state; (ii) a situation in
which the model has a disordered ground state corresponding to a Tc = 0 critical point. All the
results presented for these two situations are based on exact calculations for special cases of the
1D s = 1/2 anisotropic XY model

HAXY = −
N∑
l=1

{
(1 + γ)Sxl S

x
l+1 + (1− γ)Syl S

y
l+1 + hSzl

}
. (3.1)

The 2D parameter space spanned by the exchange anisotropy γ and the magnetic field h is shown
in Fig. 1.

For nonzero exchange anisotropy (0 < γ ≤ 1) and subcritical fields (0 ≤ h < hc), the ground
state of HAXY is ferromagnetically ordered. The order parameter is the spontaneous magnetization
M̄x = 〈Sxl 〉 perpendicular to the external field. Its magnitude as a function of h is [14]

M̄2
x =

√
γ

2(1 + γ)
(1− h2)1/4. (3.2)

As the field crosses the critical value hc = 1, the system undergoes a continuous transition to a
phase with M̄x = 0. In the isotropic case, on the other hand, every point on the line 0 ≤ h ≤ hc is
a critical point characterized by algebraically decaying correlation functions 〈Sµl S

µ
l+n〉, µ = x, y, z.
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Figure 1. Two-dimensional parameter space (h, γ) of the 1D s = 1/2 anisotropic XY model.
The shaded area denotes the region in which the ground-state properties of this model map onto
the thermodynamic properties of the 2D Ising model on a rectangular lattice. In the mapping
the line h = hN corresponds to T = 0 and h = hc to T = Tc. The dot-dashed line h =

p
γ−2 − 1

maps onto the temperature axis of the square-lattice Ising model (J1 = J2).

It is interesting to note that the ground state properties of this model in the shaded region of
the parameter space shown in Fig. 1 are related, via Suzuki’s mapping [15], to the thermodynamic
properties of the 2D Ising model on a rectangular lattice,

HI = −J1

∑
n,m

σn,mσn+1,m − J2

∑
n,m

σn,mσn,m+1, (3.3)

where the coupling constants J1, J2 and the temperature T are determined in terms of the param-
eters γ, h through the relations

tanh
2J1

kBT
= γ, tanh

2J2

kBT
=

h

hN
. (3.4)

In this mapping, the special field hN =
√

1− γ2 of the quantum spin chain (circular line) corre-
sponds to T = 0 in the 2D Ising model, whereas the critical field hc = 1 (dashed line) maps onto
the critical temperature Tc determined by the equation

sinh
2J1

kBTc
sinh

2J2

kBTc
= 1. (3.5)

Note that the square-lattice Ising model (J1 = J2) maps onto the line h =
√
γ−2 − 1 in the

parameter space of the anisotropic XY model (shown dot-dashed in Fig. 1).
The two-spin correlation functions of the two models HI and HAXY are related to one another

as follows [15]:

〈σn,mσn,m′〉 = 2
1 + γ

γ
〈SxmSxm′〉 − 2

1− γ
γ
〈SymS

y
m′〉. (3.6)

In the limit |m − m′| → ∞, this equation establishes the equivalence between the result (3.2)
of Barouch and McCoy [14] for the order parameter of the 1D anisotropic XY model and the
Onsager-Yang result for the spontaneous magnetization of the 2D Ising model [16]:

M̄2 = 2
1 + γ

γ
M̄2
x =

{
1− cosech

2J1

kBT
cosech

2J2

kBT

}1/4

. (3.7)

Furthermore, Suzuki’s mapping establishes the equivalence between the logarithmic divergence of
the susceptibility χ̄zz(T = 0, h) = ∂M̄z/∂h at h = hc of the 1D quantum spin model HAXY
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and the logarithmic divergence of the specific heat at T = Tc of the 2D Ising model. Thus the
magnetization M̄z, which is not the order parameter of the T = 0 phase transition in the quantum
spin chain, plays a role analogous to the entropy in the 2D Ising model and the quantity hχ̄zz a
role analogous to the specific heat. The divergence of the 2D Ising model susceptibility χ(T ) ∼
|T −Tc|−7/4, on the other hand, has its equivalence in an analogous singularity of the susceptibility
χ̄xx(T = 0, h) ∼ |h− hc|−7/4 of the 1D quantum spin model.

Returning to the comparative study of dynamic correlation functions, we recall the well-known
fact that the s = 1/2 anisotropic XY model (3.1) maps, via the Jordan-Wigner transformation

S+
l = Sxl + iSyl = a†l exp

iπ
∑
j<l

a†jaj


S−l = Sxl − iSyl = exp

−iπ
∑
j<l

a†jaj

 al (3.8)

Szl = a†l al −
1
2

onto a system of noninteracting fermions with the following one-particle spectrum [17, 18] :

ωk = sgn(h+ cos k)
√

(h+ cos k)2 + γ2 sin2 k. (3.9)

As a result of the simple structure of the operator Szl in the fermion representation, the dynamic
structure factor Szz(q, ω) can be expressed in terms of a fermion density-density correlation func-
tion, i.e. in terms of a 2-particle Green’s function, which can be evaluated under all circumstances
[19, 20]. The dynamic structure factors Sxx(q, ω) and Syy(q, ω), on the other hand, have a much
more complicated structure in the fermion representation, caused by the exponential operators
in the Jordan-Wigner transformation. These functions are expressible in terms of infinite block
Töplitz determinants [21], i.e. in terms of quantities which are, in general, not readily evaluated
except for very special circumstances.

The two contrasting situations (i) and (ii), mentioned at the beginning of this section, can
now be identified as follows: Situation (i) is realized along the circular line h = hN =

√
1− γ2,

0 ≤ γ ≤ 1 (see Fig. 1) where the system has a ferromagnetic ground state characterized by the
order parameter

M = 〈Sl〉 =
1
2

(√
2γ/(1 + γ), 0,

√
(1− γ)(1 + γ)

)
. (3.10)

Situation (ii) is realized (not exclusively) at the following two points (marked by asterisks in Fig. 1):
(a) h = γ = 1. This is the transverse Ising (TI) model at the critical field. Its equal-time two-spin
correlation functions decay algebraically as follows [14] :

〈Sxl Sxl+n〉 ∼ n−1/4, 〈Syl S
y
l+n〉 ∼ n

−9/4, 〈Szl Szl+n〉 − M̄2
z ∼ n−2. (3.11)

(b) h = γ = 0. This is the isotropic XY model in zero field. Its correlation functions have the
following long-distance asymptotic behavior:

〈Sxl Sxl+n〉 = 〈Syl S
y
l+n〉 ∼ n

−1/2, 〈Szl Szl+n〉 ∼ n−2. (3.12)

4. Dynamics of a Quantum Spin Chain in its Fully Ordered Ferromagnetic
Ground State

Here we are concerned with situation (i) as specified in the preceding Sect. However, starting
out with the study of a model which is more general than the s = 1/2 anisotropic XY model (3.1),

5
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we may ask the question [11-13]: Under what circumstances does the general spin-s XY Z FM in
a uniform magnetic field

HXY Z = −
N∑
l=1

[
JxS

x
l S

x
l+1 + JyS

y
l S

y
l+1 + JzS

z
l S

z
l+1 + hSzl

]
(4.1)

for Jx ≥ Jy ≥ Jz ≥ 0, even N and periodic boundary conditions have a ground state wave function
of the form

|G〉 =
N⊗
l=1

|ϑ, l〉,

|ϑ, l〉 = Ul(ϑ)|s〉l =
+s∑

m=−s

[
(2s)!

(s+m)!(s−m)!

]1/2 [
cos

ϑl
2

]s+m [
sin

ϑl
2

]s−m
|m〉l, (4.2)

where Ul(ϑ) describes a unitary transformation representing a rotation of the spin direction at the
site l by an angle ϑ away from the z-axis in the xz-plane? |G〉 is a state of maximum magnetic
order

M = 〈ϑ, l|Sl|ϑ, l〉 = (s sinϑ, 0, s cosϑ) (4.3)

with no correlated fluctuations. An alternative formulation of this question, which has proven to
be useful for the analysis of the problem, is the following: Under what circumstances does the
Hamiltonian

H̃XY Z = U−1HXY ZU, U =
N⊗
l=1

Ul(ϑ) (4.4)

have a ground-state wave function of the simple form

|G̃〉 = U−1|G〉 =
N⊗
l=1

|s〉l = | ↑↑ · · · ↑〉 (4.5)

with all spins aligned parallel to the z-axis? For given values of the exchange constants Jx ≥ Jy ≥
Jz, the XY Z model (4.1) has indeed a ground state of the form (4.2) with

cosϑ =
√

(Jy − Jz)/(Jx − Jz) (4.6)

provided the magnetic field assumes the value

h = hN = 2s
√

(Jx − Jz)(Jy − Jz). (4.7)

See Fig. 2 for a schematic illustration of this state. The ground-state energy is then given by

EG = 〈G|HXY Z |G〉 = 〈G̃|H̃XY Z |G̃〉 = −Ns2(Jx + Jy − Jz) (4.8)

and the transformed Hamiltonian H̃XY Z whose ground-state wave function is |G̃〉 = | ↑↑ · · · ↑〉
reads [13]:

H̃XY Z =−
N∑
l=1

[
Jy(Sxl S

x
l+1 + Syl S

y
l+1) + (Jx − Jy + Jz)Szl S

z
l+1 + 2s(Jy − Jz)Szl

+
{

(Jx − Jy)(Jy − Jz)
}1/2{

Szl S
x
l+1 + Sxl S

z
l+1 − s(Sxl+1 + Sxl )

}]
. (4.9)

The circular line in Fig. 1 represents a special case of this situation.
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Figure 2. Schematic illustration of the direct-product ground state (4.3) of the spin-s XY Z
ferromagnet HXY Z with Jx ≥ Jy ≥ Jz ≥ 0 in a magnetic field of magnitude h = hN parallel to
the z-axis.

After having established this solution, we may ask: Under what conditions are the ferromagnetic
spin wave states

|q̃〉 = S−q |G̃〉, S−q = N−1/2
N∑
l=1

e−iqlS−l (4.10)

also eigenstates ofHXY Z? The condition is that the second term on the right-hand side of the
following equation vanishes:[

H̃XY Z , S
−
q

]
|G̃〉 = ωSW (q)S−q |G̃〉

+
1
2

√
(Jx − Jy)(Jy − Jz)(1 + e−iq)N−1/2

∑
l

e−iqlS−l S
−
l+1|G̃〉, (4.11)

where ωSW (q) = 2s(Jx − Jy cos q) is the dispersion predicted by linear spin-wave theory. Hence,
linear spin waves are eigenstates of HXY Z if one of the following three conditions is satisfied [13]:

(i) Jx = Jy; arbitrary q and s

(ii) q = π; arbitrary Jx, Jy, Jz, and s

(iii) s→∞; arbitrary Jx, Jy, Jz, and q.

Only under these additional conditions do the T = 0 dynamic structure factors of HXY Z have zero
linewidth. In all other cases, they have a nontrivial structure in spite of the very special ground-
state wave function. Nevertheless, one can prove that in the presence of a product ground state
|G〉 the following linear relations between the dynamic structure factors Sµµ(q, ω), µ = x, y, z of
HXY Z at T = 0 are satisfied [13]:

Sxx(q, ω) = Syy(q, ω) cos2 ϑ+ 4π2s2 sin2 ϑ δ(ω)δ(q)

Szz(q, ω) = Syy(q, ω) sin2 ϑ+ 4π2s2 cos2 ϑ δ(ω)δ(q (4.12)

with ϑ from (4,6).
In search of cases for which the nontrivial structure of the quantities Sµµ(q, ω) for the spin-s

model HXY Z with FM ground state |G〉 or for the spin-s model H̃XY Z with FM ground state |G̃〉
can be determined exactly, we now focus the analysis onto the s = 1/2 anisotropic XY model
Jx = 1 + γ, Jy = 1 − γ, Jz = 0) at h = hN =

√
1− γ2. For this case we can take advantage of

the fact that the function Szz(q, ω) is expressible in terms of a 2-particle Green’s function for free
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fermions and is thus readily evaluated. The exact result reads [12]

Szz(q, ω) = π2 1− γ
1 + γ

δ(ω)δ(q)

+
γ2

1− γ2

√
4(1− γ2) cos2(q/2)− (ω − 2)2[
ω − 2 sin2(q/2)

]2 + γ2 sin2 q
Θ
[
4(1− γ2) cos2(q/2)− (ω − 2)2

]
(4.13)

and is plotted in Fig. 3. It is nonzero for values of (q, ω) within the range of the two-fermion
spectrum |ω − 2| < cos(q/2) and is strikingly different from the δ-function predicted by linear
spin-wave theory,

S(SW )
zz (q, ω) =

πγ

1 + γ
δ
(
ω − ωSW (q)

)
, ωSW (q) = (1 + γ)− (1− γ) cos q (4.14)

despite the fact that the ground state |G〉 is fully ferromagnetically ordered. In fact, the spin-
wave dispersion ωSW (q) differs considerably from the peak frequency of the exact result (4.13)
except for q = π. It is noteworthy that the two functions Sxx(q, ω) and Syy(q, ω), which in general
have a much more complicated structure than the function Szz(q, ω), differ from Szz(q, ω) for this
particular situation only by an overall γ-dependent factor as a result of the relations (4.12). This
simplification is not at all evident in the fermion representation.

Figure 3. Dynamic structure factors Szz(q, ω) as a function of frequency at wave numbers
q = nπ/10, n = 0, 1, . . . , 9 for the 1D s = 1/2 anisotropic XY model (3.1) at T = 0 and
h = hN =

p
1− γ2, γ = 1/2. Not shown is the δ-function contribution at q = ω = 0, which

represents the saturated ferromagnetic long-range order in the system.

Even though the exact result (4.13) is not readily generalizable to models with spin s > 1/2,
it can be shown by means of exact sum rules in the form of frequency moments [12] that the

8
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linewidth of the dynamic structure factors Sµµ(q, ω)), which is appreciable for s = 1/2 (see Fig. 3),
goes to zero gradually in the limit s→∞. These exact and explicit results thus demonstrate that
even in the presence of a fully ordered FM ground state, the dynamic structure factors Sµµ(q, ω))
can exhibit a nontrivial ω-dependence and invalidate the spin-wave analysis seriously. Since this
appreciable complexity of Sµµ(q, ω)) cannot be attributed to the presence of strong (quantum or
thermal) fluctuations in this 1D model, there is no a priori reason to assume that similar effects
should be less pronounced in 2D and 3D magnetic systems.

5. Dynamics of a Quantum Spin Chain at a Tc = 0 Critical Point

Here I would like to highlight some exact results for the two-spin correlation functions

Ξn(t) ≡ 4〈Sξl (t)Sξl+n〉, ξ = x, y, z (5.1)

and their frequency-dependent Fourier transforms

Φξξn (ω) =
∫ +∞

−∞
dt eiωt〈Sξl (t)Sξl+n〉 (5.2)

for the two cases (a) h = γ = 1 and (b) h = γ = 0 of the 1D s = 1/2 anisotropic XY model (3.1)
at T = 0, representing the transverse Ising (TI) model at the critical field and the isotropic XY
model in zero field, respectively. These two cases correspond to situation (ii) as specified at the
beginning of Sect. 3.

The correlation function Zn(t) can be expressed quite generally in terms of a 2-particle Green’s
function for free fermions [19, 20]. Hence this function does not show any increase in complexity
for situation (ii) with respect to situation (i) described in Sect. 4. This is not the case, however,
for the correlation functions Xn(t) and Yn(t), which are expressible, generally, in terms of infinite
block Töplitz determinants [21] and thus have, in general, a much more complicated structure than
in situation (i).

For the two cases of interest here they are [22]

[
Xn(t)TI

]4 = lim
N→∞

∣∣∣∣∣∣∣∣∣
a0 a−1 · · · a−N
a1 a0 · · · a−N+1

...
... · · ·

...
aN aN−1 · · · a0

∣∣∣∣∣∣∣∣∣ (5.3)

al =
1

2π

∫ 2π

0

dϑ e−ilϑ

[
tanh(β sinϑ) e2inϑ−2it sinϑ

[
1 + tanh(β sinϑ)

]
−e−2inϑ+2it sinϑ

[
1− tanh(β sinϑ)

]
tanh(β sinϑ)

]
Yn(t)TI = − d2

dt2
Xn(t)TI (5.4)

Xn(t)XY = Yn(t)XY =


[
Xn/2(t/2)TI

]2
, n even

X(n−1)/2(t/2)TIX(n+1)/2(t/2)TI , n odd
(5.5)

where β = 1/kBT .
It was a major accomplishment in quantum spin dynamics to transform expression (5.3) for

T = 0 into the form [22]

Xn(t)TI = Xn(0)TI exp
(
−1

2
t2 +

∫ 2t

0

dt′
σn(it′)
t′

)
, (5.6)

where Xn(t)TI is the known equal-time correlation function and σn(z) satisfies the nonlinear ordi-
nary differential equation (ODE)(

zσ′′n
)2 + 4

[
zσ′n − σn − n2

][
zσ′n − σn +

(
σ′n
)2] = 0 (5.7)

9
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for specific initial conditions. The analysis of this solution has revealed a degree of complexity in
the structure of time-dependent correlation functions Ξn(t)TI and Ξn(t)XY , ξ = x, y, z not pre-
viously observed in quantum spin systems. It is well documented in Refs. [22, 23]. However, the
most important features of these functions are best visualized in their frequency-dependent Fourier
transforms, which have been determined by high-precision numerical calculations combined with
an exact analysis of their singularity structure [23]. The T = 0 frequency-dependent autocorrela-
tion functions Φξξ0 (ω)TI and Φξξ0 (ω)XY , ξ = x, y, z are shown in Figs. 4 and 5, respectively. The
characteristic properties of these functions, which are likely to reflect many generic features of the
dynamical properties of integrable quantum many-body systems, may be summarized as follows:

Figure 4. Frequency-dependent autocorrelation functions Φxx
0 (ω)TI (solid line), Φyy

0 (ω)TI

(dashed line), and Φzz
0 (ω)TI (dot-dashed line) for the 1D s = 1/2 transverse Ising model at

the critical field and T = 0.

Figure 5. Frequency-dependent autocorrelation functions Φxx
0 (ω)XY = Φyy

0 (ω)XY (solid line)
and Φzz

0 (ω)XY (dashed line) for the 1D s = 1/2 XY model in zero field and at T = 0.

(i) The functions Φxx0 (ω)TI , Φyy0 (ω)TI = ω2Φxx0 (ω)TI and Φxx0 (ω)XY = Φyy0 (ω)XY have nonzero
spectral weight for arbitrarily high frequencies, whereas the functions Φzz0 (ω)TI and Φzz0 (ω)XY are
of compact support.

10
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(ii) The function Φxx0 (ω)TI has an infinite set of singularities at frequencies ω = 2m, m =
0, 1, 2, . . . of the form [23]:

Φxx0 (ω)(m)
TI ∼

1
2
AmΓ

(
3
4
− 1

2
m2

)
|ω − 2m|ν

(T I)
m

{
1
2
[
1− (−1)m

]
Θ(2m− ω) + 2−1/2Θ(ω − 2m)

}
(5.8)

where
Am = Ā(2π)−m/22−m

2/2am, Ā = 21/12 exp
(
3ζ ′(−1)

)
,

ν
(TI)
m = m2/2−3/4, ζ(z) is the Riemann zeta function, and the coefficients am are positive rational
numbers. These power-law singularities are one-sided for even m and two-sided for odd m. Only
the first two singularities (m = 0, 1) are divergent: ∼ ω−3/4Θ(ω) at ω ' 0 and |ω − 2|−1/4[Θ(2 −
ω) + 2−1/2Θ(ω − 2)] at ω ' 2. In the function Φyy0 (ω)TI the divergence at ω = 0 is suppressed by
the factor ω2 which relates it to Φxx0 (ω)TI . Note that only 3 (nondivergent) singularities occur in
Φzz0 (ω)TI , which is identically zero for ω ≥ 4.

(iii) Similarly, the functions Φxx0 (ω)XY = Φyy0 (ω)XY are characterized by an infinite set of
singularities at frequenciesω = m, m = 0, 1, 2, . . . These singularities are alternatingly one-sided
power-type (m even) and two-sided power-type with logarithmic corrections (m odd) [23]:

Φxx0 (ω)(m)
XY ∼

 1
2BmΓ

(
1
2 −

1
4m

2
)

(ω −m)ν
(XY )
m Θ(ω −m), even m

− 1
2Bm

{[
1
4 (m2 − 1)

]
!
}−1 |ω −m|ν(XY )

m ln |ω −m|, odd m
(5.9)

where Bm = Ā2
√

2(2π)−m/2bm, ν(XY )
m = 1

4 (m2− 2) for even m and ν(XY )
m = 1

4 (m2− 1) for odd m;
the coefficients bm are positive rational numbers. In particular, the singularities visible in Fig. 5 are
the two divergences ∼ ω−1/2Θ(ω) at ω = 0, ∼ ln |ω−1| at ω = 1, and the cusp ∼ (ω−2)1/2Θ(ω−2)
at ω = 2. The function Φzz0 (ω)XY again has only 3 singularities and vanishes for ω > 2.

(iv) The regular patterns of singularities in Φxx0 (ω)TI and Φxx0 (ω)XY are attributable to the fact
that the excitation spectrum of these functions can be decomposed (in the fermion representation)
into sets of m-particle excitations with energies

εm(k1, k2, . . . , km) =
m∑
l=1

|ωki |, q =
m∑
l=1

ki (5.10)

for arbitrarily large m, whose densities of states have van Hove singularities at exactly the fre-
quencies ω = 2m (TI) or ω = m (XY ), m = 0, 1, 2, . . . This illustrates the fact that the functions
Φxx0 (ω)TI and Φxx0 (ω)XY couple to the m-particle spectrum for arbitrarily large m in contrast to
the functions Φzz0 (ω)TI and Φzz0 (ω)XY which couple only to the 2-particle excitations characterized
by just 3 van Hove singularities [21, 23]. It is important to point out in this context that the exact
nature (exponent, amplitude) of the singularities as they appear in these functions is governed, in
general, by the effects of matrix elements and not by the densities of states alone.

(v) On the intervals between the singularities, the autocorrelation functions of both the TI and
the XY models are convex functions of ω: (d2/dω2)Φµµ0 (ω) > 0, µ = x, y, z. Hence these functions
have no smooth maxima; all maxima occur at points of nonanalyticity. Even though the functions
Φxx0 (ω)TI and Φxx0 (ω)XY have spectral weight at arbitrarily high frequencies, they approach zero
at least as rapidly as ∼ exp(−aω2) for ω →∞, where a is a positive constant [23].

(vi) The Luttinger model is understood to represent a continuum version of the 1D s = 1/2
XXZ model, which contains the isotropicXY model as a special case, namely that of free fermions.
The calculation of the function Φxx0 (ω)XY for the Luttinger model [7] yields the correct exponents
for the leading and next-leading singularities at ω = 0 as given in (5.9). However, it fails to
reproduce any of the nonanalyticities at ω > 0. This is not surprising in view of the fact that these
singularities are intrinsic features of the discrete quantum spin system and cannot be accounted
for by a continuum analysis.

(vii) It is interesting to note that the correlation functions Φxx0 (ω)XY and Φyy0 (ω)XY can, in fact,
also be expressed in terms of 2-particle Green’s functions, but for interacting fermions as opposed to
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noninteracting fermions in the case of Φzz0 (ω)XY . This representation is obtained simply by means
of a coordinate transformation in spin space preceding the Jordan-Wigner transformation. The
coupling of the functions Φxx0 and Φyy0 to the m-particle excitations for m > 2 and arbitrarily large
can then be understood as being caused by the infinite hierarchy of m-particle Green’s functions
generated in the equation of motion for the 2-particle Green’s function by the interaction term of
the fermion Hamiltonian.

6. Effects of Nonintegrability and Quantum Chaos

Notwithstanding the high degree of complexity observable in the dynamical properties of quan-
tum spin chains as demonstrated by exact results in the preceding two sections, we have to bear
in mind that this type of rigorous analysis is strictly limited to integrable models. In studying the
dynamical properties of quantum spin models which are intrinsically nonintegrable (as the majority
of realistic models probably are), it would be naive not to be prepared for the encounter of new
levels of complexity.

It is well known that the role of integrability is quite striking in the behavior of classical dy-
namical systems. The dynamical properties of integrable systems are observed to undergo dramatic
changes if subjected to nonintegrable perturbations, producing qualitatively new phenomena. These
phenomena are manifestations of deterministic chaos and have been the object of extensive stud-
ies [24]. This raises a question of considerable interest: What are the implications of integrability
and nonintegrability for quantum many-body systems in general and for quantum spin chains in
particular, and how are these implications related to the important and still unresolved issue of
quantum chaos? A recent study of the nature of quantum chaos [25] in spin systems has put the
concepts of integrability for classical and quantum spin systems into perspective and has outlined
the similarities and differences between effects of nonintegrability in the two cases (see also Ref.
26). The focus of the following remarks are nonintegrability effects in quantum spin chains and
their interpretation as manifestations of quantum chaos.

Chaotic phenomena in quantum many-body systems are expected to be most dramatically ap-
parent in dynamical correlation functions. Hence, one might wish to study primarily the dynamical
properties of quantum spin chains. The problem is that dynamical properties of such systems are,
in general, highly nontrivial and therefore difficult to analyze even for integrable models. This
makes it very difficult to identify nonintegrability effects there. Nevertheless, a scrutinizing study
of the dynamical properties of integrable quantum many-body systems is likely to provide the clue
for specific characteristic features which result as a consequence of integrability and whose absence
amounts to the relaxation of certain constraints. This strategy has been very successful in the
study of classical Hamiltonian chaos: the foliation of the entire phase space by invariant tori is a
consequence of integrability, and the presence of chaotic trajectories implies that this pattern is at
least partially destroyed [24, 26].

A property of dynamic correlation functions for infinite quantum spin systems which is likely
to be very sensitive to the integrability and nonintegrability of the underlying model is the gen-
eral structure of the excitation spectrum. Characteristic for all quantum spin models which are
integrable in the thermodynamic limit, by means of the Bethe ansatz or related techniques, is
that the entire excitation spectrum is composed of multiparameter continua, i.e. structures with
well-defined boundaries, which give rise to power-law or logarithmic van Hove singularities in the
corresponding densities of states. These singularities are bound to make their appearance also in
dynamical properties, specifically in frequency-dependent correlation functions for pure quantum
states,

Φµµn (ω) =
∫ +∞

−∞
dt eiωt〈ψ|eiHtSµl e−iHtSµl+n|ψ〉. (6.1)

If this is the case, they impose the constraint that the corresponding time-dependent correlation
functions 〈ψ|Sµl (t)Sµl+n|ψ〉 cannot decay faster than by powers of t asymptotically for t→∞.

This peculiar property is very well documented for the case of the 1D s = 1/2 anisotropic
XY model (3.1) some of whose T = 0 dynamical properties have been discussed in Secs. 4 and
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5. For this model, it was shown that the zero-temperature time-dependent two-spin correlation
functions 〈Sµl (t)Sµl+n〉 decay (for fixed n) by powers of t to their long-time asymptotic values
irrespective of whether the corresponding equal-time correlation functions 〈Sµl S

µ
l+n〉 decay to their

long-distance (n→∞) asymptotic values exponentially or algebraically [21]. In fact, the constraint
that time-dependent two-spin correlation functions for pure quantum states 〈ψ|Sµl (t)Sµl+n|ψ〉 do
not decay faster than algebraically to their long-time asymptotic values appears to be a universal
feature of integrable quantum spin systems in the thermodynamic limit, in consequence of the
property that the entire excitation continuum of such systems has a multi-parameter continuum
structure. This constraint is paralleled in integrable classical dynamical systems with N degrees
of freedom by the universal property that each individual phase-space trajectory is confined to an
N -dimensional hypersurface, in consequence of the complete foliation of the 2N -dimensional phase
space by invariant tori. In both cases the constraint is the result of the existence of a sufficient
number of conservation laws.

These observations on integrable quantum spin models strongly suggest that a characteristic
property of nonintegrable quantum spin models might be that there exist pure quantum states |ψ〉
for which the time-dependent correlation functions 〈ψ|Sµl (t)Sµl+n|ψ〉 decay more rapidly to their
asymptotic values than by powers of t [25]. Incidentally, exponentially decaying time-correlation
functions are characteristic for special classes of nonintegrable classical dynamical systems with
few degrees of freedom [27].

One immediate and far-reaching consequence of rapidly decaying spin correlation functions
〈ψ|Sµl (t)Sµl+n|ψ〉 would be the presence of excitations with unusual spectral properties. Nonin-
tegrable quantum spin systems would then possess two types of spectrum, the regular and the
irregular spectrum. Again, this is paralleled by the occurrence of two types of spectrum in classical
dynamical systems: the discrete spectrum of regular trajectories and the continuous spectrum of
chaotic trajectories. In quantum spin systems, the regular part of the spectrum consists of multi-
parameter continua, and is characterized by the property that for an increasing number N of spins,
individual excitations belonging to a particular continuum close up as 1/N in (q, ω)-space to an
increasingly regular pattern. Hence it is the regular multi-parameter continuum structure of the
spectrum rather than its discreteness which is the hallmark of a quantum invariant torus. The
irregular part of the spectrum consists of excitations which do not form regular patterns. The
absence of individual branches or continua with well-defined boundaries, which would invariably
lead to van Hove singularities, must be the result of strong level repulsion, attributable to the
nonexistence of a sufficient number of conservation laws (expressible in terms of a complete set
of quantum numbers). It is highly suggestive to view in the irregular spectrum a manifestation of
quantum chaos [25].

Naturally, the study of quantum chaos as portrayed in this paper is limited for the most part
to the study of its precursors in finite-N systems of nonintegrable quantum many-body models.
Nonintegrability effects in quantum spin chains of finite size (finite N) are expected to make their
appearance in the form of an intensifying level turbulence for increasing N, which would manifest
itself, for example, in the form of changes in trend in 1/N extrapolations, in the failure of expected
scaling behavior, and in the presence of unusual classes of excitations. In integrable quantum spin
models, the characteristic excitation pattern of the infinite system is apparent even in relatively
short chains. This is generally not the case in nonintegrable models. Here, finite-chain data tend
to confront the researcher with puzzling ambiguity.

Consider once again the integrable s = 1/2 XY model (3.1) with h = γ = 0. The addition of
a Zeeman term −hx

∑
l S

x
l reflecting the presence of a magnetic field along the x-axis makes the

model nonintegrable. The susceptibility χxx(q) at T = 0 and hx = 0 thus represents the linear
response of the system to a perturbation which renders it nonintegrable. Therefore, any direct
determination of χxx(q) faces the unfamiliar pitfalls of nonintegrability and cannot be carried out
rigorously. However, there is an indirect way to determine this susceptibility exactly: in terms of
time-dependent correlation functions of the unperturbed (integrable) model via Kubo’s formula
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[28]:

χxx(q) =
1
2

+∞∑
n=−∞

eiqn

∫ β/2

0

dτ〈Sxl (−iτ)Sxl+n〉. (6.2)

For T = 0 β → ∞), the time-dependent correlation functions entering this expression are
exactly the ones portrayed in Sect. 5 except for the difference that the analysis has to be carried
out for negative imaginary times. By this method, χxx(q) was determined with very high precision
[28]. Here we quote the value for q = π:

Jχxx(π) = 0.075566± 0.000005. (6.3)

In the present context, it is most instructive to compare this exact result with the results of
two numerical methods which have been employed to calculate χxx(π) by the direct approach,
which is susceptible to nonintegrability effects. One method [29] was a T = 0 Padé analysis of
exact results for χ(N)

xx (q) for finite chains with up to N = 10 spins, which yielded the extrapolated
value χxx(π) ' 0.055. An alternative method [30] based on extrapolations of T > 0 calculations
of χ(N)

xx (q) for N = 2, . . . , 10 yielded the very different value χ(∞)
xx (π) ' 0.117. The unreliability of

these numerical methods is unprecedented in its extent and most puzzling in the light of previous
studies of the same nature on integrable models.

Finally, consider the 1D s = 1 generalized bilinear- biquadratic model

H = J

N∑
l=1

[
cos Θ Sl · Sl+1 + sin Θ

(
Sl · Sl+1

)2]
, −π/2 ≤ Θ ≤ π/2. (6.4)

This model is believed to be nonintegrable except forthe two cases Θ = −π/2 and Θ = π/2, which
are amenable to the Bethe ansatz [31].

For the regime −π/2 ≤ Θ ≤ −π/4, Affleck’s [32] calculation based on techniques of conformal
invariance predicted the presence of an excitation gap which goes to zero continuously in the limit
Θ = −π/2. This prediction was examined and confirmed by finite-chain studies, which all indicated
for Θ 6= −π/4 the existence of a gap between the singlet ground state and the lowest triplet
excitation [33, 34]. However, more detailed finite-size studies [35] have subsequently revealed the
presence of singlet excitations which extrapolate to zero over the entire regime −π/2 ≤ Θ ≤ −π/4,
even though they are not the lowest excitations in finite-chains of manageable lengths over at least
part of the regime −π/2 ≤ Θ ≤ −π/4. Here we have a situation in which not even the nature
of the lowest excitations can reliably be identified unless the spectrum is scrutinized in detail
and for relatively large systems [36]. This makes finite-size studies very vulnerable to misleading
conclusions if care is not taken. No such phenomenon has ever been observed in exactly solved
models.

A similar phenomenon seems to make its appearance in the limit Θ = 0 of this model, which
represents the spin-1 Heisenberg AFM (2.3). The excitation gap of this model, first predicted
by Haldane [1] on the basis of continuum models, was investigated by finite-chain studies. These
studies [37] have produced reasonable evidence that there is indeed a gap of size ∆E/J ' 0.41
between the singlet ground state (with wave number k = 0) and the lowest finite-chain excitation,
which is a triplet state with k = π. Again, a closer look at the excitation spectrum reveals an
unusual class of states to become prominent for N ≥ 12 [38]. The lowest member of this class is
a triplet state withk = π − 2π/N , and extrapolates significantly below the value of the excitation
gap ∆E quoted above. A peculiarity of these states is that they do not seem to be members of
excitation continua. Nevertheless, they have the potential for upsetting the accepted phase diagram
and, therefore, should receive further investigation [36, 38]. Again, there is no precedent for this
phenomenon in exactly solved models.
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