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ABSTRACT 

 

 Aluminum alloys, such as Al 6061-T6 and Al 7075-T6, are widely used in 

industry due to their high strength to weight ratio and good mechanical properties. The 

corrosion of these alloys, however, is an expensive and critical problem since the 

alloys are susceptible to pitting and crevice corrosion in marine environments. The 

most significant environmental factor, which contributes to the corrosion of these 

alloys, is the chloride ion found in marine environments or water condensed from 

humid air contaminated with soluble chloride salts. 

 Traditionally, chromate based conversion coatings have been used for many 

years for the protection of aluminum alloys. Chromates are efficient corrosion 

inhibitors for aluminum and its alloys in near neutral marine environments containing 

aggressive anions such as chlorides. Although the hexavalent chromium ion, Cr6+, 

may be a superior corrosion inhibitor and used in numerous industrial systems, it is 

environmentally unsafe. Over the past several years, federal agencies, such as the 

Environmental Protection Agency (EPA) and the Department of Defense (DoD), have 

increasingly limited the use of chromium containing compounds due to their toxic and 

carcinogenic effects. In addition, there is a direct economic challenge associated with 

costs for environmental compliance along with increased liability for claims of 

exposure in the workplace with the continued use of chromates. Therefore, there is a 

need to identify new corrosion inhibitors for aluminum alloys. 

 As an alternate conversion coating, a new titanate conversion coating was 

researched and developed for the Al 2024-T3 alloy and was shown to be effective. The 



objective of this research was to determine if the coating process could be applied to 

Al 6061-T6 and Al 7075-T6. The coating process involves immersion of the alloy in a 

titante solution bath, which produces a passive film. The corrosion resistance of coated 

samples has been evaluated using electrochemical impedance spectroscopy (EIS) and 

potentiodynamic electrochemical techniques. Electrochemical testing and energy 

dispersive X-ray analysis indicated that the titanate ion would retard corrosion in a 

similar manner to the chromate ion if fluoride ions (F-) were not present on the surface.  

 A study was also conducted to determine if Al 6061-T6 and Al 7075-T6 were 

easily susceptible to crevice corrosion in a marine environment. The study yielded 

important results regarding protection of the alloy against crevice corrosion by the 

titanate ion. Corrosion was only seen on samples not exposed to the titanate ion. A 

conclusion may be made that titanate coatings appear to be viable alternatives to 

chromate coatings but further investigation will be required in order to determine an 

optimum conversion coating bath, which will produce impedance magnitudes 

comparable to those measured for the Al 2024-T3 alloy. 
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CHAPTER I 
 

INTRODUCTION 
 
1.1 Microstructure of Al 6061-T6 and Al 7075-T6 

 Aluminum (Al), when coupled with small amounts of other materials, is a 

fundamental and beneficial metal used in a wide range of industrial applications due to 

its high specific strength [1]. These alloys are commonly used in marine applications 

where low-density materials, good mechanical properties and improved resistance to 

corrosion are desired [2]. Aluminum alloy 6061-T6 is known for its superior 

mechanical properties, such as high strength to weight ratio, good ductility and good 

corrosion resistance [3]. The composition of this alloy is 1.0% Mg and 0.6% Si and 

lesser amounts of Cu, Mn, Fe and Cr. The balance of the alloy is aluminum. 

Aluminum alloy 7075-T6 is extensively used for structural applications due to its high 

strength/density ratio and reasonable high fracture toughness [4]. The composition of 

this alloy is 5.5% Zn, 2.6% Mg, 1.55% Cu and lesser amounts of Cr, Si, Mn and Fe. 

Once again, the balance of the alloy is aluminum. The “T6” classification indicates 

that the alloy was solution treated and artificially aged [5]. 

 During solidification and thermomechanical processing, heterogeneous 

microstructures are developed to produce a desirable mix of mechanical properties. 

The dominant feature of alloy microstructures is the distribution of second-phase 

particles that contain high concentrations of alloying and impurity elements [6]. These 

particles have electrochemical characteristics that differ from the surrounding alloy 

matrix, making the alloy more susceptible, in general, to localized corrosion.  
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 The predominant second phases present in Al 6061-T6 are Al-Mg-Si particles. 

Mg and Si combine together to form very stable Mg2Si and commercial alloys are 

based on the pseudo binary system of Al-Mg2Si. The predominant second phases 

present in Al 7075-T6 are Zn-Mg-Cu particles, where Zn and Mg merge together to 

form MgZn2.  

 

1.2 Corrosion of Al 6061-T6 and Al 7075-T6 

 Corrosion, in general, can be defined as the “degradation of engineering 

materials by exposure to a wet surface [7].” For corrosion of a metal to take place, 

four conditions need to be satisfied. The first process is an oxidation or anodic reaction.  

The second is a reduction or cathodic reaction and the third is ionic transport for which 

a conductive electrolyte is required, such as water, seawater, or an acidic or basic 

solution. Finally, the fourth process is electron transport between the anode and 

cathode. If one of these processes is not present, corrosion will not occur.  

 If these alloys are left untreated, they will corrode at a rate depending on the 

alloys composition and local environment. Generally, aluminum is resistant to most 

environments due to a layer of oxide film, which forms on the surface and reforms 

rapidly if damaged. However, this film is an insufficient barrier for relatively long-

term corrosion protection. This is because aluminum is able to react both as a base or 

an acid, which means its oxide film is stable in neutral conditions but soluble in acidic 

and alkaline environments. This relationship is expressed by the Pourbaix diagram, 

which shows the relationship between potential and the solution pH. Figure 1-1 is the 



 3 

Pourbaix diagram for aluminum, which indicates the circumstances in which 

aluminum should show corrosion [8].  

 The resistance of aluminum to corrosion depends significantly on its purity and 

microstructure.  Pure aluminum is more resistant than any of its alloys. The 6xxx 

series alloys are susceptible to corrosion but resistance decreases as the copper and 

iron content increase. At copper levels higher than 0.5%, intergranular corrosion can 

occur. Also, when the magnesium and silicon contents in Al 6061 are balanced to 

form only Mg2Si, corrosion is slight, but if the alloy contains silicon in excess of that 

needed to form Mg2Si, susceptibility to corrosion increases. Al 7075, which contains a 

significant amount of copper, is less resistant to corrosion than those of the same series 

that do not contain copper, as well as the 6xxx series.  

 The most common form of aluminum corrosion is pitting, which is a localized 

corrosion form. It has been attributed to the breakdown of the natural passive film on 

the metal. The resistance to pitting corrosion is then determined by the electrochemical 

stability of the protective passive film. The tendency for pitting for a given metal-

electrolyte system is defined by the pitting potential (Ep), which is the potential above 

which pits will initiate and below which they will not [9].  For aluminum, pitting 

corrosion is most commonly produced by halide ions, of which the chloride (Cl-) is the 

most frequently found. The presence of chlorides can create local corrosion potential 

drops between the metal surface and the obstructed region at which the chloride is 

accumulated. Chlorides facilitate the breakdown of the oxide film by forming AlCl3. 

When aluminum ions migrate away from the pits, alumina precipitates as a membrane, 

which further isolates local acidity and pitting of the metal results [8].  
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 Pitting can be separated into two different stages, namely pit initiation and pit 

growth. While the growth mechanism is well understood, the initiation mechanism is 

not very clear. However, pitting has been shown to initiate at constituent particles, 

which are either anodic or cathodic relative to the matrix. Local interactions between 

the particles and the matrix enhance the rate of pit growth.  In Al 7075-T6 samples, 

the constituent particles show significant pitting after being exposed to sodium 

chloride (NaCl) solution.  It can also be seen that pits developed around neighboring 

constituent particles tend to coalesce to form larger pits. Research has been done, 

which presents standard electrode potentials of the strengthening precipitates as well 

as constituent particles. The Mg2Si particles found in Al 6061-T6 and the MgZn2 

particles found in Al 7075-T6 are both significantly anodic. The presence of anodic 

particles implies that they contribute to the overall pitting process after long exposures 

to NaCl [10].  

  Once initiation takes place, pits begin to increase in size. The exposed surface 

outside the growing pit is cathodically protected by the reduction of oxygen to 

hydroxyl ion (OH-) reaction: 

O2 + 2H2O + 4e- ! 4OH- (reduction half cell reaction)      (1) 

As this cathodically protects the region outside the pit, the metal dissolution region 

cannot spread laterally across the surface. In addition, the large cathodic surface can 

maintain this reaction and form a large cathode to small anode ratio, which accelerates 

the anodic reaction. Within the pit, the metal dissolution reaction is taking place. This 

is the anodic reaction of: 

Al ! Al3+ + 3e- (oxidation half cell reaction)         (2)  
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Since it is the only reaction within the pit, an electrical imbalance results again, 

thereby attracting negatively charged ions, usually chloride ions. The autocatalytic 

reaction to form hydrochloric acid in the pit is initiated and continues: 

AlCl3 + 3H2O ! Al(OH)3 + 3HCl         (3) 

Since pitting is an autocatalytic reaction, once it is started, the pH decreases while the 

chloride ion concentration increases inside the pit. The pitting mechanism can be seen 

in Figure 1-2 for both Al 6061 and Al 7075 alloys. 

 One other type of possible corrosion that may be seen on aluminum alloys is 

crevice corrosion. The general conditions include a stagnant solution and a gap 

between two surfaces, one of which is metal. Initially, the usual cathodic (Eqn 1) and 

anodic (Eqn 2) reactions occur over the surface of the metal. However, a restriction 

occurs in the crevice region in which the dissolved oxygen in the crevice cannot easily 

be replaced. Therefore, the region inside the crevice cannot support a cathodic reaction 

but can still support an anodic reaction. Outside the crevice region the cathodic 

reaction proceeds but the anodic reaction ceases.  

 An electrical charge imbalance exists between the high positive charge from 

the metal ions within the crevice and the negative charge outside the crevice. As a 

result, negative ions, such as chloride ions, are attracted into the crevice. Associated 

with the negative chloride ion is the positive hydrogen ion. Both the chloride ion 

concentration and the hydrogen ion concentration increase within the crevice, 

decreasing the pH to acidic conditions, which allows the corrosion rate inside the 

crevice to increase. This mechanism can be seen in Figure 1-3 [11]. 
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1.3 Corrosion Protection of Al 6061-T6 and Al 7075-T6 

 The most significant environmental factor, which contributes to the corrosion 

of these alloys, is the chloride ion found in marine environments or water condensed 

from humid air contaminated with soluble chloride salts [12]. Since long-term 

corrosion resistance is unlikely due to the thin natural oxide film, a finishing process is 

required to reduce corrosion susceptibility. To prevent rapid deterioration, various 

methods, which usually involve several layers of protection on top of the Al substrate, 

have been developed. For example, an artificially thick aluminum oxide (Al2O3) layer 

can be grown, either chemically or electrochemically, directly above the bare alloy. 

This allows for various paints and coatings to be applied to the oxide film.  

 Corrosion resistant coatings prevent corrosion on aluminum alloys by various 

methods, including barrier protection and active corrosion protection as well as 

conversion coatings. Barrier coatings prevent contact of the underlying aluminum 

substrate with the environment. They are either organic or inorganic and work to 

suppress the cathodic reaction and limit the transport of electrons to the metal surface. 

In the active corrosion protection strategy, corrosion inhibitors are used to slow the 

corrosion cell process on aluminum by undergoing reduction at the active corrosion 

sites to form insoluble oxides. This provides a barrier against corrosion by limiting the 

permeability of electrolytes, such as chloride ions.  

  Conversion coatings are applied to aluminum and aluminum alloys to improve 

corrosion resistance or to improve adhesion. It is a term that describes the removal of 

the native oxide on a metal and its replacement with an oxide coating that provides a 

barrier to corrosion. Conversion coatings are adherent surface layers of low-solubility 
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oxide phosphate or chromate compounds produced by the reaction of suitable reagents 

with the metallic surface. These coatings affect the appearance, electrochemical 

potential, electrical resistivity, surface hardness, absorption, and other surface 

properties of the material. They are formed by a chemical oxidation-reduction reaction 

at the surface of the aluminum [13]. Currently, the most effective and widely used way 

to inhibit corrosion of aluminum alloys is a chromate-based conversion coating.  

 

1.4 Corrosion Inhibition by Chromates 

 Cr(VI) compounds, mainly chromates, are widely used as corrosion inhibitors 

in aqueous media. A wide range of metals and alloys, such as iron, steel, aluminum 

alloys, zinc, copper, and others, can be protected using chromates. Their high 

efficiency to cost ratio has made them the standard inhibitors [14].  

 There are many ways to inhibit corrosion through the use of Cr(VI) 

compounds. Two of the most prominent are chromic acid anodization and chromate 

conversion coatings. Chromic acid anodization involves the electrochemical growth of 

an aluminum oxide surface film in an aqueous solution where a non-porous oxide 

layer is formed with a thicker porous layer above it. Coatings on aluminum alloys are 

on the order of 2-50 !m in thickness. Anodization is carried out in an acidic bath, 

which contains ingredients that promote formation of an adherent oxide film [15]. 

Chromates seal the porous layer with chromic acid (H2CrO4), producing a thicker 

oxide layer, which provides barrier protection for the bare metal as well as providing 

active passivation. Although anodization offers superior corrosion protection, 

chromate conversion coatings are more preferable due to economic benefits and 
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practicality. Anodization can be expensive and therefore not affordable when dealing 

with large aluminum structures.  

 Chromate conversion coatings are generally used to increase the corrosion 

resistance of aluminum. The high corrosion resistance provided by chromate coatings 

is due to the presence of hexavalent and trivalent chromium ions. The trivalent 

chromium, Cr3+ or Cr(III), is present as an insoluble hydrated oxide, while the 

hexavalent chromium, Cr6+ or Cr(VI), adds a self-healing nature to the film during 

corrosive attack by species such as chloride ions. During corrosion, the hexavalent 

chromium is reduced to form trivalent chromium, which terminates the corrosive 

attack [13]. 

 Chromate ions increase the pitting potential of aluminum alloys in chloride 

media and inhibit pit initiation and dissolution of active intermetallic phases. 

Chromate conversion coatings (CCC) form on aluminum through reduction of Cr6+ 

(dichromate) in solution and are usually acidic with a pH between the range of 1.6 and 

3.0. Coating formation is assisted by the addition of sodium fluoride (NaF), which 

helps to activate the aluminum surface. A CCC is a chemically grown oxide layer on 

the alloy substrate that provides an active barrier layer, which reduces the rate of the 

cathodic oxygen reaction. The chemical and electronic variety found in Cr chemistry 

leads to the ability of Cr6+ oxoanions to inhibit corrosion [16]. The electrochemical 

reactions for the chromate conversion coating process are well known [17]. 

Cr2O7
2-  + 8H+ + 6e- ! 2Cr(OH)3 + H2O        (4) 

2Al ! 2Al3+ + 6e-           (5) 
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 Understanding the mechanism for chromate inhibition of aluminum alloy 

dissolution is important. Chromate is a very soluble and a high-valent oxidizing ion 

with a low-valent form that is insoluble. The oxidation of Al in the presence of 

competing fluoride ions produces electrons to reduce the hexavalent Cr6+ of the 

dichromate ion, Cr2O7
2- and form a protective hydrated 3-valent Cr(OH3). The final 

result is a film thickness of at least several hundred nanometers on matrix regions, 

with thinner coatings at second phase particles [18]. This film, which provides the 

barrier protection against corrosion, is one mechanism of corrosion protection offered 

by CCCs.  

 Another very important mechanism is the self-healing feature of chromate 

conversion coatings. The coating layer consists of an amorphous and insoluble 

chromium oxide, where the formation of Cr(III)-O-Cr(VI) bonds takes place. These 

bonds act as adsorption sites for chromate ions from the coating bath. Therefore, the 

coating is a mixture of hydrated amorphous Cr(III)-Cr(VI) oxide. Where Cr(VI) is in 

contact with the electrolyte, it migrates to the defects of the coating layer, where it is 

more susceptible to corrosion attack [19]. In other words, the easily broken down 

hexavalent chromium in the coating is released into a solution contacting the surface. 

Chromate ions are released by the coating, and can be transferred to the site of damage 

to help repair the film by reduction of the chromate to a chromic species that bond 

with the aluminum substrate and the existing coating [20]. This self-healing aspect, 

which includes the transportation of Cr(VI) species to an active corrosion site and the 

subsequent blocking of corrosion sites, is a main reason chromate films are so 

effective.  
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 Chromate conversion coatings are artificially thick, chemically grown oxide 

layers on the Al surface (military specifications MIL-C-81706/5541E). They have 

been shown to consist of particles ranging in size from ~ 10 nm to 60 nm. There are 

three distinct regions in the chromate conversion coating that have been observed: (1) 

a region lacking particles but containing Cr or Al, (2) a region throughout the film 

largely containing particles of Cr compounds, and (3) particles near the base of the 

film with Cr and Al. Past studies observed crystallographic orientations of the Al 

substrate and found hydrated chromium oxide (Cr2O3"H2O) was deposited at cathodic 

sites or grain boundaries near metal ridges on the Al surface. The anodic sites were 

between the metal ridges, where Al was dissolved. Other research indicated 

amorphous Cr(III) hydroxide (Cr(OH)3) or Cr(III) oxide (Cr2O3) within the film, but 

Cr(VI) only at the surface [1]. 

 It has been proposed that three factors contribute to the performance of 

chromate conversion coatings: (1) barrier protection, (2) hydrophobicity and (3) active 

species that protect weak spots or emerging pits. The oxide layer itself is inert and acts 

as a barrier layer, which provides protection to the underlying bare metal. Although it 

is a clear fact that Cr(VI) is the active species in chromate conversion coatings, where 

corrosion protection is provided by the reduction of Cr6+ to Cr3+, precisely how 

chromate works to forestall corrosion remains unclear. In addition, in spite of its good 

performance as an anti-corrosion treatment, the Cr(VI) species are well known to be 

environmentally unfriendly.  
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1.5 Toxicity of Chromates  

 Studies over the past 10-15 years indicate that chromates are both highly toxic 

and carcinogenic. The oral ingestion of chromates is known to cause gastrointestinal 

damage, kidney failure, liver damage, blood disorders and eventually death. Prolonged 

exposure to skin may cause rashes, blisters, and ulcers and has also been associated 

with lung cancer and intestinal tumors. Chromates can also penetrate the body by 

inhalation, which may eventually cause lung cancer.  

 Although Cr6+ may be a superior corrosion inhibitor and used in numerous 

industrial systems, the same properties that make it so are also the same that make it 

environmentally unsafe. Earlier studies document Cr(VI) as a human carcinogenic 

associated with lung cancer. However, it is not the static presence of Cr3+ or Cr6+ that 

contributes directly to the DNA damage that leads to cancer. Rather, the molecular 

debris associated with the process of reducing Cr6+ to Cr3+ induces the critical changes 

in DNA. Chromate alone does not damage DNA in the absence of reducing agents. 

Instead, it is the biological antioxidants that lead to DNA damage. 

 The intracellular reaction of Cr6+ in the presence of reducing agents produces 

Cr5+, Cr4+, Cr3+, free radicals and reactive oxygen, which are all potentially genotoxic. 

Although there is no general agreement on the details for Cr6+-induced damage to 

DNA, it is clear that Cr6+ is highly soluble in water and passes through cell 

membranes. In addition, small molecule antioxidants appear to form highly reactive 

intermediates such as Cr5+ and Cr4+, which in turn react either directly or through free 

radical intermediates to damage DNA [16].  
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1.6 Alternatives to Chromate Conversion Coatings 

 Due to the highly toxic and carcinogenic nature of Cr(VI), and it being far 

from environmentally friendly, research studies have begun to focus greater attention 

on non-Cr(VI) conversion processes. Low toxicity conversion coatings prepared in 

non-Cr(VI) solutions, such as titanium, zirconium, molybdenum and cerium salt baths, 

have been widely researched and developed. Although they have the potential to 

replace existing Cr(VI) conversion coatings, their anticorrosive performance remains 

inferior.  

 In recent years, studies have been done to find more ecological alternatives to 

protecting aluminum alloy surfaces in order to replace chromates in their different 

fields of application. Efforts have been focused on the search for new corrosion 

inhibitors and new formulations of both anodizing baths and conversion coatings. 

However, many of the new systems are still in the beginning stages and many 

alternative technologies are being investigated.  

 In the last five to six years, researchers have begun to look at trivalent 

chromium conversion coatings as a promising alternative because their treatment 

solutions are less toxic than hexavalent compounds but seem to produce similar results. 

However, the Cr(III) conversion process is a novel study for aluminum alloys [21]. 

 Other possible replacement technologies that have received considerable 

attention in the open literature and/or have reached the trial stages in various 

aluminum industries include organic-based conversion coatings, multivalent metals 

conversion coatings and lithium-inhibited hydrotalcite conversion coatings.  Table 1-1 

lists a number of experimental and developmental technologies that can lead to 
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breakthroughs with respect to replacement of chromium in conversion coatings in 

some applications [22]. 

 

1.7 Significance of Study 

 Chromates have been around since the early 1900s as a means to control the 

corrosion of active metals. However, over the past several years the Environmental 

Protection Agency (EPA) has increasingly limited the use of chromium containing 

compounds due to their toxic and carcinogenic effects. The EPA is the main regulator 

of chromate uses and emissions through several different acts, including the Clean Air 

Act, the Clean Water Act, the Comprehensive Environmental Response, 

Compensation and Liability Act (CRCLA) and the Toxic Substances Control Act 

(TSCA). In the 1990s, national emission standards for hazardous air pollutants 

(NESHAP) were proposed for chromium in the Clean Air Act. In 2009, the 

Department of Defense (DoD) sent out an aggressive memorandum directing Military 

Departments to research and develop substitutes to the use of Cr6+ [23]. 

 Restrictions and environmental burdens of using chromates are always 

increasing. Environmentally, industry must comply with lower limits of exposure to 

workers along with controlled release and cleanup of byproducts and waste generated 

by its use. In 2006, the permissible exposure limit (PEL) of Cr6+ was 52 !g/m3. As of 

2008, the Occupational Safety and Health Administration (OSHA) established an 8-

hour time-weighted average (TWA) exposure limit of 5 !g/m3 [24]. Besides 

environmental issues, there is also an economic burden of using chromates. There is a 

direct economic challenge associated with costs for environmental compliance along 
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with increased liability for claims of exposure in the workplace with the continued use 

of chromates. Therefore, there is a need to identify new corrosion inhibitors for 

aluminum alloys.  

A new approach is to replace the chromate ion with the titanate ion since 

titanium is an element that has many similarities to chromium. It is one of the 

elements whose Pourbaix diagram closely resembles that of chromium. Pourbaix 

diagrams show the relationship between potential and the solution pH to predict 

whether an electrode will be immune, active or passive in the environment [25]. 

Figure 1-4 and Figure 1-5 are the Pourbaix diagrams for titanium and chromium, 

respectively [26]. Titanium is immune to corrosion in all-natural environments. The 

good corrosion resistance of titanium is due to the formation of a highly stable, 

continuous, very adherent and protective oxide film on the metal surface. The main 

similarities between titanium based solutions and that of chromium are that they have 

multiple valence states, good passive layer formation and a low passivation potential. 

For Al 2024-T3, titanate replacement of chromate has shown to be effective 

[27]. It was found that coating formation was pH dependent, with a pH of 2 resulting 

in thick coatings but severe cracking. A pH of 5.5 was found to produce coherent 

coating with good corrosion resistance. The titanate coating on Al 2024-T3 covered 

the copper rich intermetallics as well as the aluminum matrix, so it could act as a 

cathodic inhibitor on the cathodic particles as well as an anodic inhibitor on the 

aluminum particles [28]. Other than Al 2024, there has been little to no work 

conducted on other aluminum alloys of industrial interest, such as Al 6061 and Al 

7075. 
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The objectives of the research are:  

1. To determine if the titanate coating process, successfully utilized on Al 2024-T3, 

can be applied to Al 6061-T6 and Al 7075-T6. 

2. To investigate the basic mechanisms of coating formation, such as the coating 

composition and deposition rates along with mechanisms of corrosion protection. 
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Table 1-1: Alternative conversion coatings to chromates. 

  

Process Description Status 
Trivalent chromium conversion 
coatings 

• Meets no corrosion in 500 h requirement (ASTM B 
117 salt spray test) 

• Still contains chromium 
• Electrolytic process 

Hydrated alumina coating • Poor paint adhesion 
• Meets no corrosion in 500 h requirement (ASTM B 

117 salt spray test) 
Hydrated Metal salt coating (Mg, 
Ni, Mn, Sn, Ti, Fe, Co, Ca, Ba) 

• Does not meet salt spray requirement 
• Poor adhesion 

Peroxide Oxidation Coating • Does not meet salt spray requirement, poor 
adhesion and unstable chemical baths 

Oxyanion analogs (molybdnates, 
tungstates, vanadates and 
permanganates) 

• Moderate corrosion resistance, poor paint adhesion 
• Expensive 

Potassium permanganate 
coatings 

• Moderate corrosion protection (168 h) 
• Poor wet tape adhesion 
• Does not work well on 2024 or 7075 
• Multistep process, expensive 

Rare earth metal salts (Cerium) • Corrosion protection close to that of chromium 
• Good paint adhesion 
• Unstable chemical bath and expensive 

Zirconium Oxide/yttrium oxide 
in aqueous polymeric solution 

• Good paint adhesion and moderate salt spray 
protection (100 h) 

• Commercially used for >10 yr 
• One step 
• Expensive 

Titanates • Good adhesion 
• Moderate corrosion resistance 
• Thickness dependent, must be cured and difficult 

to dispose of 
Lithium inhibited hydrotalcite 
coatings 

• Good corrosion protection of 6000- series 
aluminum alloys 

• Poor wet paint adhesion 
• Single process bath 
• Environmentally benign 
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Figure 1-1: Pourbaix diagram for Aluminum. 
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Anodic Sites

MgZn2
(7075)

Mg2Si
(6061)

Pit initiation:
anodic dissolution of particles

Al2O3 passive film

Al3+ pitting
Growth after pits are formed

Figure 2-2: Mechanism for pitting corrosion. 
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Figure 3-3: Mechanism for crevice corrosion. 
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Figure 4-4: Pourbaix diagram for Titanium. 
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Figure 5-5: Pourbaix diagram for Chromium. 
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CHAPTER II 
 

EXPERIMENTAL METHODS 
 
2.1 Introduction 

 Aluminum (Al) and its alloys are fundamental and beneficial metals used in a 

wide range of industrial applications, due to their high specific strength, low density 

and good mechanical properties. Other than Al 2024, little to no research on 

electrochemical behavior has been conducted on other aluminum alloys of industrial 

interest, such as Al 6061 and Al 7075. Al 6061-T6 is an Al-Mg-Si alloy, which is 

known for its superior mechanical properties, such as high strength to weight ratio, 

good ductility and good corrosion resistance [1]. Al 7076 is an Al-Zn-Mg alloy, which 

is widely used for structural applications due to its high strength/density ratio and 

reasonable high fracture toughness [2].  

 However, the electrochemical behavior of these alloys is beginning to attract 

the attention of many researchers. The natural passivating oxide film on aluminum is 

an insufficient barrier for relatively long-term corrosion in a marine environment. 

Therefore, inhibitors are being used to improve protection on the surface. Traditionally, 

chromates have been applied in anticorrosive pre-treatments of aluminum alloys as 

conversion coatings [3-5]. A chromate conversion coating is a chemically grown oxide 

layer on the alloy substrate that provides an active barrier layer, which decreases the 

rate of the cathodic reaction, therefore inhibiting corrosion. However, these chromate 

coatings contain the hexavalent chromate ion, (Cr6+) which is toxic and carcinogenic 

and the consequent health hazards associated with them have led to restrictions 

imposed on the use of these conversion coatings as well as an initiative to find 
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alternative methods of corrosion protection [6-11]. At present, a suitable candidate for 

chromate replacement has not yet been developed for Al 6061 and Al 7075, which are 

used for the most demanding applications.  

 There are several ways to inhibit corrosion including a coating that decreases 

the reaction rate of the substrate in which the anodic oxidation reaction is suppressed. 

A second method, which is of interest here, is to suppress the cathodic reduction 

reaction. As a result, there are no electrons available to support the anodic reaction.  

 A chromate-free conversion coating has successfully been developed for Al 

2024-T3 using the titanate ion, which has many similarities to the chromate ion. This 

study mainly focuses on determining if the titanate coating process can be applied to 

aluminum alloys 6061-T6 and 7075-T6.  

 

2.2 Titanate Coating Techniques  

 The material used throughout the research investigations was commercially 

produced Al 6061-T6 and Al 7075-T6, cut into 1.5-inch squares with a thickness of 

0.6 inches. Typical compositions of each alloy are shown in Table 2-1 [1, 12]. The 

material was obtained from Q-panel. The conversion coating bath formulation and 

coating process, which were successfully used in the study of Al 2024 consisted of 6 

g/L of potassium titanate (K2TiO3) and 4 g/L of sodium fluoride (NaF), which was 

used as an activator. The pH of the bath was adjusted to 5.5 with nitric acid and the 

temperature during the coating process was 60ºC. The conversion solution was 

prepared a day before the coating process then continuously stirred on a magnetic 

stirrer for 24 hours prior to coating.  
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 The full coating process consists of a solvent cleaning and an alkaline cleaning, 

followed by an acid cleaning and then conversion coating. Several coating techniques 

were tried in order to determine the optimum coating process. A coating process 

similar to the Al 2024-T3 process was initially employed and includes the following 

series of sequential steps: (1) solvent clean with acetone, rinse in de-ionized water, (2) 

chemical cleaning with sodium hydroxide (NaOH) at pH of 12.5 for 10 minutes at 

40ºC, rinse in de-ionized water, (3) deoxidize in proprietary solution of Smut-Go for 

10 minutes at room temperature, rinse in de-ionized water, (4) conversion coating in 

titanate bath for 3 minutes, rinse in de-ionized water and finally (5) air dried for 24 

hours. This process can be seen in Figure 2-1.  

 One aim of any coating process is to reduce the number of steps in the process. 

In this research, the alkaline cleanser was changed and the use of a proprietary acid 

cleaner was removed. The alkaline cleanser was enough to be sufficient pretreatment 

for these particular alloys for successful conversion coating. 

 The alternative coating technique, therefore, includes a different cleaning step. 

Instead of NaOH, an industrial alkaline cleanser was procured from Henkel 

International. Using this cleanser, a 500 mL solution and 15% by volume to water was 

made using 75 mL of alkaline cleanser at pH 10.6 and 425 mL of de-ionized water. 

The coating process includes the following: (1) solvent clean with acetone, rinse in de-

ionized water, (2) chemical cleaning with alkaline cleanser at pH of 10.6 for 10 

minutes at 60ºC, rinse in de-ionized water, (3) conversion coating in titanate bath for 3 

minutes at pH 4.0 and 60ºC, rinse in de-ionized water and finally (4) air dried for 24 

hours.  
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2.3 Corrosion Measurement Techniques 

2.3.1 Electrochemical Impedance Testing 

 Once alloys had gone through the coating process, their corrosion resistance 

was monitored by electrochemical impedance spectroscopy (EIS).  EIS measurement 

is a non-destructive method able to provide time dependent data on the surface 

properties of materials in marine environments. The test was conducted using a Gamry 

Instrument PC4 potentiostat connected to a computer. The test cell, which can be seen 

in Figure 2-2, has a glass cylinder clamped with an O-ring seal in the middle of the 

specimen surface to provide an exposed surface area of approximately 0.785 in2. The 

cell contained about 50 mL of 0.5N sodium chloride (NaCl) electrolyte and the 

counter electrode was platinum foil, while the reference electrode was a saturated 

calomel electrode (SCE). Open circuit potential was measured for 100 seconds prior to 

the experiment and the impedance spectra was measured with a frequency range from 

100,000 Hz to 0.01 Hz in logarithmic decrement. EIS measurements were taken over a 

period of 42 days (1,000 hours).  

 

2.3.2 Potentiodynamic Tests 

 Potentiodynamic scans (PDS) were also conducted to determine the anodic and 

cathodic behavior of the alloys when titanate is in solution, but not a conversion 

coating. The aim is to determine if the titanate is an inhibitor to these alloys and what 

type of inhibitor it is. These tests were carried out in a flat sample cell, seen in Figure 

2-3, using a Gamry PC4/DC105 framework potentiostat connected to a computer. The 

area of sample exposure was 0.4 in2 (1 cm2) in the flat cell and a SCE was used as the 
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reference electrode. Potentiodynamic experiments were carried out in oxygen purged 

and nitrogen purged solutions on bare Al 6061-T6 and Al 7075-T6 samples in 0.5N 

NaCl. Experiments were done with and without additions of titanate ions to the 0.5N 

NaCl electrolyte. Either oxygen or nitrogen was bubbled into the system for 1 hour 

prior to the experiment. Open circuit potential (OCP) was measured for 3 minutes 

before the actual experiment. The potential sweep started 150 mV below the open 

circuit for experiments without the addition of titanate and was stopped when the 

current density reached 10 !A/cm2. For experiments with the addition of titanate, the 

potential sweep started 100 mV below the open circuit and was stopped when the 

current density reached 10 !A/cm2. A scan rate of 0.1 mV/s was used throughout 

experimentation.  

 

2.3.3 Crevice Corrosion  

 A simple test was set up in order to determine if the aluminum alloys 6061-T6 

and 7075-T6 were easily susceptible to crevice corrosion in 0.5N NaCl solutions and 

if a titanate coating would inhibit this corrosion. Eight Al 6061-T6 and Al 7075-T6 

samples (4 of each) were set up in individual 250 mL beakers. Each sample was fixed 

to the bottom of the beaker using a commercial modeling compound. Each beaker 

contained 200 mL of 0.5N NaCl. Six of the beakers contained additions of potassium 

titanate (K2TiO3) in concentrations of 1 g/L, 3 g/L or 6 g/L while the remaining two 

contained only 0.5N NaCl solution. Samples were left in beakers for one year. The 

setup can be seen in Figure 2-4. 
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2.4 Surface Characterization 

 Surface characterization was performed on immersed and conversion coated 

samples. To analyze the surface of conversion coated samples, a scanning electron 

microscope (SEM) was used with X-ray EDS capability, in which the local 

compositions were studied. Photographs of the immersed samples used to test for 

crevice corrosion were taken at various intervals over 1,000 hours. SEM imaging was 

done to analyze these surfaces as well. The spectra were obtained at an acceleration 

voltage of 20 keV.  
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Table 2-1: Typical compositions of (a) Al 6061-T6 
and (b) Al 7075-T6. 
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Figure 2-1: Digital images of samples (a) after acetone wash, (b) during 
NaOH treatment, (c) during Smut-Go treatment and (d) during conversion 
coating treatment. 
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Figure 2-2: Test cell set up for electrochemical impedance spectroscopy. 
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Figure 2-3: Electrochemical testing apparatus set up (flat cell) for potentiodynamic 
scanning. 
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a b 

c d 

Figure 2-4: Digital images of setup for determining crevice corrosion of either Al 
6061-T6 or Al 7075-T6 in (a) 200 mL of 0.5N NaCl solution, (b) 1 g/L K2TiO3 in 0.5N 
NaCl solution, (c) 3 g/L K2TiO3 in 0.5N NaCl and (d) 6 g/L K2TiO3 in 0.5N NaCl 
solution. 
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CHAPTER III 
 

EXPERIMENTAL RESULTS 
 

3.1 Introduction  

 Several different methods of measuring corrosion on aluminum alloys 6061-T6 

and 7075-T6 were employed in this study. Electrochemical impedance spectroscopy 

(EIS) was used to investigate the corrosion behavior after the conversion coating 

process. Approximately 35 Al 6061-T6 and 35 Al 7075-T6 samples were coated in 

total. Roughly 20 samples of each alloy were coated using the NaOH cleaning 

treatment, while the remaining were prepared using the alkaline cleanser treatment. 

EIS measurements were taken over a period of 42 days (1,000 hours). 

Potentiodynamic scans were conducted to determine the anodic and cathodic behavior 

of the alloys in a marine environment. These experiments were conducted in 0.5N 

NaCl solutions. These were purged with either oxygen or nitrogen to examine the 

effect of oxygen on bare Al 6061-T6 and Al 7075-T6 samples. In addition, the 

solutions contained either no titanate ions or had additions of titanate ions to determine 

their effect on electrochemical behavior.  

 A simple test was performed to investigate the effect of titanate ions on crevice 

corrosion. Samples were placed in beakers and fixed to the bottom with the 

commercial modeling compound then covered with 0.5N NaCl solution with varying 

concentrations of potassium titanate (K2TiO3). Samples were left in the beaker for one 

year. The methods of measuring corrosion employed in this study were visual 

observation recorded by a digital camera and surface characterization, which was 
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performed on immersed and conversion coated samples and conducted using a 

scanning electron microscope with an energy dispersed X-ray system.   

 

3.2 Al 6061-T6 

3.2.1 Electrochemical Impedance Spectroscopy 

 The results of the impedance measurements varied. Al 6061-T6 samples were 

conversion coated using two different methods. In the first method, samples were 

chemically cleaned with NaOH at pH 12.5 for 10 minutes at 40ºC and then submerged 

in a proprietary solution of Smut-Go for 10 minutes. Once cleaned, they were coated 

in the conversion bath at pH 5.5 for 3 minutes at 60ºC. Impedance measurements 

exhibited varied results. Most samples had resistances well below 10,000 ohms"cm2 

within the first week of testing. However, one sample challenged these results. On day 

1, the impedance was only 45,107.8 ohms"cm2 but over a 42-day (1,000 hours) period, 

the impedance increased to 138,441 ohms"cm2. Bode plots for the sample that tested 

well and for a sample that tested poorly can be seen in Figure 3-1 and Figure 3-2, 

respectively. Samples were compared to a plain, uncoated sample. 

 Several scanning electron microscope (SEM) images were taken of coated and 

uncoated samples throughout this study in order to observe the effects of both the 

cleaning process and the coating. SEM images of the sample that produced high 

impedance magnitudes showed severe pitting on the surface. However, only minor 

pitting was observed on most Al 6061-T6 alloys. These can be seen in Figure 3-3.  

 Since the cleaning process seemed to be damaging the Al 6061-T6, a second 

conversion coating process involving a new cleaning step was implemented. Instead of 
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using NaOH and Smut-Go, samples were cleaned in an industrial alkaline cleanser at 

pH 10.5 for 10 minutes at 60ºC. Preliminary EIS measurements resulted in poor 

impedance so the pH of the titanate coating bath was decreased to 4.0. This resulted in 

very high impedance results. On day 1, the impedance was 270,824 ohms"cm2. 

However, over the next 30 days, sodium chloride was observed to be leaking through 

the O-ring (Figure 2-2) and corrosion was apparent. The impedance, however, 

fluctuated and after 30 days, it was 265,579 ohms"cm2. Bode plots, which compare a 

plain sample to the coated sample, can be seen in Figure 3-4. Surface characterization 

showed a smooth surface with no signs of pitting, which can be seen in Figure 3-5. 

Repeated results were desired but could not be achieved.      

 

3.2.2 Potentiodynamic Scans 

 Potentiodynamic curves can be used to gain a better understanding of the 

behavior of protection of the alloy. Potentiodynamic curves for Al 6061-T6 in 0.5N 

NaCl solutions with and without titanate, in both oxygen-purged and nitrogen-purged 

systems are shown in Figure 3-6 and Figure 3-7. When purged with oxygen and in the 

absence of the titanate inhibitor, an open circuit potential (OCP) of approximately -

700 mV SCE was measured. The cathodic limiting current density in such conditions 

was in the range of 5 !A/cm2. Removing oxygen by purging the cell with nitrogen 

reduced the OCP to approximately -730 mV SCE. The corresponding current density 

decreased as well to 0.19 !A/cm2.  

 When 3 g/L K2TiO3 was added to the system, two different reactions occurred. 

There was a titanium reaction and an aluminum reaction and each had their own 
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corresponding open circuit potentials. When purged with oxygen, the OCP of the 

titanium reaction was approximately -1.16 V SCE, while the OCP was -1.18 V SCE 

when purged with nitrogen. For the aluminum reaction, the OCP was -760 mV SCE 

when the system was purged with either oxygen or nitrogen. The limiting current 

density of the oxygen and nitrogen purged systems with titanate additions was 0.94 

!A/cm2 and 1.7 !A/cm2, respectively. 

 

3.2.3 Crevice Corrosion 

 The simple test, which was set up to determine if Al 6061-T6 is prone to 

crevice corrosion, yielded important results regarding protection of the alloy against 

crevice corrosion by the titanate ion. The sample exposed to 0.5N NaCl solution, 

without the addition of titanate, is slightly corroded in the region where the 

commercial modeling compound was present and formed a crevice. The alloy was 

only 0.120 inches thick in this region against a starting thickness of 0.125 inches. 

When varying concentrations of K2TiO3 were added to the NaCl solution, corrosion 

was not apparent anywhere, including the area where crevice corrosion was found 

without titanate addition. This can be seen in Figure 3-8.  

 

3.2.4 Surface Characterization 

 Surface characterization and morphology of the conversion coating on Al 

6061-T6 was studied using a scanning electron microscope and energy dispersive X-

ray analysis. One sample cleaned with NaOH and Smut-Go had a pitted surface as 

well as precipitates at higher magnifications. Other samples showed no signs of pitting 
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but still contained precipitates. Energy dispersive (EDS) X-ray analysis showed these 

precipitates to be sodium fluoride (NaF) crystals. A SEM image of a precipitate along 

with its corresponding EDS spectrum can be seen in Figure 3-9. The sample cleaned 

with the industrial alkaline cleanser had no signs of pitting at high or low 

magnifications. However, at high magnifications, precipitates could be seen. Energy 

dispersive X-ray analysis showed these precipitates to be potassium fluoride (KF) 

crystals.  The EDS spectrum can be seen in Figure 3-10 along with its corresponding 

SEM image.  

 

3.3 Al 7075-T6 

3.3.1 Electrochemical Impedance Spectroscopy 

 When cleaned with a combination of NaOH and Smut-Go and coated with a 

titanate bath at pH 5.5, the results were poor. On day 1, the impedance was 571.828 

ohms"cm2. Samples were only tested for 31 days due to apparent corrosion and on day 

30, the impedance was 394.415 ohms"cm2. Bode plots comparing a plain, uncoated 

sample and a coated sample can be seen in Figure 3-11. Similar to Al 6061-T6, SEM 

imaging showed pitting on the surface, although not as extreme. This can be seen in 

Figure 3-12. 

 Introducing the industrial alkaline cleanser and decreasing the pH of the 

coating to 4.0 also had a positive effect on Al 7075-T6 samples. On day 1, the 

resistance was 30,478.6 ohms"cm2. However, similar to the Al 6061-T6 samples, 

sodium chloride was observed to be leaking through the O-ring and after 31 days, the 

final resistance was 18,532.3 ohms"cm2, which was still exceedingly high above a 
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plain, uncoated sample. Bode plots comparing the two can be seen in Figure 3-13. 

Also similar to Al 6061-T6 was the surface characterization. As seen in Figure 3-14, 

the surface was smooth with no pitting. Repeated results were again unable to be 

obtained.  

 

3.3.2 Potentiodynamic Scans  

 The potentiodynamic curves for Al 7075-T6 in 0.5N NaCl solutions with and 

without titanate, in both oxygen-purged and nitrogen-purged systems can be seen in 

Figure 3-15 and Figure 3-16. When the system was purged with oxygen and no 

titanate was added to the cell, the OCP measured was approximately -700 mV SCE. 

The corresponding cathodic limiting current density was about 20 !A/cm2. Removing 

oxygen by purging the cell with nitrogen resulted in a lower OCP of -820 mV SCE 

and a lower current density of 1.0 !A/cm2.  

 When 3 g/L K2TiO3 was added to the cell, both a titanium and an aluminum 

reaction occurred, each with their own corresponding open circuit potential. When 

purged with oxygen, the OCP of the titanium reaction was approximately -1.15 V SCE, 

which also happened in the case of the system purged with nitrogen. For the aluminum 

reaction, the OCP was -760 mV SCE for the oxygen-purged system. Removing 

oxygen by purging the system with nitrogen increased the OCP slightly to  -740 mV 

SCE. The limiting current density of the oxygen and nitrogen purged systems with 

titanate additions was 2.25 !A/cm2 and 1.9 !A/cm2, respectively.  

 

 



 44 

3.3.3 Crevice Corrosion 

 The simple test also provided useful information regarding the titanate ion 

decreasing crevice corrosion for Al 7075-T6. The sample exposed to 0.5N NaCl 

solution, without the addition of titanate, was severely corroded where the commercial 

modeling compound created a crevice. The measured thickness of the crevice was 

0.049 inches against a starting thickness of 0.0625 inches. Adding varying 

concentrations of titanate to the NaCl solution did not seem to corrode the samples 

anywhere, including the region where crevice corrosion was found without the 

addition of titanate. Digital images of each sample can be seen in Figure 3-17.  

 

3.3.4 Surface Characterization 

 Surface characterization and morphology of the conversion coating on Al 

7075-T6 were studied using energy dispersive X-ray analysis and scanning electron 

microscope imaging. Similar to the Al 6061-T6 alloy, SEM imaging showed 

precipitates on the surface whether the alloy was cleaned with NaOH and Smut-Go or 

the alkaline cleanser. Energy dispersive X-ray analysis indicated that the precipitates 

on the surfaces cleaned with NaOH and Smut-Go were NaF crystals. A SEM image of 

a precipitate along with its corresponding EDS spectrum can be seen in Figure 3-18. 

On surfaces cleaned with the industrial alkaline cleanser, KF crystals were seen, which 

are shown in Figure 3-19. 
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Figure 3-1: Al 6061-T6 Bode plot comparing coated sample, which exhibited high 
impedance magnitudes, to an uncoated sample. Coated sample was cleaned with NaOH 
and Smut-Go and coated in titanate bath with pH 5.5. 

Uncoated – Day 1 

Coated – Day 42 

Coated – Day 1 
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Figure 3-2: Al 6061-T6 Bode plot comparing coated sample, which exhibited very low 
impedance magnitudes, to an uncoated sample. Coated sample was cleaned with NaOH 
and Smut-Go and coated in titanate bath with pH 5.5. 

Uncoated – Day 1 

Coated – Day 42 

Coated – Day 1 
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Figure 3-3: SEM images of Al 6061-T6 samples cleaned in 
NaOH and coated in titanate bath with pH 5.5, which 
produced (a) good resistances and (b) poor resistances. 
Samples were exposed to 0.5N NaCl solution for 42 days 
(1,000 hours). 

a 

b 
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Figure 3-4: Al 6061-T6 Bode plot comparing a coated sample to an uncoated sample. 
Coated sample was cleaned in alkaline cleanser coated in titanate bath with pH 4.0. 

Uncoated – Day 1 

Coated – Day 42 

Coated – Day 1 
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Figure 3-5: SEM image of Al 6061-T6 sample after 31 days 
of exposure to 0.5N NaCl. Sample was cleaned in alkaline 
cleanser and coated in titanate bath with pH 4.0. 
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Figure 3-6: Al 6061-T6 potentiodynamic curves in 0.5N NaCl solution without titanate in 
both nitrogen and oxygen purged solutions. 

Nitrogen 
Purge Oxygen 

Purge 
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Figure 3-7: Al 6061-T6 potentiodynamic curves in 0.5N NaCl solutions with titanate in 
both nitrogen and oxygen purged solutions. 

Nitrogen 
Purge Oxygen 

Purge 
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  a b 

c d 

Figure 3-8: Digital images of Al 6061-T6 samples after one year in 
solutions of (a) 0.5N NaCl, (b) NaCl + 1 g/L K2TiO3, (c) NaCl + 3 g/L 
K2TiO3 and (d) NaCl + 6 g/L K2TiO3. Crevice region of (a) measured 
0.120” against 0.125” for titanate samples. 

Crevice 
Region 
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NaF 
Crystals 

Figure 3-9: (a) SEM image of NaF crystals on Al 6061-T6 alloy cleaned in 
NaOH and coated in titanate bath with pH 5.5 and (b) EDS spectra of NaF 
crystals.  

a 

b 
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KF 
Crystals 

a 

b 

Figure 3-10: (a) SEM image of KF crystals on Al 6061 alloy cleaned in 
alkaline cleanser and coated in titanate bath with pH 4.0 and (b) EDS 
spectra of KF crystals. 
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Figure 3-11: Al 7075-T6 Bode plot comparing a coated sample to an uncoated sample. 
Coated sample was cleaned with NaOH and Smut-Go and coated in titanate bath with 
pH 5.5. 

Coated – Day 1 

Uncoated – Day 1 

Coated – Day 31 
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Figure 3-12: SEM image of pitting on Al 7075-T6 sample 
cleaned in NaOH and coated in titanate bath with pH 5.5. 
Sample was exposed to 0.5N NaCl solution for 42 days 
(1,000 hours). 
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Figure 3-13: Al 7075-T6 Bode plot comparing a coated sample to an uncoated sample. 
Coated sample was cleaned in alkaline cleanser coated in titanate bath with pH 4.0. 

Coated – Day 31 

Uncoated – Day 1 

Coated – Day 1 
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Figure 3-14: SEM image of Al 7075-T6 after 31 days of 
exposure to 0.5N NaCl solution. Sample was cleaned in 
alkaline cleanser and coated in titanate bath with pH 4.0. 
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Figure 3-15: Al 7075-T6 potentiodynamic curves in 0.5N NaCl solution without titanate 
in both nitrogen and oxygen purged solutions. 

Nitrogen 
Purge 

Oxygen 
Purge 
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Figure 3-16: Al 7075-T6 potentiodynamic curves in 0.5N NaCl solution with the addition 
of titanate in both nitrogen and oxygen purged solutions. 

Nitrogen 
Purge 

Oxygen 
Purge 
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a b 

c d 

Figure 3-17: Digital images of Al 7075-T6 samples after one 
year in solutions of (a) 0.5N NaCl, (b) NaCl + 1 g/L K2TiO3, (c) 
NaCl + 3 g/L K2TiO3 and (d) NaCl + 6 g/L K2TiO3. Crevice 
region in (a) with NaCl only measured 0.049” compared to 
0.0625” for titanate samples.  

Crevice 
Region 
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NaF 
Crystal 

a 

b 

Figure 3-18: (a) SEM image of NaF crystal on Al 7075 alloy cleaned in 
NaOH and coated in titanate bath with pH 5.5 and (b) EDS spectra of 
NaF crystal. 
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KF 
Crystals 

a 

b 

Figure 3-19: (a) SEM image of KF crystals on Al 7075 alloy cleaned in 
alkaline cleanser and coated in titanate bath with pH 4.0 and (b) EDS 
spectra of KF crystals. 
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CHAPTER IV 
 

DISCUSSION 
 

4.1 Crevice Corrosion 
  
 General conditions for crevice corrosion include a stagnant halide ion 

containing solution and a narrow gap between two surfaces, one of which is metal [1]. 

In this study, a test was conducted in order to determine if both Al 6061-T6 and Al 

7075-T6 are prone to crevice corrosion when exposed to NaCl solution as well as the 

effect of the titanate ion on crevice corrosion. A sample was placed in a stagnant 

solution (NaCl) and fixed to the bottom of a beaker using a commercial modeling 

compound. Therefore, the surfaces, the metal alloy and the modeling compound, 

formed a crevice. Inside the crevice region, dissolved oxygen could not easily be 

replaced. The region inside the crevice could not support a cathodic reaction but could 

still support an anodic reaction, while outside the crevice region, the cathodic reaction 

proceeded but the anodic reaction ceased. Consequently, an electrical charge 

imbalance took place between the high positive charge from the metal ions within the 

crevice and the negative charge outside the crevice, allowing chloride ions into the 

crevice. Therefore, the corrosion rate inside the crevice increased.  

 The final thickness of the Al 6061-T6 sample was 0.120 inches against a 

starting thickness of 0.125 inches. The initial thickness of the Al 7075-T6 sample was 

0.0625 inches. After being exposed to NaCl solution, the crevice region was reduced 

to 0.049 inches. Crevice corrosion on both Al 6061-T6 and Al 7075-T6 can be seen in 

Figure 3-7a and Figure 3-14a, respectively.  
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 When varying concentrations of potassium titanate (K2TiO3) were added to 

0.5N NaCl solution, crevice corrosion was not apparent. This suggests that even at 

small concentrations, the titanate ion inhibits crevice corrosion. Digital images can be 

seen in Figure 3-7(b-d) and Figure 3-14(b-d) for Al 6061-T6 and Al 7075-T6, 

respectively.  

 This test also suggests that the titanate ion would be a good candidate for a 

conversion coating solution if it can be applied effectively. In a test such as this one, 

the crevice corrosion can start anywhere where the crevice and the solution conditions 

become acidic. Clearly the titanate ion is a good inhibitor of crevice corrosion.  

 

4.2 Potentiodynamic Scans 

 To investigate the effect of the titanate ion in electrochemical behavior, 

potentiodynamic curves for Al 6061-T6 in 0.5N NaCl solution with and without 

titanate in both oxygen and nitrogen purged conditions were conducted. Data from this 

study are shown in Figure 3-5 and Figure 3-6. Results for Al 7075-T6 investigated in 

the same conditions are shown in Figure 3-12 and Figure 3-13. The data for both 

alloys is summarized in Table 4-1. The analysis of these curves is difficult once the 

titanate ion is added to the system. For these alloys, the addition of the titanate added a 

second reaction at low potentials in addition to the redox reaction associated with the 

aluminum in the absence of the titanate. The reactions suspected to be occurring are a 

mixture of cathodic reductions and anodic oxidation reactions for the species present. 

When the potential is more negative than -1.15 V, the cathodic reaction takes place as 

titanate ions are reduced to form titanium on the surface of the aluminum alloy.  
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Ti4+ + 4e- ! Ti           (1) 

When the potential is more positive than -1.15 V, the titanium anodic reaction is 

initiated and titanium is oxidized to create titanium ions, which react with oxygen to 

form an oxide passivating layer.  

Ti + O2 ! TiO2           (2) 

It can be hypothesized that the titanate ion displaces other species, forming a film on 

the alloy surface, which then passivates the surface and impedes additional electron 

transfer by making ion movement difficult. The effect of this film is shown by the 

large reduction in the cathodic current density. For the Al 6061-T6 alloy, the cathodic 

current density decreased from 5 !A/cm2 to 0.94 !A/cm2. For the Al 7075-T6 alloy, 

the current density decreased from 20 !A/cm2 to 2.25 !A/cm2 when titanate was 

added to the system and the system was purged with O2.  

 When the potential is more positive than -700 mV, the aluminum anodic 

oxidation reaction is taking place. 

Al ! Al3+ + 3e-           (3) 

The TiO2 film cannot resist this reaction and is broken down, exposing aluminum.  

 Removing oxygen by purging the system with nitrogen results in a larger 

cathodic current density, which may be related to the electrochemical reduction of 

titanate ions. Comparing both oxygen and nitrogen purged cathodic polarization 

curves, it can be hypothesized that the presence of oxygen in the solution produces the 

oxide based film faster than lower oxygen levels can, which results in lower cathodic 

currents with higher oxygen levels in solution.  
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 The potentiodynamic data indicate one possible mechanism for the titanate 

conversion coating. The low primary passivation potential of -1.18 V SCE combined 

with very low critical current densities indicate that the titanate ion is a cathodic 

inhibitor. Cathodic inhibitions reduce one of the necessary components for corrosion, 

namely the cathodic reaction rate. As this is lowered, the anodic reaction cannot be 

supported. Chromates are suspected to work in a similar manner [2] by acting as a 

cathodic inhibitor. Another requirement is ‘self-healing’, the ability to repair defects 

[3]. This mechanism can be seen in Figure 4-1.  

 

4.3 Electrochemical Impedance Spectroscopy 

 When choosing aluminum alloys for industrial use, the 6xxx series is highly 

suitable in various applications due to its good resistance to corrosion [4]. 

Electrochemical impedance data indicates that a plain, uncoated Al 6061-T6 sample 

has a relatively high impedance magnitude of 22,625.4 ohms"cm2 on day 1. Therefore, 

samples that have undergone a conversion coating process to enhance corrosion 

resistance should have impedance measurements well above that of a plain, uncoated 

sample.  

 Electrochemical impedance data displayed as Bode phase plots in 0.5N NaCl 

solution for Al 6061-T6 alloys, which were chemically cleaned with NaOH at pH 12.5 

and titanate conversion coated at 5.5 pH for 3 minutes is presented in Figure 3-1. 

These plots show time dependent data for two samples, one exhibiting high 

impedances and a second sample, which showed very poor impedances as a function 

of time. When examined in a scanning electron microscope, severe pitting was 
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observed on the sample that produced high impedance magnitudes (Figure 3-2a). Only 

minor pitting was seen, however, on most samples throughout the study. However, 

their impedance and corrosion resistance was low. The presence of pitting alone was 

not sufficient to produce a conversion coating that did not increase corrosion 

resistance. One possible explanation is that the severity of the local surface changes 

may harm the corrosion resistance. Consequently, few pits with severe surface profile 

changes may disrupt the coating and impede resistance by initiating flaws. This 

indicates a non-pitting cleaning stage has to be required.  

 Unlike the 6xxx series, alloys in the 7xxx series are more susceptible to 

corrosion especially those containing copper, such as Al 7075. This decrease in 

corrosion resistance is indicated by an electrochemical impedance for a plain, 

uncoated sample of a 354.876 ohms"cm2 on day 1, in comparison to Al 6061-T6, 

which was 22,625 ohms"cm2 on day 1. Electrochemical impedance data for Al 7075-

T6 cleaned in NaOH and titanate coated with pH 5.5 is presented in Figure 3-10. EIS 

measurements after the titanate coating bath indicated very low impedance magnitudes.  

 Electrochemical impedance data displayed as Bode phase plots in 0.5N NaCl 

solution for Al 6061-T6 and Al 7075-T6 alloys, which were cleaned in an alkaline 

cleanser with pH 10.5 and titanate conversion coated at 4.0 pH for 3 minutes is 

presented in Figure 3-3 and Figure 3-12, respectively. Reducing the steps of the 

coating process to using just an alkaline cleanser instead of both NaOH and Smut-Go 

produced high impedance magnitudes on only one sample of Al 6061-T6 throughout 

the study. Relatively high resistances were seen on an Al 7075-T6 sample but were 

still low enough to be considered poor data.  
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4.4 Possible Reasons for Poor Coating Performance 

4.4.1 Mechanical 

 There are several possible reasons for poor resistance measurements, which 

can be attributed to the titanium coating on the surface of the aluminum alloy. Possible 

mechanical explanations include pitting on the surface. In this study, sodium 

hydroxide (NaOH) attacks the surface and this attack results in pits. Earlier studies did 

not indicate this severity of attack but this was on Al 2024-T3, a copper rich alloy [5]. 

As stated in the previous section, if the severity of the local surface changes, the 

corrosion resistance may be harmed.  

 SEM imaging shows different types of pitting on the surface, single pits as 

well as concentrations of multiple pits. Single pits have a hemispherical shape where 

the majority is underneath the surface. There is an extreme angle change and a bad 

surface profile, which tends to be sharper. Where there are multiple pits, more material 

is removed, which leads to the removal of the surface, allowing for a smoother coating 

over the pitted surface. SEM imaging and EIS measurements indicated that the sample 

with multiple pits had good corrosion resistance, while samples with single pits 

throughout lead to low impedance magnitudes. When a second cleaning system is 

employed to remove the NaOH, no pitting was found yet the EIS indicated that the 

conversion coating was still not reliable. This suggests another mechanism may be 

involved with poor coating performance. These mechanisms can be seen in Figure 4-2. 
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4.4.2 Microstructure 

 One other possible reason for coating failure is the presence of second phase 

particles on the surface. If there are Mg2Si (Al 6061) or MgZn2 (Al 7075) particles on 

the surface, there will be a break in the coating and corrosion will occur. As the 

titanate ion inhibited crevice corrosion on these alloys, it appears that it can protect 

against these microstructural features, which will always be present on the surface. 

This mechanism can be seen in Figure 4-3. 

 

4.4.3 Chemical Precipitates 

 Low resistance measurements on Al 6061-T6 and Al 7075-T6 alloys in this 

study can be explained by the surface characterization of each alloy. SEM imaging 

showed large clusters of precipitates on the surfaces. A simple mechanism depicting a 

damaging precipitate on the surface can be seen in Figure 4-4. Energy dispersive X-

ray analysis indicated that these precipitates were fluoride (F-) crystals. Fluoride ions 

are known to be extremely aggressive towards titanium [6, 7]. High concentrations of 

fluoride ions will destroy the oxide film that was chemically grown by the titanium 

bath. If there are damaging precipitates on the surface of the alloy, such as fluoride, 

coating failure will always occur, which will always lead to corrosion, which can be 

confirmed by EIS measurements in this study. 

 For Al 6061-T6 and Al 7075-T6 samples cleaned with NaOH and Smut-Go 

and then titanate coated with pH 5.5, energy dispersive X-ray analysis indicated that 

the precipitates on the surface were sodium fluoride (NaF), which was used as an 

activator in the conversion coating bath.  
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 On samples cleaned with the alkaline cleanser and then titanate coated with pH 

4.0, energy dispersive X-ray analysis indicated that the precipitates were potassium 

fluoride (KF), which seemed to have formed during the coating step when the fluoride 

ion attached itself to the potassium from the potassium titanate (K2TiO3). On the Al 

6061-T6 sample that produced high impedance magnitudes, SEM imaging showed a 

small concentration of KF precipitates. On all other samples with poor coating 

performance, higher concentrations were seen. It seems that as a result of high 

concentrations of NaF or KF precipitates, impedance magnitudes were very low.  

 

4.5 Conclusions 

 A test, which was conducted to determine if Al 6061-T6 and Al 7075-T6 are 

prone to crevice corrosion, yielded critical results regarding the protection of Al 6061-

T6 and Al 7075-T6 against crevice corrosion by the titanate ion. It has been 

determined that the titanate ion protects these alloys against crevice corrosion in a 

marine environment.  

 Titanate based conversion coatings hold promise as a replacement for 

chromates on Al 6061-T6 and Al 7075-T6 alloys as they show passive film that 

inhibits the surface from corrosion. The potentiodynamic study revealed that the film 

protects the alloy surface. However, electrochemical impedance spectroscopy 

exhibited varied results and impedance magnitudes were typically low. It seems that 

pitting on the surface did not have an effect on corrosion resistance, which is 

confirmed by the varied EIS measurements.  
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 It can be concluded, however, that low impedance magnitudes can be 

attributed to the precipitation of fluoride ions during the coating process, which 

significantly inhibit corrosion protection. Any surface with sodium fluoride 

precipitates present will corrode. Further investigation will be required in order to 

determine an optimum conversion bath, which will produce impedance magnitudes 

comparable to those measured for the Al 2024-T3 alloy.  

 In conclusion, once an optimum coating process for these alloys is determined, 

further work will be needed to turn the process into an industrially accepted system, in 

which an optimized and consistent coating process will meet all the necessary 

requirements.  
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 Open Circuit Potential (OCP) Current Density (i) 
 Nitrogen (N2) Oxygen (O2) Nitrogen (N2) Oxygen (O2) 

Al 6061-T6   
No Titanate -730 mV -700 mV 0.19 !A/cm2 5.0 !A/cm2 

 With Titanate – 
Al Rxn -760 mV -760 mV 0.94 !A/cm2 1.7 !A/cm2 

With Titanate –  
Ti Rxn -1.18 V -1.16 V 0.94 !A/cm2 1.7 !A/cm2 

 

Al 7075-T6 
No Titanate -820 mV -700 mV 1.0 !A/cm2 20 !A/cm2 

With Titanate – 
Al Rxn -740 mV -760 mV 1.9 !A/cm2 2.25 !A/cm2 

With Titanate –  
Ti Rxn -1.15 V -1.15 V 1.9 !A/cm2 2.25 !A/cm2 

Table 4-1: Data for open circuit potentials (OCP) and current densities (i) for Al 6061-T6 
and Al 7075-T6. 
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Figure 4-1: Cathodic and anodic reactions present in the 
potentiodynamic data. 

Cathode 
Ti4+ + 4e- ! Ti 

Anode 
Ti ! Ti4+ + 4e- 
O2 + 4e-! 2O2- 

Ti4+ + 2O2- ! TiO2 

Al ! Al3+ + 3e- 

Figure 4-1: Cathodic and anodic reactions present in the 
potentiodynamic data. 



 75 

 
  

a. single pit 

b. multiple pits 

Figure 4-2: Mechanical explanations for coating failure. 
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Mg2Si 
(6061) 

MgZn2 
(7075) 

Figure 4-3: Microstructural explanations for poor coating performance. 
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Damaging 
Precipitate 

Figure 4-4: Coating failure due to chemical precipitates. 
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Chapter V 
 

Recommendations and Future Research 
 
 

 A detailed study should be conducted to determine the optimum concentration 

of sodium fluoride (NaF) in the conversion coating bath. Titanate coating baths should 

be made with NaF concentrations of 0 g/L, 1 g/L and 2 g/L in order to determine the 

optimum concentration, in which fluoride precipitates will not be present on the 

surface. 

 The solubility limit of NaF in solution needs to be determined under 

conversion coating conditions.  

 In addition, research should be conducted to quantify the surface roughness of 

the alloys. This can be done by stereo imaging in scanning electron microscope 

images. 

 Thorough research also should be done to determine the concentration of Ti2+ 

and Ti4+ ions in the conversion coating bath. Also the solubility limit of titanate ions in 

the solution should be measured so the optimum amount of potassium titanium oxide 

is in the conversion coating solution, thus addition of excess amounts can be 

minimized to optimize the cost.  

 Further investigation is required to verify that the titanate ion protects 

aluminum alloys Al 6061-T6 and Al 7075-T6 against crevice corrosion.  
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