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Communications
Ecological Applications, 19(7), 2009, pp. 1673–1679
� 2009 by the Ecological Society of America

Observer bias and the detection of low-density populations

MATTHEW C. FITZPATRICK,1,2,4 EVAN L. PREISSER,1 AARON M. ELLISON,2 AND JOSEPH S. ELKINTON
3

1Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881 USA
2Harvard University, Harvard Forest, Petersham, Massachusetts 01366 USA

3Department of Plant, Soil, and Insect Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts 01002 USA

Abstract. Monitoring programs increasingly are used to document the spread of invasive
species in the hope of detecting and eradicating low-density infestations before they become
established. However, interobserver variation in the detection and correct identification of
low-density populations of invasive species remains largely unexplored. In this study, we
compare the abilities of volunteer and experienced individuals to detect low-density
populations of an actively spreading invasive species, and we explore how interobserver
variation can bias estimates of the proportion of sites infested derived from occupancy models
that allow for both false negative and false positive (misclassification) errors. We found that
experienced individuals detected small infestations at sites where volunteers failed to find
infestations. However, occupancy models erroneously suggested that experienced observers
had a higher probability of falsely detecting the species as present than did volunteers. This
unexpected finding is an artifact of the modeling framework and results from a failure of
volunteers to detect low-density infestations rather than from false positive errors by
experienced observers. Our findings reveal a potential issue with site occupancy models that
can arise when volunteer and experienced observers are used together in surveys.

Key words: Adelges tsugae; citizen science; hemlock woolly adelgid; invasive species; monitoring;
occurrence probability; site occupancy models; survey; volunteer.

INTRODUCTION

The growing threat posed by invasive species has

focused increased attention on the importance of

documenting the distribution and spread of introduced

organisms. Monitoring programs aimed at detecting low-

density ‘‘founder’’ populations can play a critical role in

slowing or even stopping the spread of harmful invasives

by identifying recently established populations that can

be targeted for control and/or eradication (Lodge et al.

2006). Even partially successful programs of this sort can

lower densities sufficiently for Allee effects and stochastic

events to substantially increase the probability of

subsequent population collapse (Liebhold and Tobin

2008). These efforts have proven remarkably successful

against actively dispersing species like the gypsy moth,

Lymantria dispar L., that respond to pheromones or

other cues (e.g., the gypsy moth ‘‘Slow the Spread’’

program; Sharov et al. 2002). Low-density populations

of species that disperse passively by means of wind,

water, or phoresy, however, often prove far more difficult

to locate. Without the ability to attract the organisms to

a trapping location, researchers face the often-daunting

task of repeatedly searching potential habitats for low-

density populations of the invading species.

The challenges of successfully completing the labor-

intensive surveys necessary to document the spread of

invasive species have been met in part by volunteer-

based or ‘‘citizen science’’ monitoring programs (e.g.,

CitSci.org). Such programs rely on concerned individu-

als, from schoolchildren to retirees, as cost-effective early

warning and continual monitoring systems that provide

the primary data for large-scale scientific studies and

management responses. There are now more than 200

citizen-science programs operating in North America

and their popularity is growing worldwide (Cohn 2008).

Although the educational and scientific benefits of

volunteer-based invasive species monitoring programs

are clear, the reliability of data collected by novice

individuals has sometimes been questioned (Cohn 2008,

Delaney et al. 2008). These concerns stem mostly from a

lack of studies comparing the quality of volunteer, vs.
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professionally collected, data rather than from studies

demonstrating that volunteers collect unreliable data. In

the context of monitoring low-density populations of

invasive species, the main concern is that novice observers

may have a lower probability of detecting the species

when it present and/or a higher probability of misiden-

tification (i.e., falsely observing the species as present

when it is in fact absent) than do experienced individuals.

If true, then differences in the ability of observers to

detect and correctly identify low-density populations of

invasive species may represent an important, but largely

undocumented source of sampling variation and bias in

invasive species monitoring programs.

The detectability of species and observer bias both

have important implications for documenting current

distributions of invasive species and for developing

reliable estimates of changes in these distributions. Site

occupancy modeling (MacKenzie et al. 2006) has

emerged in recent years as a means of estimating the

proportion of sites truly occupied by a species given that

organisms are often detected imperfectly, i.e., the

probability of detecting the species is often less than

one. If the probability of detecting a species is ,1, as is

certainly the case for low-density populations of actively

spreading invasive species, then some individuals will go

undetected and the actual number of occupied sites will

be greater than the number of sites at which the species

was actually detected. The initial model developed for

estimating site occupancy rates (MacKenzie et al. 2002)

considered only the possibility of ‘‘false negatives,’’ cases

in which the species is present at a location but goes

undetected. Royle and Link (2006) extended the Mac-

Kenzie et al. (2002) model to include the possibility of

‘‘false positives,’’ situations in which observers misiden-

tify the target species and report it as present when the

species is in fact absent. If misidentifications are

common in a survey, then the true number of sites

occupied could be less than the number of sites at which

the species was observed. Even low false positive rates

have been shown to induce extreme bias in estimates of

the proportion of occupied sites (Royle and Link 2006),

but the impacts of observer bias on estimates of the

proportion of sites infested by invasive species remains

poorly explored.

In this study, we first compare the abilities of

inexperienced volunteers and experienced observers to

detect low-density populations of an actively spreading

forest pest, the hemlock woolly adelgid. We then use

these data to explore the general question of how

interobserver variation can bias estimates of the

proportion of sites infested derived from occupancy

models. We hypothesized that relative to experienced

observers, novice individuals should be less likely to

detect low-density populations and would be more

prone to misidentification of the study species. To

explore these hypotheses, we use maximum-likelihood

methods to select among occupancy models that

consider differences in the ability of observers to both

detect and correctly identify the hemlock woolly adelgid.

We parameterize these models using data from a 420-

tree survey conducted by nine volunteers and three

experienced individuals. Our results support the notion

that volunteers and experienced observers differ in their

ability to detect low-density populations and that such

differences in observer ability can bias estimates of the

proportion of sites occupied. However, this bias

manifests itself in unexpected ways.

MATERIALS AND METHODS

Study species

The hemlock woolly adelgid, Adelges tsugae Annand

(HWA; Hemiptera: Adelgidae) is an actively spreading

invasive pest of eastern hemlock (Tsuga canadensis (L.)

Carr.) and Carolina hemlock (Tsuga caroliniana Engle-

mann) in the eastern United States (McClure and Cheah

1999). HWA is a minuscule (,1 mm long adult),

flightless insect that in the United States is both

obligately parthenogenetic and exclusively passively

dispersed (McClure 1990). The parthenogenetic nature

of HWA means that even a single colonizing individual

can start a new infestation, producing an initially low-

density population that only can be detected by costly

and time-consuming surveys (Evans and Gregoire 2007).

Further, Costa and Onken (2007) list several objects

common on hemlock foliage that might be confused

with HWA by observers with varying skill levels. These

include spider ovisacs, pine sap from adjacent conifers,

froth from spittle bugs, and wool from white pine aphids

blown from neighboring trees.

Study area

We sampled hemlock trees in the 487-ha Cadwell

Memorial Forest in Pelham, Massachusetts, USA

(4282201200 N, 7282501200 W), an experimental forest

managed by the University of Massachusetts at Am-

herst. Cadwell Forest is located in the central hardwood

region of southern New England and includes discrete

stands of eastern hemlock. Before 2007, no HWA

infestations had been detected at Cadwell Forest and

the local hemlock trees appeared uniformly healthy (J.

Elkinton, unpublished data). In the late winter of 2008,

however, ad hoc surveys revealed low levels of HWA

infestations on several trees. Hemlock stands in this

forest thus provide an ideal venue to compare the ability

of volunteer and experienced observers to detect early

low-density HWA invasions.

Sampling design

Hemlock often grows in nearlymonospecific stands (see

Plate 1) that are patchily distributed across the landscape

(Ellison et al. 2005). We selected five hemlock stands

(;104 m2 each) for sampling that were primarily (.50%)

comprised of hemlock trees �10 m in height such that a

portion of each tree could be sampled from the ground.
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All stands were bordered by hardwood forests, allowing

the natural boundaries of each stand to be readily

identified. Within each stand, all hemlock trees �0.5 m

in height were numbered using aluminum tags and

marked with flagging tape to improve visibility. We

marked a total of 420 hemlock trees in the five stands

(mean number of trees per stand¼ 80, range¼ 31–146).

Twelve observers participated in the sampling effort:

three experienced individuals who perform field research

on HWA and nine volunteers who had no prior

experience sampling for HWA. Prior to the sampling,

the volunteers were trained for fifteen minutes on the

sampling methodology and on identifying HWA infes-

tations, including objects that could be confused with

HWA. Each person was then assigned to one of four

groups (n ¼ 3 persons per group). Two of the groups

entirely were comprised of volunteers (hereafter referred

to as ‘‘volunteer-only’’). The remaining two groups

contained one experienced and two volunteer individu-

als and two experienced and one volunteer individual

(hereafter referred to as ‘‘volunteer/experienced’’). Each

group was provided a numbered list of trees to sample

that could be located in the field by the corresponding

numbered tag on each tree. To control for possible

heterogeneity in infestation and detection rates between

stands, each group was randomly assigned trees to

sample in multiple stands.

Our sampling design followed the protocol described

by MacKenzie et al. (2006) for a single-species, single-

season occupancy model, with individual hemlock trees

regarded as sites. Occupancy modeling requires that sites

must be visited by at least two independent observers,

with each observer recording the presence/absence of the

target species at each site. In this study, three observers

from the same group visited each tree independently.

Observers searched all accessible branches for evidence

of white woolly masses characteristic of the HWA

sistens generation. Each search continued until either

HWA was detected or a two-minute sampling period

had expired. To ensure that sampling was independent,

no two observers sampled a tree at the same time and

observers were instructed not to communicate the

infestation status of trees to the other observers in their

group. Sampling occurred on 26 April 2008, when the

white woolly masses produced by HWA are at their

largest and most visible; this time period is generally

considered the optimal sampling period for HWA

(Costa and Onken 2007). The sessile nature of the

HWA sistens generation precludes any changes in

infestation status during our study.

To examine whether there were differences between

volunteers and experienced individuals in terms of the

density of infestations detected by each type of observer,

two experienced individuals involved in the original

survey returned the following week to all trees where

HWA was detected. All accessible branches thoroughly

were searched and the number of white wooly masses

observed on the tree was counted. This second, more

thorough survey provided an estimate of the number of

detectable individuals on the tree. We used a paired t test

on log-transformed HWA abundance to compare the

mean abundance of HWA infestations that were

detected by any of the nine volunteers to the mean

abundance of HWA infestations that were detected by

only the three experienced individuals and but not by

any of the nine volunteers.

Occupancy modeling

We examined how differences in detection abilities

between observers influence estimates of the proportion

of infested hemlock trees. The occupancy model

framework proposed by Royle and Link (2006) allows

the estimation of three parameters: w, the proportion of

sites occupied (in our case, the proportion of infested

hemlock trees), and two classification probabilities.

These probabilities are (1) p11, the ‘‘detection probabil-

ity,’’ the probability of detecting the species, given that

the species is actually present at the site; and (2) p10, the

‘‘misclassification probability,’’ the probability of falsely

detecting the species at an unoccupied site. Given our

randomized sampling design, the number of trees

sampled by each observer (minimum n ¼ 85, Tables 1

and 2), and the sessile nature of HWA, heterogeneity in

detection and misclassification probabilities should

result almost entirely from interobserver variation.

We considered four models that make different

assumptions regarding p11 and p10. For model notation,

symbols within parentheses indicate whether probabili-

ties are assumed to be constant (�) or different (t) across
surveys. The simplest model was the standard framework

proposed by MacKenzie et al. (2002) that assumes false

positives are not possible (p10 ¼ 0) and that detection

probabilities are constant across observers: w, p11(�),
p10(0). The second model again assumes that false

positives were not possible but allows observers to differ

in their probability of detecting HWA: w, p11(t), p10(0).
The final two models both incorporate the possibility of

misclassification (p10 . 0; Royle and Link 2006), with the

simpler of the two assuming that observers do not differ

in their probability of detecting or misclassifying HWA:

w, p11(�), p10(�). The more complex of these two models

assumes that observers can differ in their probability of

detecting and misclassifying HWA: w, p11(t), p10(t).

Maximum-likelihood estimates of the model parameters

can be obtained by maximizing numerically

Lðp11; p10; w j yÞ

}
Yn

i¼1

nh
pyi

11ð1� p11ÞT�yi

i
w

þ
h
pyi

10ð1� p10ÞT�yi

i
ð1� wÞ

o

where n is the number of sites (trees), T is the number of

samples (observers), and y¼ yif gn
i¼1 with yi representing

the site-specific number of detections. See Royle and

Link (2006) for details. We used the small sample size

form of Akaike’s Information Criterion (AICc) to
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determine the model best supported by the data

(Burnham and Anderson 2002). Statistical analyses were

performed in R 2.7.2 (R Development Core Team 2006)

using code modified from Royle and Link (2006) and in

Microsoft Excel (Redmond, Washington, USA) using

Excel spreadsheets developed by Donovan and Hines

(2007). Sample data, R code, and Excel spreadsheets are

provided in the Supplement to this paper.

RESULTS

The two volunteer-only groups detected HWA

infestations on a smaller proportion of trees than did

the two volunteer/experienced groups. One of the

volunteer-only groups detected HWA on 14 of 86

sampled trees (naı̈ve infestation rate ¼ 0.163), and the

other on 33 of 95 trees (naı̈ve infestation rate¼0.347). In

contrast, the two volunteer/experienced groups detected

HWA on 57 of 125 trees (naı̈ve infestation rate¼ 0.456)

and on 69 of 114 trees (naı̈ve infestation rate¼0.605). Of

the two volunteer/experienced groups, the group with

the fewest volunteers realized the highest overall naı̈ve

infestation rate (0.605). When two experienced observers

returned to the 173 trees to estimate the abundance of

detected HWA infestations, HWA was found on 164

trees. Experienced individuals detected smaller HWA

infestations than volunteers (paired t test, P ¼ 0.017).

The form of the best-supported model differed between

volunteer-only groups and volunteer/experienced groups.

For volunteer-only groups, model comparison by DAICc

and normalized Akaike model selection weights (Burn-

ham and Anderson 2002) revealed that models where the

probability of misidentifying HWA was zero (p10 ¼ 0)

were best supported by the data (Table 1). However, the

best-supported model for volunteer-only groups differed

in their assumptions regarding whether observers differed

in their probability of detecting HWA infestations. The

best-supported model for one of the volunteer-only

groups assumed that observers differed in their detection

probabilities, w, p11(t), p10(0), while the data for the other
volunteer-only group most strongly supported the model

w, p11(�), p10(0), which did not make this assumption. In

contrast, the form of the best-supported model was the

same for both volunteer/experienced groups (Table 2).

For such groups, strongest support was for model w,
p11(t), p10(t), where misclassification probabilities were

greater than zero and both detection and misclassification

probabilities differed between observers. There was little

support for models where experienced and volunteer

TABLE 1. Comparison of models and parameter estimates for detection of hemlock woolly adelgid (HWA) for groups composed
entirely of volunteers.

Model DAICc w K ŵ p11,1 p11,2 p11,3 p10,1 p10,2 p10,3

n ¼ 95, w,naı̈ve ¼ 0.347

w, p11(t), p10 ¼ 0 0.00 0.85 4 0.41 0.28 0.43 0.61 0.00 0.00 0.00
w, p11(�), p10 ¼ 0 4.47 0.09 2 0.43 0.43 0.43 0.43 0.00 0.00 0.00
w, p11(t), p10(t) 6.57 0.03 7 0.39 0.27 0.46 0.65 0.02 0.00 0.00
w, p11(�), p10(�) 6.61 0.03 3 0.43 0.43 0.43 0.43 0.00 0.00 0.00

n ¼ 86, w,naı̈ve ¼ 0.163

w, p11(�), p10 ¼ 0 0.00 0.62 2 0.17 0.72 0.72 0.72 0.00 0.00 0.00
w, p11(�), p10(�) 1.68 0.27 3 0.15 0.78 0.78 0.78 0.01 0.01 0.01
w, p11(t), p10 ¼ 0 3.44 0.11 4 0.17 0.63 0.77 0.77 0.00 0.00 0.00
w, p11(t), p10(t) 9.34 0.01 7 0.14 0.67 0.86 0.86 0.01 0.01 0.01

Notes: Variables are: K, number of parameters in the model; DAICc, small sample size form of Akaike’s information criterion
(AICc) for each model, minus the AICc of the model with minimum AICc; w, normalized model selection weights; n, the number of
hemlock trees surveyed by the group; w, the true proportion of infested hemlock trees; ŵ, the maximum-likelihood estimate of w,
w,naı̈ve, the observed proportion of infested hemlock trees; p11, the probability of detecting the species given that the species is
actually present at the site; and p10, the probability of falsely detecting the species at an unoccupied site. For model notation,
symbols within parentheses indicate whether probabilities are assumed to be constant (�) or different (t) across surveys.

TABLE 2. Comparison of models and parameter estimates for detection of HWA for groups comprised of both volunteers and
experienced observers (parameter estimates for experienced individuals are presented in boldface type).

Model DAICc w K ŵ p11,1 p11,2 p11,3 p10,1 p10,2 p10,3

n ¼ 114, w,naı̈ve ¼ 0.605

w, p11(t), p10(t) 0.00 0.65 7 0.26 0.78 0.75 0.34 0.07 0.44 0.01
w, p11(t), p10 ¼ 0 1.20 0.35 4 0.72 0.36 0.72 0.13 0.00 0.00 0.00
w, p11(�), p10 ¼ 0 56.71 0.00 2 0.84 0.35 0.35 0.35 0.00 0.00 0.00
w, p11(�), p10(�) 56.82 0.00 3 0.10 0.75 0.75 0.75 0.24 0.24 0.24

n ¼ 125, w,naı̈ve ¼ 0.456

w, p11(t), p10(t) 0.00 0.92 7 0.12 0.94 0.72 0.79 0.25 0.15 0.04
w, p11(t), p10 ¼ 0 5.06 0.08 4 0.58 0.57 0.37 0.22 0.00 0.00 0.00
w, p11(�), p10(�) 12.75 0.00 3 0.10 0.84 0.84 0.84 0.15 0.15 0.15
w, p11(�), p10 ¼ 0 19.18 0.00 2 0.61 0.37 0.37 0.37 0.00 0.00 0.00

Note: Variables and notation are as in Table 1.
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observers were assumed to have equal probabilities of

detecting HWA infestations.

When compared to volunteers in their group,

experienced observers had a higher probability of

detecting HWA infestations (Table 2). Unexpectedly,

this was also true of the probability of misclassifying

other organisms as HWA, with experienced observers

having a higher probability of misclassifying HWA

infestations than volunteers. This finding is an artifact of

the models, the origin of which we discuss below. When

comparing across groups, estimates of detection prob-

abilities from the best-supported models ranged from

0.28 to 0.94, with the highest value obtained by an

experienced observer and the lowest by a volunteer

(Tables 1 and 2). Detection probabilities for experienced

observers were always greater than 0.75 and had a

smaller range than those of volunteers (0.19 vs. 0.44).

Estimates of the proportion of trees infested from the

best-supported models ranged from 0.12 to 0.41. For

volunteer-only groups, the estimated infestation rate was

higher than the naı̈ve infestation rate (Table 1). In

contrast, the estimated infestation rate was considerably

lower than the naı̈ve infestation rate for groups

containing an experienced observer (Table 2).

DISCUSSION

The reliability of data collected from field surveys is

directly related to sampling variation and bias in the

methods used to gather the data and interobserver

variation is one such source of bias. Our findings suggest

that observer experience can be an important source of

sampling variation and bias in the detection of low-

density populations. However, when such surveys are

used in an occupancy modeling framework that allows

for misidentification, interobserver bias can be mani-

fested in an unexpected manner.

We found that experienced observers differed from

volunteers in their ability to detect low-density infesta-

tions. Relative to volunteers, experienced observers (1)

detected infestations at a greater proportion of trees, (2)

had a higher probability of detecting infestations, and

(3) detected smaller infestations. Although we were not

surprised by these findings, we were surprised by the

apparent result that experienced observers were more

likely to misclassify HWA than volunteers. Although the

possibility that experienced individuals are more likely

to misidentify HWA cannot be discounted, Costa and

Onken (2007) note that once detected, HWA are nearly

unmistakable to a well-trained individual. An alternative

explanation is suggested by a closer inspection of the

detection histories (Table 3). For the team with one

experienced observer and two volunteers, the two

volunteer observers detected HWA on only 1 of 125

trees when the experienced observer did not. In contrast,

the experienced individual detected HWA 23 times when

the two volunteers did not. However, when the infested

trees were resurveyed by two experienced observers to

estimate the abundance of HWA, this additional survey

detected infestations on 19 of these 23 trees. The

detection histories for the group with two experienced
individuals reveal a similar pattern.

Taken together, our results (1) suggest a failure by

volunteers to detect low-density infestations rather than
misidentification by experienced observers and (2) reveal

an issue regarding the absence of statistical weighting in
the model. In essence, the misclassification model assumes
that there are two types of sites and the probability of

detection is lower at one type of site than the other. The
differences in detection probabilities between these two
sites can arise either through misclassification (Royle and

Link 2006) or through heterogeneity in detection. In this
study, heterogeneity in detection associated with variation
in abundance of HWA and differences in the ability of

observers to detect low-density populations, rather than
misclassification, is the factor most likely to be driving
differences in detection between sites. In other words, the

two types of sites in our study are those with relatively
dense infestations that were detected by both volunteers

and experienced observers and those with relatively low
density infestations that were detected only by experi-
enced individuals. However, as formulated, our models

give equal weight to the quality of any individual’s
observations. Therefore, when a low-density infestation is
detected by one experienced observer, but missed by the

remaining two volunteers, statistical support tips in favor
of misclassification. This issue became apparent only
when surveys completed by experienced observers were

paired with those made by volunteers. Thus our findings
caution against the use of observers of differing levels of
experience in the same survey and suggest the need to

include in models that allow for false positive errors
survey-specific covariates that account for biases in
detection probabilities introduced by differences in

observers (e.g., Bailey et al. 2004).
Our findings also speak to how strongly misidentifi-

cations can bias estimates of the proportion of sites
occupied (Royle and Link 2006). In the most extreme
case, the modeled proportion of infested trees was nearly

four times lower (0.12 vs. 0.58, naı̈ve infestation¼0.456),

TABLE 3. Detection histories of HWA populations by group.

Detection
history EEV EVV VVV VVV

111 6 8 2 6
110 14 6 2 1
011 2 1 9 3
101 2 4 4 1
100 7 23 3 1
010 37 12 4 1
001 0 3 9 1
000 45 68 62 72

Notes: Histories indicate whether HWA was determined to be
present (1) or absent (0) for each of the three surveys. For groups
with experienced observers, surveys are ordered such that reading
from left to right moves from experienced (E) to volunteer (V)
observers (e.g., 100 for the group with one experienced observer
and two volunteers indicates an instance when the experienced
observer detected HWA but the two volunteers did not).
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when misclassification probabilities were assumed to be

greater than zero vs. when they were assumed to be zero.
Again, the modeled rate of 0.12 when misclassification

probabilities were assumed to be greater than zero
appears to be primarily a function of the model’s

spurious interpretation of valid detections made by
experienced observers as instances of misclassification.

What do our results say about the adequacy of data on

the distribution of low-density populations collected by
volunteers? We suggest that the answer to this question

depends on the ultimate use of the data and on the system

under study. For example, recent studies have demon-

strated that volunteers can provide accurate data on the
presence of invading species (Boudreau and Yan 2004,

Delaney et al. 2008). These studies, both involving
aquatic invasive species, dealt with either a relatively

large and easy-to-detect organism (Delaney et al. 2008)
or used volunteers to collect samples that were later

verified by professionals (Boudreau and Yan 2004). In

contrast, HWA, though easy to identify to the trained
eye, can be extremely difficult to detect when occurring at

low densities (Evans and Gregoire 2007); our results

PLATE 1. Eastern hemlock (Tsuga canadensis) stand at Dean Brook, Shutesbury, Massachusetts, USA. Hemlock is a late-
successional conifer that by virtue of its structural and functional attributes supports unique terrestrial and aquatic ecological
communities. As no other co-occurring tree species fill the same ecological role as hemlock, its removal from the landscape by the
hemlock woolly adelgid (Adelges tsugae) is likely to acutely and chronically impact ecosystem processes, hydrology, and
biodiversity. Photo credit: M. C. Fitzpatrick.

MATTHEW C. FITZPATRICK ET AL.1678 Ecological Applications, Vol. 19, No. 7

C
om

m
u
n
ic
a
ti
on

s



suggest field experience can improve the ability to detect

such infestations. Thus, we argue our findings speak

more to issues regarding the importance of properly
training volunteers and to the challenges of monitoring

low-density or difficult-to-detect organisms (e.g., Milberg

et al. 2008), rather than to the reliability of volunteer-
based monitoring programs per se. For example, Lotz

and Allen (2007) found that there was no difference in

error rates between professional scientists and volunteers
who had received the same training and who had little

difference in actual field anuran-call-survey experience

(see also Shirose et al. 1997, Genet and Sargent 2003).

Further, multiple studies have demonstrated that ob-
server bias generally decreases as observers become more

experienced (Sauer et al. 1994, McLaren and Cadman

1999, Delaney et al. 2008). Taken together, our results
underscore the importance of adequate training for

volunteers taking part in monitoring programs and the

need to document and account for interobserver
variation in analytical estimates of site occupancy rates

(Lotz and Allen 2007, Pierce and Gutzwiller 2007).

Future work in this area should consider the role of
survey-specific covariates that account for interobserver

variation in detection probabilities.
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R code used in statistical analyses (Ecological Archives A019-067-S1).

October 2009 1679OBSERVER BIAS AND SURVEYING INVASIVES

C
om

m
u
n
ica

tion
s


	Observer bias and the detection of low‐density populations
	Citation/Publisher Attribution

	Observer bias and the detection of low‐density populations
	Terms of Use

	Observer bias and the detection of lowdensity populations

