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Comment on Magnetic Cooling of Solid He3 t 
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Yale University, New Haven, Connecticut 06520 

(Received 28 July 1971) 

The possibility of cooling solid He3 by adiabatic magnetization is discussed using the anti­
ferromagnetic nearest-neighbor spin-! Heisenberg linear chain as a reference system. The 
lack of a phase transition is not important in this discussion since the locus of maximum cool­
ing generally lies outside (i.e., is unrelated to) the T-H phase boundary, contrary to previous 
predictions using mean-field and spin-wave theories. Exact calculations on linear chains 
demonstrate a potentially useful degree of equilibrium cooling. The results are in qualitative 
agreement with earlier spin-wave arguments, although the details of the energy spectrum are 
more complicated than is assumed in spin-wave theory. 

The use of adiabatic magnetization to provide a 
possible cooling mechanism for solid He3 was re­
cently discussed by Goldstein1 on the basis of a 
mean-field analysis of an Ising model. Walstedt 
etal. 2 andWolfetal. 3 have since independently dem­
onstrated that no cooling is to be expected in terms 
of a mean-field approach because solid He3 is an 
isotropic Heisenberg spin system, but that a po­
tentially useful cooling effect is predicted using 
spin-wave theory. Although there is some evidence 
that the relaxation times may be very long, 4 the 
equilibrium problem is, nevertheless, of interest 
in its own right, and sufficiently controversial to 
be worthy of further discussion. 

The purpose of this comment is to consider the 
ideas of.Refs. 2 and 3 in the context of the spin-i 
nearest-neighbor antiferromagnetic Heisenberg 
linear chain. At first glance the simplification to 
one dimension might seem to preclude any cooling, 
since there is no phase transition. However, a 
phase transition merely steepens the rate of in­
crease of the entropy isotherms as a function of 
magnetic field in the region of the transition which 
actually occurs at a lower field than the entropy 
maximum, as seen in Fisher's exactly soluble 
model. 5 In particular, when there is a transition, 
the locus of maximum cooling {locus of maximum 

entropy) does not coincide with the T-H phase 
boundary, as calculated by Walstedt et al. using 
spin-wave theory, but lies outside the phase bound­
ary in the paramagnetic region. This was first 
demonstrated experimentally by Schelleng and 
Friedberg6 and later by Reichert et al., 7 and was 
proved by Griffiths using a general thermodynamic 
argument. The general behavior of the T-H isen­
tropes is shown schematically as Fig. 1. 8 [It may 
be noted that the Griffiths proof, as reported by 
Schelleng and Friedberg (Ref. 6), is claimed to be 
valid only when the specific heat CH diverges 
with a critical exponent 0 < a < i and also a= 0 
{logarithmic). However, it seems likely that this 
result still applies when - 1 < a < 0 {finite cusp for 
CH). This range covers the expected behavior of 
most model antiferromagnets, both Ising and Hei­
senberg in type.] 

The principle of the theoretical approach used 
by Walstedt et al. and by Wolf et al. is very simple. 
The thermal properties of antiferromagnets in 
zero field are governed by energy excitations from 
the ground state of the type E{k)= constXsink, or 
E{k)""constxk for small-k wave vectors. An ap­
plied magnetic field close to the critical value de­
presses the {ferromagnetic-type) levels at the top 
of the antiferromagnetic spectrum below the levels 
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FIG. 1. Sketch of isentropes in the T-H plane for 
antiferromagnetic systems which show a phase transition, 
according to thermodynamic arguments of Griffiths. The 
isentropes have a point of inflection as they cross the 
phase boundary and are also tangent to the boundary at the 
crossing point. The locus of maximum cooling (dashed 
curve) lies outside the phase boundary (solid curve) over 
the whole range. However, both loci tend to H=Hc as 
T-0. 

near the antiferromagnetic ground state. The low­
lying energy-dispersion relations then have the 
ferromagnetic form E(k)= constx(l - cask), or 
E(k)""constXk2• 9 Using spin-wave theory the en­
tropy is then estimated to behave as So/N-aTd in 
zero field, where dis the dimensionality of the 
spin lattice, and Sc/N-bTa 12 at the critical field, 
where a and b are spin-wave constants for the 
particular lattice. At low enough temperatures, 
an adiabatic isentropic magnetization process be­
tween zero and the critical field proceeds from an 
initial temperature T 1 to a final temperature T1 , 

and a measure of cooling is given by 

( T 1 - TJ)/T1 = (b/a)21 a Tj1 - 1 "" (b/a) 21d Tj1 , 

(1) 

which becomes very large as T 1 - 0. 
We shall now test these ideas using exact calcu­

lations for finite linear chains. Our rationale for 
this approach is that the spin-i linear chain is well 
known to represent the worst case as regards the 
applicability of spin-wave theory. If the linear 
chain behaves in reasonable accordance with spin­
wave theory, and illustrates the predicted cooling 
principle, there is a strong presumption that two­
and three-dimensional antiferromagnets of simple 
type (including the bee phase of solid He3 ) should 
do likewise. In Fig. 2 we show the entropy func­
tions both along the locus of maximum entropy, 
H = H 8 ( T), and in zero field, and we at once observe 
the features described by Walstedt et al. and Wolf 
et al. This figure represents an extension of ear­
lier work by Bonner and Fisher on the behavior of 
the entropy as a function of field and temperature 
(and also of anisotropy) of one-dimensional nearest-

neighbor spin-i antiferromagnets. 10 Even at rela­
tively high temperatures (where the finite-N calcu­
lations quite accurately define the large N value), 
where corrections to simple spin-wave theory may 
be expected to become important, the entropy near 
H 8 lies above the entropy in zero field. Therefore, 
cooling is theoretically possible by magnetizing 
adiabatically from H = 0 to H = H s. [Note that the 
locus H = H s( T) tends to H c as T- 0 . ] 
It is necessary to discuss the behavior in the 

limit as N becomes very large, however, to verify 
Eq. (1 ). For the zero-field entropy it has already 
been estimated that the limiting curve follows the 
N= 10 curve down to temperatures of about kT/J 
"" 0. 6, but that at lower temperatures the functional 
dependence on temperature is quite different. 11 The 
N = 10 curve goes to zero exponentially, on account 
of the energy gap between the antiferromagnetic 
ground state and first excited states. In the limit 
N - oo this gap disappears, the energy levels closing 
up to form a continuum, and the thermal behavior 
is governed by a power law in temperature. It has 
been estimated11 that the entropy at low tempera­
tures behaves as S0( T)/Nk"" 0. 35 kT/J, where the 
power of T is the same as that given by spin-wave 
theory for one-dimensional systems. The constant, 
however, differs considerably from the constant 
i 1T given by simple spin-wave theory. 12 

For the entropy near H = H 8 ( T) a different and 
rather complicated pattern of convergence with in­
creasing N is observed, which resembles quite 
closely the pattern of convergence for a ferromag­
netic linear chain at zero field. 11 From Fig, 2 it 
appears that for temperatures above kT/J"" 0. 3 
the convergence is monotonic from below and fairly 
rapid, indicating a limiting curve lying appreciably 

s 
N~ 

T 1.5 kT/I 
=a.~ 

FIG. 2. Entropy curves in zero field and along the 
locus of maximum cooling for linear antiferromagnetic 
Heisenberg chains. The solid curves are exact calcu­
lations for chains of length N= 10, 8, and 6, and the 
dashed curves are the corresponding N-oo extrapolations. 
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FIG. 3, Plot of important classes of energy levels for 

the spin--! Heisenberg linear chain, The states are too 
numerous for all to be shown individually. The spectrum 
is shown for the first Brillouin zone 7r"2!k > - 'ff, The 
energy levels displayed are the lowest lying for a given 
k and a given ~ (also for a given total spin S for H = O 
only). 

above the H = 0 limiting curve, thus implying po­
tential cooling. At lower temperatures the con­
vergence is more complex, becoming monotonic 
from above very close to T= 0, where the entropy 
goes to zero with increasing N as N"1 ln2. In the 
case of the ferromagnetic linear chain in zero 
field, the entropy has already been estimated both 
from purely numerical techniques and from a study 
of the spectrum to behave as canst x T112 near 
T= 0. 11 To examine whether the antiferromagnetic 
linear chain near the critical field shows similar 
behavior we now choose to study the spectrum. 

In Figs. 3 and 4 we show the salient features of 
the spectrum of energy levels for H = 0 and H = H 0 , 

respectively, for a linear chain of 10 spins with 
periodic boundary conditions. 13 In Fig. 3 we show 
classes of energy states which are, in general, 
the lowest states in energy as a function of wave 
vector k for a given value of the total z component 
of the spin s• = If.1 Sf (alternatively, of the magne­
tization). These classes of states lie on dispersion 
branches denoted by A, B, C, D, and E, where 
branch A corresponds to s• = tN - 1 ( = 4), branch 

B to sz = 3, branch D to s• = 2, and branch E to s• 
= 1. Since this is an antiferromagnetic represen­
tation the (single) state corresponding to maximum 
s• (S·= 5=N/2) is shown situated at k= Oat the top 
of the spectrum. This state is the ferromagnetic 
ground state. The antiferromagnetic ground state 
corresponds to s• = 0, and occurs at k = rr (or - rr). 
The states near the antiferromagnetic ground state 
(curves D and E) appear to be distributed along 
dispersion curves which have a sink-like dependence 
on k, in accordance with exact results of des 
Cloizeaux and Pearson14 (curve E). Near the ferro­
magnetic limit, the curve A corresponds to a 
single overturned spin on the chain (single-spin­
wave dispersion curve) and obeys the well-known 
dispersion law (energies measured from the ferro­
magnetic ground state) t:( k) = 'lJ (1- cosk). How­
ever, we see from Fig. 3 that other classes of 
states are also low lying. Curves B and B' repre­
sent the upper and lower limits of the two-over­
turned-spin (two-spin-wave) continuum, obeying the 
dispersion relations t: (k) = 4J (1 ± costk) in the limit 
of large N. We observe also a special class of 
states, which may be identified as bound states, ly-

-T'( -TT/2 0 TT/2 n 

E 
J 

-12 

-15 

-20 

FIG. 4. Corresponding plot to Fig, 3, showing the 
energy-level spectrum when H=H0 exactly. Whereas 
in Fig. 3 the complete extent of the spectrum is displayed, 
here we show only the lowest-lying portion. Again we 
show only the levels which lie lowest for a given ~. 
C3 indicates the lowest-lying bound-state dispersion 
curve and the only such curve within the energy range 
of the figure. 
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ing on the set of dispersion curves E:(k) = (2J/r) 
x (1 - cosk), where r= 2, 3, 4, and 5, i.e., bound 
spin complexes of 2, 3, 4, and 5 spins, denoted by 
C; where i=N/2-r=S 8 • It is by no means a priori 
obvious which category of states will dominate the 
low-temperature ferromagnetic properties in zero 
field, and hence we have the well-known result that 
spin-wave theory is of dubious validity for the fer­
romagnetic linear chain. 

Let us now consider the effects of an applied mag­
netic field 13 on the dispersion curves of Fig. 3. The 
sets of states will be depressed in energy by an 
amount proportional to their value of s•. As H ap­
proaches the critical field at zero temperature, Ha, 
branches of ferromagnetic-type states from the top 
of the spectrum will become roughly degenerate in 
energy with branches of antiferromagneticlike states 
from the bottom of the zero-field spectrum. The 
situation will become more complex than in the . 
zero-field case illustrated in Fig. 3, where it is 
apparent that the upper half of the spectrum is fer­
romagnetic in dispersion type while the lower half 
of the spectrum is antiferromagnetic in type. In 
Fig. 4 we show the low-lying portion of the whole 
spectrum at H=Ha exactly. The ground state of the 
system is no longer the zero-field antiferromagnet­
ic ground state but the former ferromagnetic ground 
state, which, at Ha, is degenerate with a single­
spin-wave state at k = ± 11, belonging to branch A. 
However, the first excited state of the system is 
not a branch-A state but a k= 0 state belonging to 
the two-spin-wave continuum bounded by Band B', 
and, generally, one- and two-spin-wave states are 

tResearch supported in part by the National Science 
Foundation under Grant No. GP-21093. 
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interlaced in energy. There is also a fairly low­
lying dispersion branch D which is apparently anti­
ferromagnetic in type: On the other hand, the fam­
ilies of bound states, curves C, now lie quite high 
up the spectrum and are relatively unimportant. 

We therefore draw the following conclusions con­
cerning the validity of spin-wave theory near Ha for 
the linear chain:· (a) Bound states which complicate 
the theory of the zero-field ferromagnetic chain are 
not important; (b) the ground state and the lowest­
lying excited states show a similar distribution to 
the case of the H = 0 ferromagnetic chain, since this 
distribution is materially unaffected by an inversion 
in energy; (c) however, antiferromagnetic-type 
classes of states are degenerate in energy with the 
one- and two-spin-wave continua, unlike the case 
of the zero-field chain. Despite the complication 
(c), it seems that the predictions of spin-wave theo­
ry near Ha should be qualitatively correct, i.e. , 
should yield the correct functional dependence on 
temperature, at least for very low temperatures. 
At higher temperatures, where corrections to spin­
wave theory may be expected to become important, 
the entropy calculations for finite-Nsystems extrap­
olate with increasing accuracy and predict cooling up 
to a temperature kTmu/J"" 1. 28, the temperature of 
the maximum in the zero-field susceptibility. Thus 
the cooling principle is established theoretically for 
antiferromagnetic linear chains. Since the linear 
chain is well known as the worst case for the applic­
ability of spin-wave theory, we therefore agree with 
previous authors that magnetic cooling in solid He3 

may be expected if equilibrium can be achieved. 
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