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Quantum effects in spin dynamics of one dimensional

systems
H. Beck® and M. W. Puga®

Institute of Physics, University of Neuchdtel, CH-2000 Neuchdtel, Switzerland

G. Miler®

Institute for Theoretical Physics, University of Basel, CH-4056 Basel, Switzerland

We present a review of recent results concerning dynamical spin correlation functions of quantum spin chains
with nearest neighbor exchange interactions. Zero and finite temperature results, as well as the influence of a
magnetic field are discussed for s = 1/2, with special emphasis on quantum effects which can be observed
experimentally. We also investigate the dependence on spin quantum number between extreme quantum

{s = 1/2) and classical {s = <) systems.

PACS numbers: 75.10.Jm, 75.30.Et, 76.60.Es

1. INTRODUCTION

Our intuitive picture of spin dynamics is usually
based on a ground state arrangement of some classical
unit vectors and oscillations around this configura-
tion. Spin wave theory is indeed successful for
describing the low T properties of 3-d ordered magnets.
Spin dynamical theories in 1-d have for a long time
relied on the same classical approach {1]. For a
classical system the T = 0 dynamics is usually governed
by sharp spin wave excitations [2] as for d = 3. At
finite T computer simulations of the spin dynamics are
available [3].

On the other hand there is now plenty of evidence
- experimental and theoretical - that quantum effects
are important at low T, causing qualitative differences
between classical and quantum spin chains. Evidently
these effects are most important for s = 3. Fortuna-
tely enough, this extreme guantum case is also the one
which is amenable to variocus snalytic and numerical
approaches, which have shed considerable light on the
low T dynamics in the past few years. This is a grati-~
fying success, although rigorous solutions are still
only available in rare special instances. Much less
has been done in the wide domain 3 < s £ =,

We consider the Hamiltonian

N

H=J ] ((1+y)sg(2)8¢(2 +1) + (1-y)8y(2)8y(2 +1) +
=1

+85,(2)8,(2+1) - nS,{2)} (1)

of the so-called "XYZ-chain" of N spins at sites £ and
periodic boundary conditions. Many quasi 1-d magnets
can be described by (1) in the T-range where interchain
coupling is weak [1]. CPC and the copper salts
CuS0y - 5H,0 etc. are examples for s = 3, y = 0, A = 1
(isotropic Heisenberg antiferromagnet, HBAF), whereas
CoCsCly has s = 3, y = 0, 4 = 10,

The dynamical properties of such systems are best
characterized by spin correlation functions of the type

6 (q,0) = E eiat Idt elut <8,(2,t)8,.(0,0)> . (2)

They can be measured by two experimental techniques :
(i) 1Inelastic neutron scattering produces G,(q,w) or
combinations for various spin components r [1]
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(ii) The "spin-lattice relaxation time" T; of NMR
signals is determined by the autocorrelation
functions

op(w) = Jdt elvt < (0,t)5,(00)> = %Z Gela,w)  (3)
q

for w ~ O.

The main methods to investigate 1-d spin dynamics
are :

(i) Semiclassical expansions in 1/s, based on the
Holstein-Primakoff transformation [U4]

(ii) Fermion representation of s = 3 spin chains [5]
and application of techniques in the framework of
Iuttinger's approximation to interacting Fermion
chains [6,7]

(iii) Bethe ansatz techniques for evsluating eigen-
values of (1) for y = 0 [8-11]

(iv) Numerical diagonalization of (1) for finite
chains (N £ 10), yielding eigenvalues E; and
eigenstates |A>, which allows us to represent G,
as

6olaw) = 2 T B als (@ sler s, -5, ()
AT

We now present various recent results concerning
1-d quantum spin dynamics. Except for the few cases,
where exact results can be found, the strategy is to
combine the above mentioned methods in order to obtain
as complete as possible a description of the behavior
of G, and ¢,.
2. VARIOUS RESULTS

We mainly concentrate on "isotropic chains" (y=0),
for which the Bethe ansatz technique is devised and the
rotational invariance with respect to the z-axis sim-
plifies the classification of the eigenstates. We
discuss various domains of the parameters A, h, T
separately.

(a) h=0,T=0(y =0)

s =3, 0548 <1 : Inthis range we find the isotropic
X¥-chain (4 = 0), for which G, can be evaluated exactly,
and the HBAF (A = 1). For the latter we have previous—
1y presented the spin wave continuum (SWC) approxima-
tion to G, and its implications for variocus static
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quantities [12,13]. Here we generalize this approach
to the full range O ¢ A ¢ 1. Finite chain work has
shown that, at T = O, the most important excited states
IA'> coupling to the ground state form continua (in the
limit N + =) of the form shown in Fig. 1 for G, and Gy,
extending between boundaries e£1(q) and e;{q). States
above g, contribute much less to the T = Q dynamics.

In the Bethe formalism e, and g, and the density of
states can be calculated. However, the matrix elements
in (4) are only known for small N. In order to find
the frequency dependence of Gp between €; and e, we
make use of the relation between 1-d guantum spin
‘chains and the 2-d Baxter model [14], which allows the
identification of critical Baxter exponents with expo-
nents governing the frequency-wave vector behavior of
1-d spin correlation functions [6]. We postulate the
following forms :

G, (q,w) =

= a(a)a(wey(a))0len(q)w) - (w2-e2(a) Y (ed(q)-0)? (5)
Gyla.w) =

= B(a)o(w-e;(a))e(es (a)-u) + (w2-e2(q))B(e3(q)-u)B?

+ C(A)O(w—el(q))O(Ez(q)-w)(wz-E%(q))"’(Eﬁ(q)—m)"‘% (6)

Here
(a)
0€Aac1
1 ]
> rr ’—4
o
Y &lq)
w
(A ) \\
\
b)
040K 1
g g T |

ENERGY —
— N\

7
£fa) §N

. |
0 ; L7 T
WAVE NUMBER —

Fig. 1 Spin wave continua contributing to G,(q,w) (a)
and G,(q,w) (b) at T = 0. The boundaries €1,
€2, € are those of equ's. (5) and (6).
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in@ _. _nJsin8@ _. g
91(0_) = "JZ;H sing , €g(a) = 9 sing,
EZ(Q)=E—E’$}—G‘cos%—, cos® =A.

The form of the exponents
=82 o2
a=(n/2-0)/(n-8), B=1/2+8/2m, v=9 /(2ne-2n2) (T)
is suggested by ref. 6. Specisl values are

A=0: a=0, B=3/4, v=-1/4

A=1: a=1/2, g8=1/2, v=0,

The unknown constants A, B, C can be determined by the
sum rule relating the first moment of G, to static
correlation functions [15], which can be evaluated by
the Hellman-Feynman theorem since the A-dependence of
the ground stete energy is known.

The consequences of (5) and (6) arebest seen in
Fig. 2 and 3, presenting the line shapes for G, and Gy,
respectively. In the limit A = 1 (Gy = G,) we recover
our previous result : there is a peak at the lower
boundary (the des Cloizeaux-Pearson frequencies [10])
and for q $ T the spectrum has a considerable tail
towards the higher boundary. This is an intrinsic
quantum effect due to the presence of a whole continuum
of spin waves. At A = 0, G, agrees with exact results
[(16,17]. For intermediate A, G, has two pesks, one at
each boundary. This remarkable feature should be best
visible in the neutron spectra of & material with
4 = 0.5. In Gy the first part of (6), diverging at
the lower boundary, is dominant for q < m. However,
for small q both SWC contribute, yielding again two
peaks, which should be best observable for small A {due
to the A-dependence of B and C).

The corresponding static correlation functions
I,(q) give the integrated neutron intensities. I,
vanishes for q + 0 end is finite for all q for & < 1,
whereas at A = 1 there is a logarithmic divergence for
q + 7. As previously discussed [13] this differs from
the classiecal (7-q)~! behavior and fits experiments
quite well. I, goes like (n-q)1"2B for A < 1. At
A = 0 the corresponding large R decay of Sy—correlations
turns out to be [18)

Ie(R) = 0.1470 (-1)B/RL/2 & ... , (8)

in remarkable agreement with the exact result [19]

I(R) = 0.1471 (-1)R/R1/2 4+ |, (9)
—-A20 —Aaifh| — As12  |—ae34 A=t
32} - -
8
=
S
1.r - -
t
]
\
1
5 A A
3. 1. 2 a

WA —=

Fig. 2 Line shape of G,{q,w) for q= %}

and varying
A.

Magnetism & Magnetic Materials—1980 1999

Downloaded 29 Nov 2007 to 131.128.70.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



Id.-O a2 A=1
! {
3 [
5;2 o 5 - -
E i:
& 5
g :
i
i1+ N = L
H
i
{1
. sl im
T T T 1 r T T T
1 2 3 1 2 3 1 2. 3

Wy —

and varying

(OIE]

Fig. 3 Line shape of Gy(q,w) for q =
A.

The static susceptibility Xp(q) is the w™! moment of
Gp. X, diverges logarithmically at g = n for & = 0,
whereas

Xy(a) = (n—q)~%° for A > 0. (10}
The exact form of Xz(0) is [20]
x;1(0) = Jn(n-6)sin6/6 . {11)

Our result deviates by a few percent only (except near
A = 1, where the deviation grows to about 15%). The
small discrepancy is due to the neglect of states above
the SWC. Near the zone boundary we find X, « (n-q)2k,

lLast, but not least, the autocorrelation functions
¢o(w) can be evaluated. For small w :

o, = W% (a < }) A< (124)

¢, « w128 (g > §) A<l {120)
A

¢x=¢z=;+o(w) A=1 (13)

There is thus s qualitative difference between the
finite limit for & = 1 and the behavior for all

other A, which should have its beerings on NMR experi~
ments at low fields.

It seems worthwhile to compare these results,
which - though not quite rigorous - seem to exhibit the
basic features of quantum spin dynamics, to classical
spin wave theory. There the dispersion relation for
oscilletions around the Néel ground state is

wp(q) =2sI¥{1 T cos q) (1 Acos q) (1)

where the upper (lower) sign is for r = z (r = x), the
spins being assumed to lie parallel to the y-direction
at T = 0. The correlation functions

Gp(a,0) = L.(q)2n 6(u~wu(q)) (15)

are in sharp contrast to the asymmetric line shapes for
s = 3, at least for large q. Moreover wp(q) has a gap
et g=0(r=x)orqg=m(r=2) for 0 < A <1,
whereas for s = 3 there is spectral weight down to w=0
in both cases. It is interesting to note, however,
that for s = } the main spectral weight of G {7,s) and
Gy(0,w) is also at nmon-zero frequencies for 4 < 1,
which leads to an "apparent gap". I, and X, also
behave differently. For example, the classical X, ()
is finite for & < 1 in contrast to (10) for s = 3.
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Fig. 4 Line shape of G,{q,s) for q = %g— and various
s.

Obviously it would be extremely interesting to
know the “interpolating” behavior for s > 3. There are
prominent examples for higher spin quantum numbers
(CsNiF3 has s = 1, TMMC s = g). The success of the SWC
approximation has prompted us to try the following
generalization :

s > 3, A =1 : Finite chain work for s = 1 shows that
the main spectral weight for G, is still concentrated
vetween two boundaries of the same shape (sinq and
sinq/2). Moreover, Mikeska's 1/s expansion [4] yields
a low w behavior consistent with (5) with a=a(s) =
=1-(ng)~1 # ... We thus propose the form (5) for Gy
to be valid for all s; €3, €2, A and o now depending
on 8. This ansatz is in fact compatible with the first
moment sum rule, and letting als) vary between 3(s= %
and 1 (s + ») we can interpolate between the SWC form
established for s = 3 and the classical limit (15) for
We correctly find the classical forms of I, and
X, in the game limit. Fig. 4 shows the line shapes for
s =1, 1, 5. The asymmetry gradually diminishes due
to the changing exponent «. Early neutron data on TMMC
[21) seem indeed to shovw a small asymmetry near g = 7.
Evidently a systematic study of the s-dependence of
experimental data is highly desirable.

The low frequency behavior of ¢r(m) also shows an
interesting variation with s. Our SWC ansatz yields

(16)

s > ®,

¢plw) « w2 (for small w)
Thus, for s = 3, ¢,.(0) is finite, whereas for s > i it
diverges. This, for the first time, sheds some light on
the very different behavior of the NMR relaxation time
T, for TMMC [22] end the copper salts [23). T7' ip
determined by the values ¢p(w ~ 0). Thus for s = 35,
T7! should diverge for T - O, whereas for s = i it
should tend to a finite limit, as the experiments
indeed show.

Finally it is interesting to speculate that the
forms (5), (6) are good approximations to G, in the
full range O £ & s 1 and % < s ¢ =, the various para-
meters like e5(q) etc., then depending on both, A and
s. However, we need more information about the static
guantities in this domain of A and 8, in order to
determine these parameters by the help of the moments

of Gp.

s = 3, A>1 : For this domain (HB-Ising AF) Johnson et
al. [1L] have given explicit formulae for the continuum
boundaries. There is now a gap above the ground state.
The existence of = continuum suggests similar forms as
(5), (6) for Gn.. However, in this case, (5) and (6)
are incompatible with sum rules, so & different ansatz
has to be found. Ishimura and Shiba [24] performed a

Magnetism & Magnetic Materials—1980 2000
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Fig. 5 Continuum of excited states for A >> 1.
details are found in ref. 2k.

More

perturbation calculation starting from the solvable
Tsing limit A = ». Fig. 5 shows their continuum of
states (in agreement with [1L4]), corresponding, in this
case, to moving domain walls between adjacent anti-
ferromagnetic domains. The line shapes are symmetric
for G, and somewhat asymmetric for Gy,. Recent neutron
experiments on CsCoCly [25] clearly demonstrate the
contribution of a continuum to Gy, but they suggest
that the asymmetry is in fact larger than predicted
(24]. 1In fact a spectral distribution of the type (5)
with possible discontinuities or divergences at the
boundaries may be closer to the reality when A is not
too close to the Ising limit.

s =3,-1 5 A <0 : In this domain a SWC and a sequence
of bound state branches are predicted [14]. The first
branch appears at arbitrary small [A[, but the follow-
ing ones successively show up at given values of A.
Finite chain calculations indicate, however, that only
the first bound state branch contributes significantly
to the T = 0 dynamics in addition to the SWC, see Fig.
6. Near the ferromagnetic limit A =-1, the dominant
contribution to G, then comes from this single branch
of bound states. Thus it seems reasonable to combine
(5) with a separate discrete contribution of the form
(15) from the bound states. The exponent for the SWC
can again be found from the Baxter model and Luttinger
model calculations [6,26], but the bound state matrix
elements would have to be evaluated for large N in a
different way (e.g. perturbation theory around A = 0).
In the limit A =-1 {isotropic ferromagnet, FM) the
SWC vanishes, the first bound state branch goes into
the FM spin wave branch and G, has the classical form
(15). In this limit the other bound states do not
contribute to the T = O dynamics. In a similar way Gy
may develop in this A-domain for higher s : the SWC
will gradually lose importance, leading to the limit
(15) with the upper sign of (1L).

(b)) h#0, T=0

For IA] < 1, the surprising fact is that the
lowest excitations in finite field [27,28] follow a
dispersion curve e;(q), qualitatively different from
the classical case : there is a wave vector g* =
= n(1~o(h)) at which €, = 0 (0 = magnetization). This
is perhaps the most mysterious quantum effect : a
totally homogeneous external field imposes upon the
system a special wave vector q*(h) which continuously
runs through the Brillouin zone with varying h. One

2001 J. Appl. Phys., Vol. 52, No. 3, March 1981

-1<A<K0

(2)

()

ENEREY —

| \

0 e 9 T

Fig. 6 Spin wave continuum (1) and branch of bound
states (2) dominating G,(q,w) for A s O.

is therefore prepared to encounter quite complicated
patterns in G.. Exact results for A = 0 [16,1T7]
indeed reveal the existence of two continua contribu-
ting to Gy :

0(e,(q)-w)o(w-e;(a))

G (q,w) = 0cqs
PAN LY (thsinZ(q/Q)—mz)l/Z <qgmo
(am)
= 0(e3(a)-u)0lw-e;(q)) +0(ues(a))] TG <QLT
(472sin2(q/2)-w?)1/2 Sas
with
e1(q) = 2J|sin%cos(%-+no)l
e2(q) = 2Jsin%cos(%-—wg)

es(q) = 2Jsin% » h = sin(mo)

For q < 2n0 one SWC contributes with a divergence at
the upper boundary. For g > 2m0 both SWC contribute.
There is a discontinuity at the “interface" and a
divergence at the upper limit.

For A = 1 we have to rely on finite chains,
exploiting the selection rules concerning the quantum
numbers S and S, of total spin and its z-component
[29]. With increasing h the ground state gradually
moves from 8 = §, = 0 through a sequence of states
|8, 8, = 8> with S = 1,2,.., until at the critical
field he = 2 it is the FM state |X N> Given such a
ground state ]S,S> the following excited states can
occur in (L) :

[s,8>,

Gy : |s+1,8> and since AS, =0, AS=0,1,

Gy : |s+1,8+1>, |s+1,5-1>,|8,8~1>, |8-1,8-1>,
since AS; = 1.

It is again possible to identify in Bethe's formalism
those subclasses of these six sets of states which are
of spin wave character (states of "class C" [8]) and to
calculate the boundaries of these SWC [29]. However,
while for h = 0 class C states gave by far the dominant
contribution to G,, this is gradually less so with in-
creasing field. Therefore a SWC approximation for G,
may be less reliable for h # 0.

Magnetism & Magnetic Materials-1980 2001
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At this stage a novel point of view arises concer-
ning the extrapolation of finite chain results to large
N. Although all the above listed excited states are
allowed by selection rules, the Wigner-Eckart theorem,
providing relations between matrix elements, shows that
some of them are smaller by (No)~! or (No)~2 than
others. The "big" matrix elements cannot increase
without bound for ¥ » ©, due to sum rules, therefore
the "small" ones will vanish in the thermodynamic
limit. This yields "macroscopic” selection rules,
which are more restrictive than those for S and S, used
above and simplify the situation for N » «. In Fig. T
we present the surviving SWC for G, and Gy. Unfortuna-
tely we do not have enough information fromcalculations
in the Fermion picture, such as ref. 6 for h = 0, in
order to write down concrete expressions like (5), (6)
for h # 0, but the following remarks can be made :

Gz : Matrix elements for finite chains suggest a
divergence at the lower boundary of the SWC which
remains for N > « and a discontinuity at e,, the upper
boundary. But we have to bear in mind that even for
moderate fields, states above €, - not of SW type -~
will also appreciably contribute. Note the interesting
fact that the (dashed) upper boundary of the SWC at
h = 0 disappears abruptly at h = O* in the limit N » =.
This vividly demonstrates the critical properties of
the point h = 0, T = 0 in the phase diagram. It also
suggests experiments on systems whose magnetic chains

6iq,w) la)
3.r "\ =014

Wy —

G lq,w) (%)
8. "‘I =021
2
3
2l ¢
B
A
1}
1
Y 2 ¥
q —

Fig. T Spin wave continua in a finite field in the
thermodynamic limit, contributing to G, (a)
and G, (b). For A, B, C see text. The dashed
line in (a) indicates the h = 0 upper SWC
boundary which becomes meaningless at finite
h.

2002 J. Appl. Phys., Vol. 52, No. 3, March 1981

are interrupted by impurities. The finite N segments
of sgch chains may then revesl the existence of those
continua that are suppressed for N > o,

Gy : Two SWC remain in the thermodynamic limit.
We again expect special features (jumps, divergences)
in the spectra at the respective boundaries, occuring
at A, B, C for q = n/2 (Fig. T). Fig. 8 shows neutron
spectra on CPC for two field values. They indeed seem
to exhibit structure in the vicinity of these points.
More experiments should be performed on substances with
lower critical fields, in order to test a wider field
ring? and to see the shift of the zero energy mode at
q with h.

1 1 T
o=(o.o.<l).75) CPC T:16K
300 |- .
72 min H=T0 kG
c) f} i
200 ¢ .
100 A Bf |c .
200} 36min He'35K6
2 b) Al B c
& ol ¥, .348? Y =
10 LTY. T

2 3 4 5
ENERGY {(meV)

Fig. 8 Neutron cross sections on CPC in a field;
a : H=135kG (b =0.105), b : TO kG
(nh = 0.21).

Finite chain data suggest the most important low
frequency contribution to Gy to be at g = n. This
leads to a divergent ¢4(0) at h = he (Fig. 9) in good
agreement with NMR experiments [30]. A Bulaevskii
approximetion to the interacting Fermion chain has
produced a similar behavior [23}.

Another interesting field effect shows up for
A > 1 [31]. 1In this range there is a "lower critical
field" hy, such that the magnetization ¢ is zero for
h < hy [20], and the gap in the excitation spectrum
closes at h;. For h > hy there is again a zero energy
mode at q* = 1{1-¢). This suggests searching for
materials with A 2 1, which would show this behavior
(&4 = 10 for CsCoCly requires too high fields).

(e} 2>0

Besides G, (q,w,T) for A = 0, which is known
exactly [16,17] there are finite chain data and
Luttinger model calculations {26] available for T > O.
Finite chain work has been used to evaluste ¢x(m) and
¢z(m) [30] at various temperatures, see Fig. 9. The
gradual build-up of the divergence at h, is in good
agreement with NMR data for T, on CuSe0 [30], which

clearly demonstrates the usefulness of these numerical
methods at T > 0. In fact many quantities can be
obtained from finite chains more reliably at T > 0 tha
at T = 0, since in general more states contribute,
which diminishes the drawback of dealing with a
discrete spectrum.

As an alternative approach the theory of "finite
temperature excitations", proposed for interacting
Bosons in 14 [32], has been developed for |A|> 1 [33]
and [Al< 1 [34]. This is a generalization to finite T

Magnetism & Magnetic Materials~1980 2002
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of the calculation of low lying excited states, which
led to the lower boundaries of excitations for T = 0
[10,28]. It predicts, for example, that for O < A s 1
there should be zero energy (finite temperature) exci-
tations at a wave vector q*(T) like those at g*(h),
discussed under (b). More specifically, for h >> T,
a*(n,T) - q*(h,0) is expected to vary with T2 to lead-
ing order in T [34]. Unfortunately the relevance of
such "finite T elementary excitations" for dynsmic
correlation functions is not. clear. On the other hand
finite chain analysis [35) suggests that, in some
sense, finite (small) T has a similar effect on the
frequency spectrum of Gp(q,w) as small h, which makes
the existence of a g* depending on h and T plausible.
The importance of low energy contributions to Gy is
also reflected in Xr(q) which strongly weights low
frequencies. Thus, for A = 0 and 1, X,(q,T) - as

a function of T - has a maximum at some qp(T)

(at T = 0, X, diverges at q = n). However, there seems
to be no quantitative agreement between qp(T) and q*(T)
The same holds true for G,(q,w,T) for A = 0, where the
low frequency tail, developing for T > O at q # w,
would seem to reflect the low lying finite T excita-
tions, but there is no obvious quantitative link with
the theoretical prediction for g*(T) {36].

Recently, there has been growing interest in fully
anisotropic chains, without any rotational symmetry in
spin space (symmetry bresking is achieved by v # 0 in
(1) or by a field in an arbitrary direction). The
theoretical analysis has almost exclusively been done
by classical methods. Non-linear equations of motion
in the continuum approximation show, under suitable
circumstances, soliton solutions which give rise to
characteristic features in G,(q,w) [37,38,39]. Various
aspects of statics and dynamics of anisotropic guantum
spin chains (e.g. y # 0, A = 0) are presented in ano—
ther contribution to this conference [40]. One of the
major goals is, of course, to investigate the existence
and the relevance of solitons in a quantum system.

Concluding, we hope to have demonstrated the exis-
tence of striking guantum effects in 1~d spin dynemics.
Some of these have already been unravelled by experi-
ments, but other theoretical predictions hawe yet to be
verified. This certainly calls for the search of new
quasi 1-d meterials with such interaction parameters as
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Fig. 9 Field dependence of $,(0) at vari?us T from
finite chain calculations (h = 2 is the
critical field). The T = O curve results
from our SWC approach.
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to make the observation of various quantum effects fea-
sible. This specially concerns the choice of anisotro-
py (A,vy) and the desire to have systems with comparable
interactions but different spin quantum numbers.

It is a pleasure to thank J.C. Bonner, M. Fowler
and H. Thomas, in collasboration with whom much of the
work reported here has been done.
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