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ABSTRACT

Solving the Schrödinger equation and finding excited states for quantum me-

chanical many-body systems is a fundamental problem. If this problem is formu-

lated in terms of integrals, the dimensionality of the configuration space is often

too high to perform the integrations required directly. This is because the volume

of configuration space increases exponentially with dimension quickly, making its

complete exploration impossible. Monte Carlo methods provide a way to estimate

these integrals by statistically sampling a subset of configuration space, and these

methods provide 1√
N

convergence regardless of dimension.

For many problems involving the quantum mechanics of molecules there ex-

ists a large time scale separation between the high-frequency internal vibrations,

and low-frequency intermolecular motions. This separation motivates the rigid-

body approximation which freezes internal degrees of freedom in order to study

intermolecular effects. The reduction in the dimensionality of configuration space

further increases the range of accessible problems. This thesis is devoted to the

construction and implementation of algorithms which incorporate the rigid-body

approximation into existing Monte Carlo methods for solving the quantum me-

chanical many-body problem.

Monte Carlo estimators are constructed as averages over samples drawn from

some probability distribution. If this distribution is known in closed form the

samples can be generated by application of the Metropolis algorithm. In most

cases the distribution is not known in closed form or even representable with a finite

number of variables. If this distribution is the dominant eigenstate of some known

operator then a stochastic implementation of the power method can be used to

generate the required samples. For the quantum mechanical problem this operator

can be taken to be the imaginary-time evolution operator and its application can



be represented in terms of random walks. For rigid bodies, this method involves the

implementation of rotational Brownian motion. The use of quaternion algebra to

implement this rotational motion enhances simplicity, performance, and numerical

stability.

The method described above can be generalized to investigate excited state

properties using correlation function Monte Carlo which is a Monte Carlo imple-

mentation of the Rayleigh-Ritz variational method. This generalization requires

the construction of a trial subspace which is then subjected to the variational

method resulting in a generalized eigenvalue problem.

It is important to represent optimized trial states accurately and efficiently.

For this purpose, we write trial states as functions of invariant polynomials of the

interparticle distances. By reducing the number of free interparticle distances,

the rigid-body approximation greatly simplifies the construction of a basis used

to represent the necessary trial states. The same applies to the so-called guiding

function which is used to sample configurations that simultaneously represent all

trial states.

A computer program is written to test these algorithms on a number of prob-

lems. Results for simple test problems are in agreement with exact solutions.
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CHAPTER 1

Introduction

In the earliest days of quantum mechanics Schrödinger pointed out the re-

markable similarity between the Schrödinger equation in imaginary time, τ = it,

∂ψ

∂τ
=

~
2m

∇2ψ − V ψ (1)

and the diffusion equation [1].

∂C

∂t
= D∇2C (2)

This similarity suggests the possibility of finding solutions to quantum mechanical

problems through the use of random walks.
Many years later at Los Alamos a group of physicists working on the Manhat-

tan Project developed a statistical approach for the study of differential equations
called the Monte Carlo method [2]. The birth of the Monte Carlo method can also
be viewed as the rebirth of method called statistical sampling which was about to
become much more useful with the arrival of the first computers. The first de-
scription of the diffusion Monte Carlo method appears as part of this work and is
attributed to a suggestion by Fermi who stated:

. . . the time-independent Schrödinger equation

∇2ψ = (E − V )ψ (3)

could be studied as follows. Re-introduce time dependence by consid-
ering

u = ψe−H t (4)

u will obey the equation

∂tu = ∇2u− V u (5)

The last equation can be interpreted however as describing the behavior
of a system of particles each of which performs a random walk, i.e.,
diffuses isotropically and at the same time is subject to multiplication,
which is determined by the point value of V .

1



In this way, a population of walkers diffusing through configuration space can be

used to generate samples from the unknown probability distribution corresponding

to the ground state wavefunction. Specific methods for accomplishing this will be

discussed in Chapter 2. These methods will be related to the quantum mechanical

problem in Chapter 3 and will lead to a specific algorithm for estimating ground

sate properties of rigid-bodies in Section 3.5.

The Metropolis method for generating a sequence of random samples from a

known probability distribution was introduced in 1953 [3], and the method would

be generalized by Hastings [4] in 1970. The Metropolis-Hastings method can be

used to construct a Markov process with an arbitrary probability density as it’s

stationary state. In Section 2.2, I will show how to use this simple algorithm to

construct estimators for expectation values as averages over random samples drawn

form a known probability distribution.

The Rayleigh-Ritz variational method is an extension of the variational prin-

ciple. The method is based on a linear expansion of the solution of the eigenvalue

problem at hand where the expansion coefficients are determined by a variational

procedure. Wave functions are written as linear combinations of basis states. Sta-

tionary points are obtained from equating derivatives to zero and can be found by

solution of a generalized eigenproblem. It can be shown that the eigenvalues are

upper bounds on the exact energy levels. In most cases the high dimensionality

of the integrals required to evaluate the matrix elements leaves us no choice but

to estimate their values using Monte Carlo methods. A review of this method is

given in Section 3.6.

The variational calculation described above produces approximate eigenstates

as linear combinations of the basis states with coefficients that are determined

through solution of the generalized eigenproblem. These approximate eigenstates

2



are limited by the completeness of the basis used to represent them. A basis

set that spans the same invariant subspace as the exact eigenstates will provide

exact results with zero variance. In basis set that does not span this subspace will

result in a variational bias which can be removed by application of diffusion Monte

Carlo in the evaluation of matrix elements. This procedure, known as correlation

function Monte Carlo [5], is discussed in Section 3.6.2.

One of the central problems in quantum Monte Carlo is the construction of

a basis used for representing these approximate eigenstates. Evaluation of these

states and their derivatives can be the most computationally expensive part of a

quantum Monte Carlo program. In practice, the best way to improve upon results

is to use a more complete basis in the sense that it has maximum overlap with

the subspace spanned by the exact eigenstates. Therefore, what is needed is as

complete a basis as possible while at the same time containing a minimal number

of terms. Borrowing from the field of commutative algebra, such a basis can be

constructed from the set of invariant polynomials associated with some symmetry

group [6]. Depending on the symmetry group, this can result in a large reduction

of the number of terms to be evaluated. A simple example of this is given in

Section 4.3. The construction of these basis states is described in Section 4.1 and

a simple example of how to construct the set of invariant polynomials is given in

Section 4.3. In Section 4.3.3 it is demonstrated that the rigid-body approximation

results in a further reduction of the number of terms required to construct these

basis states.

The Schrödinger equation in imaginary time can be transformed into an equa-

tion for diffusion, branching, and drift with the introduction of a guiding function

as shown in Section 3.5. This is known as the importance sampling transformation

and it allows for the random sampling of configuration space to be guided into

3



areas that contribute more to the integral. In this case, Monte Carlo estimates

take the form of a weighted average. Section 4.2 deals with the construction and

optimization of this guiding function which can be carried out by maximizing the

efficiency of this weighted average.

Trial states are written as functions of the basis of invariant polynomials

with many linear and non-linear parameters. The linear parameters are found by

solution of the generalized eigenproblem as described above. Section 4.1.1 describes

the optimization of the non-linear parameters by minimization of the variance of

the local energy, EL = H ψ
ψ

which is clearly a constant if ψ is an eigenstate. For

each set of non-linear parameters the linear parameters must be recalculated. Full

optimization of the trial states requires a linear optimization nested in a non-linear

one.

Rigid-body diffusion Monte Carlo [7] is a variant of the diffusion Monte Carlo

method that reduces the dimensionality of configuration space by decoupling high-

frequency intramolecular vibrations from the low-frequency intermolecular mo-

tions, and treating molecules as quantum mechanical tops. This approximation

greatly increases the scope of the problems that are accessible to Monte Carlo

methods. Much of this thesis is devoted to the implementation of the methods

described above within the rigid-body approximation.

In the case of quantum mechanical tops, the diffusion required for sampling

takes the form of rotational Brownian motion. For performance, simplicity, and nu-

merical stability, these rotations are implemented with quaternion algebra. Quater-

nions are an extension of complex numbers that can be used to implement rotation

in three dimensions and are defined in Section 5.1. The representation of rotations

with quaternion algebra is described in Section 5.2. Orthogonal matrices represent

pure rotations, that is, they do not change the shape of the object they rotate.

4



Numerically, products of rotation matrices implemented with finite precision will

eventually loose orthogonality, resulting in distortion of body being rotated. Unit

quaternions can be used to represent pure rotations. Quaternions need only be

normalized to avoid this problem which is less expensive than orthogonalization.

The resulting numerical stability allows for the location to be calculated from a

cumulative rotation product applied to the initial state, and removes the need to

locate the principal axes by diagonalizing the moment of inertia tensor every step.

The implementation of rigid-body diffusion Monte Carlo using quaternion algebra

is described in Section 6.4.

In Chapter 7 specific examples for toy problems are presented. These problems

are chosen to be solvable by other means in order to demonstrate the correctness

of the methods.

This work is devoted to the development of the rigid-body diffusion Monte

Carlo method. This development includes the adaptation of some existing quantum

Monte Carlo methods to the rigid-body approximation, as well as the addition of

some new algorithms. The primary contributions of this work to existing methods

include an algorithm for the implementation correlation function Monte Carlo

within the rigid-body approximation that incorporates trial states constructed from

a basis of primary invariants and a new algorithm for implementing rotational

Brownian motion that takes full advantage of quaternion algebra.

5



List of References

[1] E. Schrodinger, “Uber die umkehrung der naturgesetze,” Sitzber. Preuss. Akad.
Wiss. Phys.-math. Kl, pp. 144–153, 1931.

[2] N. Metropolis and S. Ulam, “The Monte Carlo method,” Journal of the Amer-
ican Statistical Association, vol. 44, no. 247, pp. 335–341, Sept. 1949.

[3] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equa-
tion of state calculations by fast computing machines,” J. Chem. Phys., vol. 21,
p. 1087, 1953.

[4] W. Hastings, “Monte carlo samping methods using markov chains and their
applications,” Biometrika, pp. 97–109, 1970.

[5] D. M. Ceperley and B. Bernu, “The calculation of excited state properties with
quantum Monte Carlo,” J. Chem. Phys., vol. 89, p. 6316, 1988.

[6] A. Mushinski and M. P. Nightingale, “Many-body trial wave functions for
atomic systems and ground states of small noble gas clusters,” J. Chem. Phys.,
vol. 101, p. 8831, 1994.

[7] V. Buch, “Treatment of rigid bodies by diffusion Monte Carlo: Application to
the para-H2 . . .H2O and ortho-H2 . . . -H2O clusters,” J. Chem. Phys., vol. 97,
p. 726, 1992.

6



CHAPTER 2

Monte Carlo background

The purpose of this chapter is to review some of the relevant Monte Carlo

methods that will be related to the quantum mechanics of rigid-bodies in chap-

ter 3. Section 2.1 will show how to construct an estimator for some observable,

O, with a probability distribution, ρ(x), when a set of configurations, {xi}, sam-

pled from that distribution is available and that observable is diagonal or near-

diagonal in the chosen representation. Next, section 2.2, will describe the use of

the Metropolis-Hastings method to generate sample configurations, {xi}, from a

known probability distribution, ρ(x). Then, section 2.3, will show how to sample

from an unknown distribution, ψ0, which is an eigenstate of some operator, G,

using projector methods. Finally, section 2.4 introduces a guiding function, ψg,

which will allow us to sample from the mixed distribution, ψgψ0. In addition,

the guiding function allows one to sample from two or more overlapping distribu-

tions simultaneously and even from distributions containing negative probability

amplitudes. This transformation will enable us to sample selectively from more

important areas of configuration space.

2.1 Estimators

Suppose a set of N configurations , {xi}, sampled from a probability distri-

bution, ρ(x), is available. An estimate of an expectation value in that distribution

can be constructed as an average over the configurations {xi}.

Oρ =

∫
O(x)ρ(x)dx = lim

N→∞

1

N

N∑
i=1

O(xi) (6)

7



2.1.1 Example

As a simple example consider the Monte Carlo integration for the area of a

circle. Uniformly distributed points are selected at random inside a square of

Figure 1: Monte Carlo integration for estimating π.

known area.

ρ(x) =
1

Area
(7)

The ratio of total number of points inside to points outside provides an estimate

for the ratio of the area of the circle to the total sampling area.

O(x) =


0, outside

1, inside

(8)

π ≈ 1

N

N∑
i=1

O(xi) (9)

For quantum mechanical calculations we are interested in estimating expec-

tation values of the form

O0,0 ≡
〈ψ0|Ô|ψ0〉
〈ψ0|ψ0〉

=

∫
ψ∗0(x)Ôψ0(x)dx∫
|ψ0(x)|2dx

(10)

8



In general, the eigenstate, ψ0, is not known exactly, and the dimensionality of the

configuration space may make numerically exact computation impossible.

2.2 Metropolis-Hastings Method

The Metropolis-Hastings method [1] can be used to generate a set of config-

urations {xi}, sampled from a known probability distribution, ρ(x). Given some

current configuration x, configuration y is proposed, with probability T (y|x). The

proposed configuration, is then accepted as x′ = y, with probability A(y|x). If

a configuration is not accepted the previous configuration will be used, x′ = x.

Samples are generated by a transition matrix with elements

M(x′|x) = A(x′|x)T (x′|x) +

{
1−

∫
dyA(y|x)T (y|x)

}
δ(x′ − x) (11)

The acceptance matrix is chosen such that detailed balance is satisfied.

A(x′|x) = min

{
1,
T (x|x′)ρ(x′)
T (x′|x)ρ(x)

}
(12)

M(x′|x)ρ(x) = M(x|x′)ρ(x′) (13)

Repeated application of M will result in the unique stationary distribution ρ(x). It

is necessary that the transition matrix, M , is such that every point in configuration

space can be reached from every other point in a finite number of steps. For

discrete spaces what this means is clear, for continuous ones the situation is more

complicated, but the technical details are beyond the scope of this thesis.

2.3 Projection

It is possible to generate samples from an unknown eigenstate , ψ0, of some

operator, G, by projection. The projected eigenstate, ψ0, will be the state with

the eigenvalue largest in magnitude the eigenstate of which has non-vanishing

overlap with the initial state. To understand this, expand some initial state, ψT ,

9



in eigenstates of that operator.

G|ψi〉 = λi|ψi〉, λ0 > λ1 > · · · > λN (14)

|ψ(τ = 0)〉 = |ψT 〉 =
∑
n

an|ψn〉 (15)

For simplicity, we restrict the eigenvalues to be strictly positive. Repeated appli-

cation of the operator, G, projects out the dominant eigenstate, provided there is

some overlap with the initial state, a0 > 0.

|ψ(τ)〉 = Gτ (
∑
n

an|ψn〉) =
∑
n

anλ
τ
n|ψn〉 ≈ a0λ

τ
0|ψ0〉

{
1 + O

(
|λ1

λ0

|τ
)}

(16)

If all G elements are non-negative this projection can be implemented in the fol-

lowing way. ψ(x) can be represented by a population of walkers in configuration

space. The probability of the walker having configuration x after τ steps is pτ (x).

If the dominant eigenvalue is one, a walk through configuration space, generated

by application of G(x′|x), produces an stationary probability distribution of walker

configurations that approaches the dominant eigenstate in the limit of infinitely

many steps.

λ0 = 1, lim
τ→∞

Gτ (x|x′)p0(x) = ψ0(x) (17)

If the dominant eigenvalue is not one then, our walk does not conserve probability,

and the distribution generated by repeated application of G is not stationary. In

this case, it is possible to define a probability conserving walk whose stationary

distribution can be reweighted to give ψ0(x). This process can be constructed

by factoring G into a stochastic part, and non-stochastic part associated with a

weight. The walkers in this more general method are assigned a weight, W , as well

as a configuration.

G(x′|x) = P (x′|x)w(x), w(x) =
∑
x′

G(x′|x) > 0 (18)

10



Walks are generated by application of the stochastic part of G(x′|x).

xτ+1 = x′,with probability P (x′|xτ ) (19)

While the weight of a walker is produced by the non-stochastic part.

Wτ+1 = w(xτ )Wτ , Wτ ≡ Wτ (xτ−1, xτ−2, · · · , x0) =
τ−1∏
i=0

w(xi) (20)

æ

æ

æ

æx0

x1

x2

x3

w0

w1

w2
Wτ =

∏
wi

Figure 2: Weighted path

The probability distribution of walker configurations has the following rela-

tionship to the dominant eigenstate.

lim
τ→∞

Wτpτ (x) ∝ ψ0(x) (21)

An estimate for the stationary distribution can be constructed as an average over

samples.

ψ0(x) ∝ lim
τ→∞

∑
x′

Gτ (x|x′)p0(x
′) = lim

τ→∞

{
lim
N→∞

1

N

N∑
i=0

Wτδx,xτ

}
(22)

In general, the weight, w(x), in Equation 18 cannot be computed directly. In

that case, w(x), is computed on the fly so that G(x|x′)/w(x) has eigenvalue unity.

The fact that this value is known only after the fact introduces what is known

as population control bias [2]. The presence of the fluctuating weights in these

expressions increases statistical noise. There are a number of ways to mitigate this

problem. One method is to advance a large collection of walkers simultaneously

11
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(a) Walkers

ψT (x) ≈ 1
N

∑
δx,x0,i

ψ0(x) ≈ 1
N

∑
Wτ,iδx,xτ,i

(b) Histogram of Walker Locations

Figure 3: A population of random walkers can be used to sample from an unknown
probability distribution

that are capable of multiplying or vanishing depending on the weights, another is

the importance sampling transformation of Section 2.4

In practice, the Metropolis method can be combined with projection. If the

initial configuration for the walk is chosen by Metropolis method from ψT (x),

that is, initial configurations proposed with probability P (x′|x) are accepted with

probability

A(x′|x) = min

{
1,
G(x|x′)ψg(x′)
G(x′|x)ψg(x)

}
(23)

The distribution sampled for zero projection time will be ψg(x). Because it samples

ψ0 instead of ψ2
0, this method is not yet able to estimate expectation values of the

form in Eq. (10). In the next section I will introduce a similarity transformation

to address this problem.

2.4 Importance Sampling Transformation

Expectation values of the form in Eq. (10) require us to sample from ψ2
0 not

ψ0. A step in this direction is to sample from the “mixed distribution”, ψ0ψg, and

construct the “mixed estimator”, O0,g. Where ψg is the “guiding function”, which

needs to be positive, and have sufficient overlap with the desired eigenstate or

subspace. In addition to enabling construction of the mixed estimator, the guiding

function can be used to guide the walk to the more statistically important parts
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of configuration space. This mixed estimator can be constructed by a change of

basis using the similarity transform

G̃ = ψgGψ
−1
g = P̃ w̃ (24)

The matrix giving this similarity transform is diagonal in the position representa-

tion, which is why it looks like a wavefunction instead of a matrix. If the eigenstate

of G is ψ0 then, the transformed operator G̃ has the eigenstate ψgψ0.

Gψ0 = λψ0, G̃ψgψ0 = λψgψ0 (25)

In this case we are calculating expectation values of the form.

O0,g ≡ lim
τ→∞

〈ψg|GτÔ|ψg〉
〈ψg|Gτ |ψg〉

=
〈ψ0|Ô|ψg〉
〈ψ0|ψg〉

=

∫
ψ0(x)Og(x)ψg(x)dx∫
ψ0(x)ψg(x)dx

=

∫
ψ0(x)ψg(x)OL(x)dx∫

ψ0(x)ψg(x)dx
(26)

Where the configurational eigenvalue, Og(x), is defined by

〈x|Ô|ψg〉 ≡ Og(x)ψg(x) (27)

and the local operator , OL(x), by

OL(x) ≡ ψ−1
g (x)Og(x)ψg(x) (28)

The configurational eigenvalue can be calculated it the operator ids diagonal or

near diagonal in the chosen representation. An estimator can be constructed as a

weighted average of the local operator over N projected configurations.

O0,g = lim
τ,N→∞

{∑N
i=1 W̃τ,iOL(xτ,i)
1
N

∑N
i=1 W̃τ,i

}
(29)

where W̃τ =
∏
w̃(x) as in Eq. (20). For Hermitian operators that commute with

G, O0,g = O0,0 and the mixed estimator gives the unbiased expectation value of

Equation 10 [2]. It is important to note that if the guiding function is an exact

13



eigenstate then the estimator will yield the exact result with zero variance. For

guiding functions that are nearly eigenstates, this transformation results in much

more stable weights and reduces the associated statistical noise. In section 3.5, this

importance sampling transformation will be applied to the quantum mechanical

many-body problem with the substitution: G = exp (−τH ).
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CHAPTER 3

Relation to Quantum Mechanics

In this section, I will relate the previous discussion to the quantum mechanics

of molecules. The goal of this section is to construct estimators for ground state

observables. In order to simplify the calculation, molecules will be approximated

by rigid quantum mechanical tops with their internal degrees of freedom frozen

out. Section 3.1 will review the variational method and show how to construct

a Monte Carlo estimator in the case where the approximate eigenstate is known.

Section 3.2 will relate the projector method from the previous section to the quan-

tum mechanical problem. The operator, G, from the Chapter 2 is replaced by the

quantum mechanical imaginary-time evolution operator, G = exp (−τH ). The

dominant eigenstate of this operator, corresponds to the ground state. Using the

short-time approximation for G, described in Section 3.4, I will show that the ap-

plication of the stochastic part of this operator on our walkers produces diffusion.

In the context of the quantum mechanical rigid-body problem this diffusion takes

the form of rotational Brownian motion. The part that does not conserve proba-

bility, is related to the potential and can be incorporated by assigning the walkers

a weight. Next, Section 3.5 introduces the guiding function, and the change of

basis that is the importance sampling transformation. This transformation serves

to guide the sampling into areas of configuration space that contribute the most

to the integral. Application of the importance sampled imaginary-time evolution

operator causes our walkers not only to diffuse, but also to drift. An estimator

for ground state observables is derived, and a specific algorithm given for the im-

plementation of these methods on a system of quantum mechanical tops. Section

3.6 generalizes all of these ideas to apply to excited state properties and can be

16



viewed as a diffusion Monte Carlo implementation of the Rayleigh-Ritz variational

method.

3.1 Variational Monte Carlo

The variational principle states that the expectation value of the Hamiltonian

in some trial state, ψT , is always greater than or equal to the ground state energy,

E0.

E0 ≤
〈ψT |H |ψT 〉
〈ψT |ψT 〉

(30)

where the reduced Hamiltinain in dimensionless units is

H = −1

2
∇2 + V (31)

If the problem is formulated in terms of integrals the equation to be minimized is

E0 ≤
∫
dxψ∗T (x)H ψT (x)∫
dxψ∗T (x)ψT (x)

(32)

Variational Monte Carlo Estimator

In general, the dimensionality of configuration space often makes exact in-

tegration impossible. In these cases Monte Carlo estimators for these integrals

can be constructed as averages over samples. Suppose we have an approximate

ground state wavefunction, ψT (x) ≈ ψ0(x), and a set of configurations sampled

from ρ(x) = |ψT (x)|2R
|ψT (x)|2dx . As in section 2.4, an estimator for some observable in

the trial state can be constructed in the following way. Define the configurational

eigenvalue as

OT (x)ψT (x) ≡ 〈x|Ô|ψT 〉 (33)

An estimator can be constructed by rewriting our observable in the form.

OT,T ≡
〈ψT |Ô|ψT 〉
〈ψT |ψT 〉

=

∫
ψ∗T (x)OT (x)ψT (x)dx∫

|ψT (x)|2dx

=

∫
|ψT (x)|2

{
ψ−1
T (x)OT (x)ψT (x)

}
dx∫

|ψT (x)|2dx
(34)
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Define the local operator OL, as

OL(x) = ψT (x)−1OT (x)ψT (x) (35)

The average over of the local operator over configurations is an estimator for the

expectation value.

lim
N→∞

1

N

N∑
i=1

OL(xi) =

∫
|ψT (x)|2OL(x)dx∫

|ψT (x)|2dx
= OT,T ≈ O0,0 (36)

If the trial state is an eigenstate of Ô, then the local operator is a constant, and the

estimate is exact. In most cases it is not possible to find or even represent the exact

eigenstate. This limitation results in a variational bias. In the next section I will

show how to use the projector method of Section 2.3 to systematically remove this

variational bias by using the imaginary-time evolution operator to sample from an

unknown eigenstate.

3.2 The Schrödinger Equation and Diffusion

Except for the term involving the potential energy, the Schrödinger equation

in imaginary-time is the diffusion equation. This implies the possibility of finding

solutions to the Schrödinger equation through the use of random walks.

Using the projector method described in Section 2.3, with the imaginary-time

evolution operator acting as the projection operator in Eq. (16) it is possible to

sample from the lowest non-orthogonal state. For short times, this imaginary-time

evolution operator can be approximately split into a probability conserving part

corresponding to diffusion, and a weight.

G = exp {−τH } ≈ exp
{
∆τ∇2

}︸ ︷︷ ︸
free particle diffusion

exp
{
−∆τ V̂

}
︸ ︷︷ ︸

weight

= Pw (37)

Since the operators in the Hamiltonian do not commute, this approximation is

only good for small ∆τ . On the other hand, ∆τ has to be large enough to allow

18



the exploration of configuration space and the total projection time over a path

must be adequate to remove the variational bias discussed in 3.1.

3.3 Rigid Bodies

Molecules can be represented by asymmetric tops interacting via some poten-

tial function. The Hamiltonian for N of these rigid bodies in dimensionless units

is

H =
∑
m

{
− 1

2Mm

∇2
m −

1

2Im,p

∑
p

∂2
φm,p

}
+ V̂ (38)

Rigid bodies are indexed by m, and their principal axes by p. Im,p is the moment

of inertia of the m’th body, about its p’th principal axis. The angles of rotation

about the principal axes are φm,p. The Laplacian is with respect to the coordinate

of the center of mass of body m.

pm,1

pm,2

pm,3

φm,1

φm,2

φm,3

Figure 4: Water molecule as an example quantum mechanical top.
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3.4 Short-Time Approximation

For short times, the propagator can be split into translational and rotational

parts.

Gtotal(~R, ~R
′, ~Φ, ~Φ′; ∆τ) ≈ Grot(~Φ, ~Φ

′; ∆τ)Gtrans(~R, ~R
′; ∆τ) (39)

where ~R is a vector that defines the Cartesian coordinates of the centers of mass,

and ~Φ are the angular coordinates defining the molecular orientations. Similarly,

the rotational propagator can be separated by individual coordinates.

Grot(~Φ, ~Φ
′; ∆τ) ≈

∏
i

G(φi, φ
′
i; ∆τ) (40)

For small ∆τ the propagator can be approximated by Trotter decomposition. This

approximation reduces the time step error from O(∆τ 2) to O(∆τ 3).

e−∆τH = e−∆τ(T̂+V̂ ) ≈ e−∆τ V̂
2 e−∆τT̂ e−∆τ V̂

2 +O(∆τ 3) (41)

The term involving V̂ can be associated with a non-conservation of probability,

which we will implement as a weight. A short-time approximation for the propa-

gator is that of free particle diffusion multiplied by a weight factor. For a single

rotational coordinate in a potential that depends only on φ, this approximation is

[1]

G(φ′, φ; ∆τ) = 〈φ′| exp
{(
−d∂2

φ + V̂
)

∆τ
}
|φ〉

≈ 1√
4πd∆τ

exp

{
−(φ′ − φ)2

4d∆τ

}
︸ ︷︷ ︸

free-particle diffusion

exp

{
∆τ

2
(V (φ′) + V (φ))

}
︸ ︷︷ ︸

weight

(42)

where d = 1
2Iφ

. Since the propagator eventually propagates an initial state to the

lowest non-orthogonal state as in Eq. (16), we can use this propagator to generate

samples from the ground state, ψ0.

3.5 Quantum Importance Sampling Transformation

In this section, I will incorporate the guiding function of Sec. (2.4) to define

the mixed distribution, F , and the importance sampling transformation. This
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transformation can serve to improve the statistics of our estimators by guiding the

sampling to more significant areas of configuration space.

F ≡ ψ0ψg (43)

In order to find the corresponding propagator

G̃ = ψgGψ
−1
g = eψgH ψ−1

g (44)

The transformed Schrödinger equation is.

(
ψgH ψ−1

g

)
F = ψg

{
−∇2 F

ψg
+ V

F
ψg

}
= −∂τF (45)

The transformed Schrödinger equation can be cast into an equation for diffusion,

branching, and drift with the following definition of the “quantum force” ~D, and

local energy EL.

~D = 2
∇ψg
ψg

, EL = −∇
2ψg
ψg

+ V (46)

−∇2F +∇ ·
(
F ~D

)
+ ELF = −∂τF (47)

The term quantum force is unfortunate. The ~D term is better understood in this

context as a drift velocity. The local energy, EL, is associated with the violation

of probability conservation in Eq. (18), and will simply replace the potential in

the expression for the weight, w. It can be shown that an approximation for

the importance sampled imaginary-time evolution operator for a single angular

coordinate representing rotation about an axis with moment of inertia, I, is

G̃rot(φ
′, φ; ∆τ) ≈ P̃ (φ′, φ; ∆τ)w̃(φ′, φ)

=
1√

4πd∆τ
exp

{
−(φ′ − φ−D(φ)∆τ)2

4d∆τ

}
︸ ︷︷ ︸

drift/diffusion

exp

{
∆τ

2
[EL(φ′) + EL(φ)]

}
︸ ︷︷ ︸

weight

(48)

where d = 1
2I

. This propagator can be used to generate samples from the distribu-

tion ψ0ψg. This is the same as the propagator for translational coordinates with the
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mass replacing the moment of inertia in the diffusion constant, d. An algorithm

for estimating ground state observables that incorporates this transformation is

given in Algorithm 1.
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Algorithm 1 A simple algorithm for estimating ground state expectation values
for m quantum mechanical rigid bodies

• Generate a set of N initial configurations

{~x0,i} =
{
~R0,i, ~Φ0,i

}
(49)

sampled from ψ2
g , by Metropolis. Assign to each of these a weight W0,i = 1.

• Propagate each configuration with the importance sampled propagator.

G̃(x′, x; ∆τ) = P̃ (x′, x; ∆τ)w̃(x, x; ∆τ) (50)

The application of P̃ (x′, x; ∆τ) on an configuration consists of a Gaus-
sian distributed random step ξ, for all coordinates with σ =

√
2d∆τ ={√

∆τ
Im,p

,
√

∆τ
Mm

}
, and a drift step, D∆τ .

– For a Cartesian center of mass coordinate ~rm, of rigid-body m, with
mass Mm.

~rm(τ + ∆τ) = ~rm(τ) + ~ξm + 2
~∇mψg(xτ )

ψg(xτ )
∆τ (51)

– For an angular coordinate of rigid-body m, about principal axis p,
with moment of inertia Im,p.

φm,p(τ + ∆τ) = φm,p(τ) + ξm,p + 2
∂φm,pψg(xτ )

ψg(xτ )
∆τ (52)

– The weight of the configuration W , is multiplied by w.

Wτ (xτ , xτ−∆τ , · · · , x0) = Wτ−∆τe
∆τ
2 [EL,ψg (xτ )+EL,ψg (xτ−∆τ )] (53)

where the local energy is

EL,ψg(x) = −
∑
m

(
1

2Mm

∇2
mψg(x)

ψg(x)
+
∑
p

1

2Im,p

∂2
m,pψg(x)

ψg(x)

)
+ V (x)

(54)

• Estimate observables as weighted averages over projected configurations.
For example, an estimate of the ground state energy is

E0 = lim
τ,N→∞;∆τ→0

{∑N
i=1Wτ,iEL(xτ,i)∑N

i=1Wτ,i

}
(55)
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3.5.1 Radial Coordinate

Consider the two-body Hamiltonian where the kinetic energy due to the mo-

tion of the center of mass has been separated out, and what remains is the same

as the Hamiltonian of a single particle of reduced mass µ.

H = − 1

2µ

1

r2
∂rr

2∂r + L̂2 + V (56)

There is no reason why the radial part of our rotors Hamiltonian has to be dis-

carded. There may be circumstances where the differing time scales of vibrational

and rotational motions justify separate treatment, but there may also be cases

where the advantage of spherical center of mass coordinates goes beyond that.

In Cartesian coordinates, if the two masses of the rotor differ greatly, then the

Brownian motion required for diffusion Monte Carlo to generate its samples has a

time-step that is limited by the smaller mass. As a practical matter this means

that it becomes impossible for the system to effectively explore it’s configuration

space in a reasonable number of Monte Carlo steps. If there was a way to pro-

pose configurations based on the diffusion in spherical coordinates, then these two

masses could be treated democratically. All that is needed is the short time prop-

agator for the radial motion. Following the method of Section (2.4), start with

the mixed distribution.

F(r) ≡ ψ0(r)ψg(r) (57)

And find the corresponding propagator

G̃ = ψg(r)Gψ
−1
g (r) = eψg(r)Hψ

−1
g (r) (58)

The transformed Schrödinger equation is.

{
ψg(r)Hψg(r)−1

}
F(r) = ψg(r)

{
− 1

2µr2
∂rr

2∂r

[
F(r)

ψg(r)

]
+ V

F(r)

ψg(r)

}
= −∂τF

(59)
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With the use of the identity,

1

r2
∂rr

2∂r

[
F(r)

ψg(r)

]
=

1

r
∂2
r

[
r
F(r)

ψg(r)

]
, (60)

the transformed Schrödinger equation can be cast into an equation for diffusion,

branching, and drift. The drift D, and local energy EL are

D(r) =
1

2µ

2
∂r

(
ψg(r)

r

)
(
ψg(r)

r

)
 =

1

2µ

(
2
∂rψg(r)

ψg(r)
− 2

r

)
(61)

EL(r) = − 1

2µ

∂
2
r

(
ψg(r)

r

)
(
ψg(r)

r

)
+ V = − 1

2µ

{
∂2
rψg(r)

ψg(r)
− 2∂rψg(r)

rψg(r)
+

2

r2

}
+ V

(62)

− 1

2µ
∂2
rF + ∂r (FD) + ELF = −∂τF (63)

If the solution to the one-dimensional problem is known to be ϕ(r), then the choice

for the guiding function ψg(r) = rϕ(r) will result in a constant local energy equal

to the exact energy of the one-dimensional problem. The short time propagator

for the radial coordinate is

G̃rot(r
′, r; ∆τ) ≈ 1√

4πd∆τ
exp

{
−(r′ − r −D(r)∆τ)2

4d∆τ

}
exp

{
∆τ

2
[EL(r′) + EL(r)]

}
.

(64)

where d = 1
2µ

is our new democratic diffusion constant. This “local energy” only

exists to help generate samples from the desired distribution, and should not be

confused with the configurational eigenvalue which will be used to estimate the

energy.

3.6 Excited States

In this section I will review the variational method as it applies to excited

states, and combine it with the projector methods above. The idea is to solve

H |Ψ〉 = E|Ψ〉 by expansion in basis functions. This transforms the Schrödinger

25



equation, a differential equation, into a linear algebra problem, the generalized

eigenvalue problem. Once this is done the matrix elements can evaluated in the

mixed distribution in order to eliminate the variational bias resulting from the

incomplete trial basis set.

3.6.1 Reyleigh-Ritz Variational Method and the Generalized Eigen-
problem

Begin with an arbitrary state built from some trial basis set, {|bi〉} where, for

simplicity, ai ∈ R. The results can easily be generalized to complex ai.

|Ψ〉 =
∑
i

ai|bi〉 (65)

Define the matrix elements

Ni,j = 〈bi|bj〉, Hi,j = 〈bi|Ĥ |bj〉 (66)

Upper bounds on the true eigenvalues are found through extremization the energy

with respect to the expansion coefficients [2].

E =
〈Ψ|Ĥ |Ψ〉
〈Ψ|Ψ〉

=

∑N
i,j=1 aiajHi,j∑N
i,j=1 aiajNi,j

(67)

dE =
N∑
i=1

{
∂ai

(∑N
i,j=1 aiajHi,j∑N
i,j=1 aiajNi,j

)
dai

}
= 0 (68)

Yields the set of N secular equations

∑
j

(Hi,j − ENij) aj = 0, ∀i = 1, N (69)

These can be rewritten as an generalized eigenproblem.

H~a = EN~a (70)

~a is the column-vector representation of |Ψ〉 in the basis, {|bi〉}. It is an important

quality of this method that if the subspace spanned by the trial basis includes that
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spanned by the eigenstates then the method will yield an exact solution. In the

next section I will apply the projector methods described in Sections 2.3 and 2.4

to remove the variational bais of the estimators of the individual matrix elements.

3.6.2 Subspace Projection and Correlation Function Monte Carlo

The variational bias resulting from an incomplete basis set can be removed by

projection of the matrix elements onto the desired subspace. The time dependent

matrix elements are defined as

Nij(τ) = 〈bi|Gτ |bj〉 =

∫
dx1dx2bj(x2)G(x2, x1; τ)bi(x1) (71)

Hij(τ) = 〈bi|H Gτ |bj〉 =

∫
dx1dx2bj(x2)Hi(x2)G(x2, x1; τ)bi(x1) (72)

where Hi(x)bi(x) ≡ 〈x|Ĥ |bi〉 is the configurational eigenvalue as in Eq. (33).

Once these are evaluated they can be inserted into the time dependent generalized

eigenproblem.
N∑
j=1

[Hi,j(τ)− Ek(τ)Ni,j(τ)] ak,j(τ) = 0 (73)

as long as there is some overlap between the basis {bi} and the eigenstates {ϕi}.

Ek(τ) converges exponentially and monotonically to the exact energy levels [3].

lim
τ→∞

Ek(τ) = Ek; 1 ≤ k ≤ N (74)

Transformation of the basis set (b′ = T̂ b, det(T ) 6= 0) has no effect on the

eigenvalues. If H,N are symmetric it is possible to transform to a basis where

N = 11 and H is diagonal with elements Ek(τ). In this basis the projected basis

sets converge exponentially to the exact eigenfunctions.

lim
τ→∞

e−τH bi = b̃i = ϕi (75)

All that remains is to construct estimators for these matrix elements. The Ni,j and

Hi,j matrices can be rewritten in terms of the importance sampled imaginary-time
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evolution operator. In order for all matrix elements to be collected over the same

random walk, the matrix elements are given for the case where the distribution

sampled from for 0 projection time is ψ2
g(x1). As a practical matter, this can be

guaranteed by a Metropolis accept reject step.

Nij(τ) =

∫
dx1dx2Bj(x2)G̃(x1, x2; τ)Bi(x1)ψ

2
g(x1) (76)

Hij(τ) =

∫
dx1dx2Bj(x2)Hj(x2)G̃(x1, x2; τ)Bi(x1)ψ

2
g(x1) (77)

G̃(x1, x2; τ) = ψg(x2)〈x2|e−τH |x1〉ψ−1
g (x1), Bi(x) =

bi(x)

ψg(x)
(78)

Estimators for the Ni,j(τ) and Hi,j(τ) can be written as averages over samples.

Nij(k∆τ) = 〈Bi(xn)Wn,n+kBj(xn+k)〉 (79)

Hij(k∆τ) = 〈Bi(xn)Wn,n+kBj(xn+k)Hj(xn+k)〉 (80)

The required weights depend on the local energy of the guiding function.

Wn,n+k =
k+n−1∏
j=n

w̃(xj+1, xj; ∆τ)

= exp

{
−∆τ

2

n+k−1∑
j=n

[
EL,ψg(xj) + EL,ψg(xj+1)

]}
(81)

where the local energy of the guiding function is defined as

EL,ψg(x) =
Hg(x)ψg(x)

ψg(x)
(82)

N and H are just averages because the probability distribution of the path is.

ρ(xn) = ψ2
g(xn)

n+k−1∏
j=n

Gd(xj+1, xj, τ) (83)

In the long projection limit ρ(x) becomes the mixed distribution ψg(x)ψ0(x).

lim
τ→∞

{
ψ2
g(xn)

n+k−1∏
j=n

Gd(xj+1, xj, τ)

}
= ψg(xn)ψ0(xn) (84)
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Although Hi,j is symmetric in i, j, one should resist the temptation to symmetrize

the corresponding estimator as it destroys the zero-variance property and adds

noise to the calculation [4].

As the matrix elements are projected in imaginary-time the information about

the excited states decays exponentially. Eventually the excited states will one by

one disappear into the statistical noise and the matrix pencil, (H − EN), will

become singular. Methods for dealing with this instability include singular value

decomposition and generalized upper triangular decomposition [5] and are beyond

the scope of this document. This problem is made worse by the fluctuating weights

which have the effect of amplifying the statistical noise. The best results are

obtained by taking projection times that are long enough to remove the variational

bias but not so long as to encounter numerical instability. In the next chapter, I will

discuss the problem of constructing basis states and choosing a guiding function

in such a way as to minimize these problems.

29



List of References

[1] A. Viel, M. V. Patela, P. Niyaza, and K. B. Whaley, “Importance sampling
in rigid body diffusion monte carlo,” Computer Physics Communications, vol.
145, pp. 24–47, 2000.

[2] J. K. L. MacDonald, “Successive approximations by the rayleigh-ritz variation
method,” Phys. Rev., vol. 43, p. 830, 1933.

[3] D. M. Ceperley and B. Bernu, “The calculation of excited state properties with
quantum Monte Carlo,” J. Chem. Phys., vol. 89, p. 6316, 1988.

[4] M. P. Nightingale and V. Melik-Alaverdian, “Optimization of ground and ex-
cited state wavefunctions and van der Waals clusters,” Phys. Rev. Lett., vol. 87,
p. 043401, 2001.

[5] J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the so-
lution of algebraic eigenvalue problems: a practical guide, Z. Bai, Ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2000.

30



CHAPTER 4

Construction of Basis States, Trial States and the Guiding Function

In this chapter I will describe, in the context of the rigid-body approximation,

the construction and optimization of the basis states, trial states and guiding

function. Section 4.1 introduces the basic form of the trial states and defines an

algorithm for their optimization. Section 4.2 describes a method for constructing

an optimized guiding function based on the efficiency of the weighted average used

to estimate observables. The invariant polynomials from which the basis states are

built are described in section 4.3. A simple example of how they are constructed is

given and there is a discussion of the reduction in the number of terms associated

with the rigid-body approximation.

4.1 Basis States and Trial Functions

The reduction of variational bias by projection described in chapter 3 comes

at the cost of statistical error. The projector method causes information about

the excited states to decay exponentially and eventually become overwhelmed by

the ground state. Keeping the necessary projection time as small as possible by

optimizing the basis states allows us to retrieve the information before it disap-

pears. This is best accomplished by optimization of the trial states. Trial states are

constructed from the basis states with linear and non-linear variational parameters.

ψT (x) ∝

(∑
i

aibi(x)

)
exp

(∑
i

αibi(x)

)
(85)

where the ai and αi are constants and the bi are configuration space functions.

4.1.1 Optimization of the Trial States

The optimal values for the non-linear variational parameters are found by

minimizing the variance of the local energy over a small Monte Carlo sample,
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which is kept fixed during the optimization. The linear parameters are optimized

by solution of the generalized eigenproblem and must be recalculated for each

new set of non-linear parameters as is described in the algorithm given. This

generalized eigenproblem is ill-conditioned in the sense that as the projection time

increases information about excited states becomes overwhelmed by the ground

state as described in 3.6.1. In addition, the basis states may be close to numerically

dependent even if they are mathematically independent. Consider, for example,

the functions xn with n = 0, 1, · · · on the interval x = (0, 1). As a function of n

these rapidly produce xn ≈ 0.

An algorithm for optimizing trial wavefunctions is given in Algorithm 2. The

Algorithm 2 Algorithm for optimizing trial wavefunctions,{ψT}

• Generate a sample of configurations from a relative probability density
function ψg(R)2, the guiding function.

• Solve ill-conditioned generalized eigenproblem for linear parameters.

• non-linear parameters are optimized by minimization of the variance of
the local energy of individual linearly optimized excited states.

χ2 =

∑
σ

{
H ψk(xσ)
ψg(xσ)

− Ek
ψk(xσ)
ψg(xσ)

}2

∑
σ
ψk(xσ)2

ψg(xσ)2

(86)

• For each choice of the non-linear parameters, new optimized linear param-
eters have to be computed. Full optimization of all parameters consists of
a linear optimization nested in a non-linear one.

factors of ψg in the denominators are due to the fact that we are calculating

expectation values in the distribution ψ2
k as averages over samples taken from ψ2

g .

4.2 Guiding Function

the need for a guiding function that allow one to sample simultaneously from

all excited states in the computation has been mentioned before. I now discuss in
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more detail how this function can be designed for high sampling efficiency. The final

ingredient in the Monte Carlo calculation is the guiding function, ψg. In an excited

state calculation, this function is chosen to have sufficient overlap with all of the

states we wish to sample, and must be positive everywhere. Since estimators are

constructed as weighted averages over samples taken from ψ2
g , optimization of this

function involves maximizing the efficiency of a weighted average (or minimizing

it’s inefficiency) as described below.

4.2.1 Efficiency of a weighted average

Estimators take the form of a weighted average. What follows assumes that

the weights are constants which they are not. The approximation of constant

weights is justified by fact that any breakdown resulting from the approximation

affects only the efficiency of the process and not the ultimate result.

µ̂ =

∑
iwixi∑
iwi

(87)

The variance of a weighted average can be used to obtain an expression for the

effective number of measurements.

σ̂2 =

{
(
∑

iwi)
2

(
∑

iwi)
2 −

∑
iw

2
i

}
︸ ︷︷ ︸

NEff
NEff−1

∑
iwi (xi − µ̂)2∑

iwi
(88)

NEff =
(
∑

iwi)
2∑

iw
2
i

(89)

In turn this can be used to define the efficiency of a weighted average.

η =
NEff

N
(90)

4.2.2 Object function

The parameters of a guiding function can be found by minimizing an object

function consisting of inefficiencies, η−1. Each trial state, ψ̃k, will contribute a
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term, ηk(w
k
σ). The weights for this term are defined as

wkσ =

(
ψ̃k(Rσ)

ψg(Rσ)

)2

(91)

and the efficiency

ηk =

(∑
σ w

k
σ

)2∑
σ(w

k
σ)

2
(92)

In the process of removing the variational bias of the trial states, there is an

additional source of fluctuating weights that reduce the efficiency. As a simple

model we consider the special case of a weighted sum with only two different

weights. One of these, without loss of generality is set to unity. The projection

weights are given by

w = exp
{
−τ

2
(Eg(R) + Eg(R

′)− 2EG)
}

(93)

Consider a special case where the weights can only take on the values one and w

with N(weight=1)
N(weight=w)

= x. The smallest efficiency, i.e. the most pessimistic estimate,

corresponds to

x =
w2

1 + w2
(94)

The efficiency at this ratio is

η =
4w2

(1 + w2)2 (95)

A typical projection time will be on the order of 1
Eg

, where Eg is the energy

associated with the guiding function. An approximate ratio of largest to smallest

projected weights

wp ≈
eEg+σg

eEg−σg
= exp

{
2σg
Eg

}
(96)

These approximations give the following expression for diffusion Monte Carlo effi-

ciency.

ηp =
4w2

p

1 + w2
p

(97)
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For stability, we insist that the new guiding function is not very different from

the old one by defining the efficiency of the guiding function, ηg, in terms of the

weights.

wgσ =

(
ψ′g(Rσ)

ψg(Rσ)

)2

(98)

ηg =
(
∑

σ w
g
σ)

2∑
σ(w

g
σ)2

(99)

An algorithm for optimizing the guiding function is given in Algorithm 3.

Algorithm 3 Optimization of the Guiding Function

• Generate initial sample from simple diffusion Monte Carlo.

• Construct optimized ground state.

• Construct corresponding guiding function.

• Add states and update the guiding function.

• The optimized guiding function will be one that minimizes the object func-
tion

O =
n∑
i=1

η−1
i + η−1

p + η−1
g (100)

4.3 Invariants

The evaluation of the trial states and their derivatives is typically the most

computationally expensive part of the calculation. The problem is how to write

these states with as few terms as possible such that the basis is as complete as

it can be. One solution for this problem is to construct a basis of fundamental

invariants from the set of interparticle distances {ri,j}. A set of invariants {Ii},

can be constructed by application of the symmetry group operations {Pi}, on

the interparticle distances. Algorithm 4 provides a method for generating these

primary invariants.
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4.3.1 Algorithm for Generating a Basis From Primary Invariants

Algorithm 4 Construction of a Basis of Primary Invariants

for D=0 to Maximum Degree do
Generate monomials {mi}, from the interparticle distances, {ri}.

{mi} =

{∏
i

raii |
∑

ai = D

}
(101)

for all mi do
Apply group operations, {Pi}, to generate invariant polynomial, xi:

xi =
∑
j

Pjmi (102)

if xi cannot be written in terms of the existing invariants, {Ii} then
add xi to the list of invariants:
In = xi
n = n+ 1

end if
end for

end for
Ensure: The number of invariants is in agreement with the Molien series.

This set of primary invariants is not unique, and the algorithm given in this

section is not the only method for obtaining them. The number of independent

invariants for a given degree is unique and can be obtained via the Molien series

[1].

4.3.2 Simple Example

As a simple example, consider a single rigid rotor interacting with a particle as

shown in Figure 5. For simplicity, we assume all particles have bosonic symmetry.

There are only two non-fixed interparticle distances, ra,c and rb,c, as in fig. (5).

For the bosonic case, our wavefunctions must be symmetric under interchange of
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a ra,c

rb,c

b

c

Figure 5: Simple Example: Basis of Fundamental Invariants.

a and b. There is only one symmetry operation, P .

P =

(
0 1
1 0

)
(103)

Apply the symmetry operations to the variables to generate invariant polynomials.

x1 = ra,c + Pra,c = ra,c + rb,c = I1 (104)

x2 = rb,c + Prb,c = rb,c + ra,c = I1 (105)

In this example there is only one invariant of degree one.

I1 = ra,c + rb,c (106)

This procedure is then carried out for monomials of higher degrees. New invariants

that can be written as sums of products of existing invariants are thrown out. The

list of monomials of degree two is

{mi} =
{
ra,crb,c, r2

a,c, r2
b,c

}
(107)
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Application of P yields

x1 = ra,crb,c + Pra,crb,c = 2ra,crb,c = I2 (108)

x2 = r2
a,c + Pr2

a,c = r2
a,c + r2

b,c = I2
1 −

I2
2

(109)

x3 = r2
b,c + Pr2

b,c = x2 (110)

Only one of these terms can be added to the list as I2. The other will be writable

in terms of I1 and I2. We choose the polynomial with the fewest terms, ra,crb,c.

For this simple case, it can be shown that all other invariants can be written in

terms of I1 and I2. A basis consisting of products of powers of these two invariants

is complete.

{Ii} = {ra,c + rb,c, ra,crb,c} (111)

{bi} =
{
I1, I2, I1I2, I

2
1I2, I1I

2
2 , I

3
1I2, I

2
1I

2
2 , I1I

3
2 , · · ·

}
(112)

4.3.3 Effect of the Rigid-Body Approximation on the Construction of
Basis States

The procedure for calculating invariants is limited in part by our ability to

enumerate the symmetry operations. For a bosonic cluster the number of permuta-

tions is n! which very quickly becomes prohibitive. For a cluster of rigid molecules

consisting of identical atoms we ignore permutations that move atoms from one

molecule to another reducing the number of group elements to N = m!(a!)m, where

m is the number of molecules and a is the number of atoms. A plot of logN vs.

ma is shown for a = 1, 2 in Figure 6.
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Figure 6: Logarithm of the number of symmetry permutations for bosonic clusters
of one and two atom molecules.
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CHAPTER 5

Quaternions

In this chapter I will introduce quaternion numbers and the associated nota-

tion as it relates to representing rotation in three dimensions. This framework is

a prerequisite for the following chapter where I will describe the use of quaternion

algebra to implement the Brownian rotational motion generated by the imaginary-

time evolution operator of Eq. (48).

5.1 Basics and Notation

Quaternions are a non-commutative extension of complex numbers. Instead

of the usual i =
√
−1, we consider solutions of

x =
√
−11 =

√
−
(

1 0
0 1

)
(113)

and extend the complex plane to a four dimensional space with one real, and three

imaginary basis vectors. The set of equations, and the multiplication table are

i2 = j2 = k2 = ijk = −11,
ij = k, ji = −k,
jk = i, kj = −i,
ki = j, ik = −j.

(114)

A basis can be written in terms of the Pauli matrices, −iσ1,−iσ2,−iσ3, since

σiσj = δi,j + iεi,j,kσk.

î =

(
0 −i
−i 0

)
, ĵ =

(
0 −1
1 0

)
, k̂ =

(
−i 0
0 i

)
(115)

As a matter of notation a quaternion is written as a scalar real part and vector

imaginary part.

q ≡ q0 + q1i+ q2j + q3k = q0 + ~q = (q0, ~q) (116)
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where addition is defined as

(q0+q1i+q1j+q3k)+(r0+r1i+r2j+r3k) = (q0+r0)+(q1+r1)i+(q2+r2)j+(q3+r3)k

(117)

Multiplication is defined as

qr = (q0 + ~q) (r0 + ~r) = q0r0 + q0~r + r0~q − ~q · ~r + ~q × ~r (118)

A quaternion with no real part is called pure, not to be confused with a pure rota-

tion which refers to a rotation by a perfectly orthonormal matrix or unit quater-

nion.

qpure ≡ (0, ~q) (119)

5.2 Quaternion Rotation

The goal is to find a formula in analogy to complex numbers that expresses

rotation in three dimensions using quaternion multiplication. Represent a regular

vector ~r as a pure quaternion q = (0, ~r). Rotating a vector should yield a vector,

but multiplying pure quaternion with an arbitrary quaternion r may result in a

non-pure quaternion. We can cancel the real part of q′ through conjugation of q

by a unit quaternion R.

q′ = RqR−1 (120)

Unit quaternions, R, of the following form are used for rotation.

R(θ, ~ω) = (R0, ~R) = (cos
θ

2
, sin

θ

2
ω̂) = e

θ
2
ω̂ (121)

q′ = (0, ~r′) = e
θ
2
ω̂(0, ~r)e−

θ
2
ω̂ (122)

For unit quaternions the complex conjugate is the inverse, R−1 = R∗. A coun-

terclockwise rotation of a vector ~r, through an angle θ, about an axis ~ω, can be

42



~r

~ω

θ

~r′

Figure 7: Quaternion Rotation

represented by conjugation of a pure quaternion, q = (0, ~r). The general formula

for quaternion rotation is

RqR∗ = (R2
0 − ~R · ~R)~q + 2R0(~R× ~q) + 2~R(~R · ~q)

= cos(θ)~q + sin(θ)(ω̂ × ~q) + {1− cos(θ)} (ω̂ · ~q)ω̂ (123)

This equation is easily recognized as the Rodrigues formula for rotation about an

arbitrary axis.
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CHAPTER 6

Matrix vs. Quaternion Implementation of Rotational Brownian Motion

To sample from the probability distributions required to construct estima-

tors for the quantum mechanical rigid-body problem it is necessary to implement

rotational diffusion as was described in Chapter 3. In the past this has done

by producing a new configuration from the previous one. Ignoring translational

motion, this new configuration is generated by random walk of the angles about

the principal axes of the rigid body . For this reason, it is required that the

transformation to the principal axes frame be available. This transformation is

typically calculated for every step by diagonalizing the moment of inertia tensor.

We would like a way to represent the transformation to the principal axes frame

as a cumulative rotation product applied to some initial state and avoid explicitly

calculating the transformation for every step. In this chapter, I will show that the

numerical stability associated with the quaternion representation or rotation al-

lows for a simple, efficient solution to this problem which is not available by matrix

methods. Section 6.1 is intended to introduce and clarify some necessary concepts

related to rotation. Section 6.3 provides an overview of more conventional matrix

based approach and is intended to illustrate the associated difficulties. Finally, in

Section 6.4, I present a simple quaternion based implementation and discuss it’s

advantages.

6.1 Numerical Stability and Pure Rotation

A proper rotation is one that preserves dot products and therefore does not

change the shape of any object (collection of vectors) being rotated. Numerically,

this property is lost upon repeated rotations due to the presence of roundoff er-

ror. The term “pure rotation“ is used to describe proper, orthogonal rotations
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that correspond to orthonormal matrices within the accuracy of the real number

arithmetic.

The numerical stability provided by the quaternion representation of rota-

tion suggests an algorithmic implementation of rotational diffusion based on a

cumulative product of rotations. The equivalent cumulative matrix product is nu-

merically unstable, that is, roundoff error causes it to eventually become non-pure

and the orthonormalization required to recover purity is computationally expen-

sive. Quaternion products on the other hand require only simple normalization

to guarantee purity. For this reason, a quaternion based algorithm provides a

simple mechanism to avoid the need to diagonalize the moment of inertia tensor

and transform to the principal axis frame with every step. All rotations are pure

cumulative rotation products applied to an initial state in which the principal axes

are known as opposed to stepwise rotations applied to an intermediate state where

the principal axes need to be calculated.

6.2 Definitions

~rm,a

~rm,cm

~r˜m,a

Figure 8: Definitions for Rotation of Rigid-Body

The vector ~rm,a, denotes the position of atom a, on molecule m, in the lab

frame. ~rm,cm, denotes the position of the center of mass of molecule m, in the lab
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frame. ~r˜m,a, is the position vector of atom a, on molecule m, in the reference frame

that has it’s origin at the center of mass of molecule m with it’s axes parallel to

those of the lab frame.

6.3 Matrix Based Implementation of Rotational Brownian Motion

The drift and diffusion resulting from propagation by G̃(φ′, φ; ∆τ), can be

implemented using matrices. One way to do this [1] begins with the transformation

of ~rm,a to the principal axes frame, ~xm,a, with the moment of inertia tensor, Im,

and center of mass coordinates, ~rm,cm.

~r˜m,a ≡ ~rm,a − ~rm,cm, ~xm,a = Im~r˜m,aITm (124)

Given the angles for rotations about the principal axes, φm,pi , for molecule m, a

rotation matrix, Rm, can be constructed in the following way.

Rm ≡ Rm,p1(φm,p1)Rm,p2(φm,p2)Rm,p3(φm,p3) (125)

The new position of atom a, on molecule m, in the principal axes frame is given

by

~x′m,a = Rm~xm,a (126)

The new position of atom a, on molecule m, in the lab frame is given by

~rm,a(τ + ∆τ) = ITmRm(∆τ)Im~r˜m,a(τ) + ~rm,cm(τ) + ∆~rm,cm (127)

For small rotations, the commutation error resulting from the order of rotations

can be ignored.

As described, calculation of the moment of inertia tensor every step to locate

the principal axes is expensive, and avoidable. If a cumulative rotation product

were available, one could find the current configuration by applying it to an initial

configuration with no need to continually change reference frames.
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6.4 Quaternion Based Implementation of Rotational Brownian Motion

In this section I will describe the use of quaternions for the implementation

of rotational Brownian motion. One way to do this is to rewrite the matrix based

approach from the previous section in the language of quaternions as has been

done in [2],[3]. Although this simple translation is computationally less expensive

than a matrix based approach, it does not take full advantage of the quaternion

representation and needlessly propagates complications associated with a matrix

implementation. In this section, I will instead describe a modification of this pro-

cedure that takes advantage of quaternion normalization to maintain numerically

stable rotation products which can be applied to an initial state to generate new

configurations.

Let the quaternion Rm,pi(φm,pi , p̂i), represent rotation about an axis p̂i, on

rigid-body m, by angle φm,pi .

Rm,pi(φm,pi , p̂i) = (cos
φm,pi

2
, sin

φm,pi
2

p̂i) = e
φm,pi

2
p̂i (128)

An approximate quaternion for combined rotations about the three principal axes

pi, for rigid-body m is

Rm(∆τ) ≈
∏
i

Rm,pi ≈ exp

{∑
i

(
φm,pi

2
p̂i

)}
= exp

{
θm
2
N̂m

}
(129)

where

N̂m ≡ φm,p1 p̂1 + φm,p2 p̂2 + φm,p3 p̂3√
φ2
m,p1

+ φ2
m,p2

+ φ2
m,p3

, θm ≡
√
φ2
m,p1

+ φ2
m,p2

+ φ2
m,p3

(130)

Alternatively, a Trotter approximation can be used to reduce the errors associated

with the non-commutation of the angular momentum operators.

Rm(∆τ) ≈ e
φm,p1

4
p̂1e

φm,p2
4

p̂2e
φm,p3

2
p̂3e

φm,p2
4

p̂2e
φm,p1

4
p̂1 (131)
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Imposing normalization

Rm(τ) = (Rm,0(τ), ~Rm(τ))

|Rm(τ)| =
√
Rm,0(τ)2 + ~Rm(τ) · ~Rm(τ)

Rm(τ) =
Rm(τ)

|Rm(τ)|
(132)

allows for a stable product of rotations, that is a product of rotations that remains

pure in the presence of roundoff error.

Rm(τ) =

τ
∆τ∏
t=0

Rm(∆τ), R(0) = 1 (133)

This product can be used to find the position of a point on the rigid-body from its

initial position, and the center of mass.

{
0, ~r˜m,a(τ)}︸ ︷︷ ︸

pure quaternion

,= Rm(τ)
{
0, ~r˜m,a(0)

}
R∗m(τ) (134)

~rm,a(τ) = ~r˜m,a(τ) + ~rcm(τ), (135)

Because all configurations are generated by application of a cumulative rotation

to an initial configuration, there is no need to translate to and from the principal

axis frame with the moment of inertia tensor.
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CHAPTER 7

Results for Example Problems

In this chapter I will test these methods on some example problems. These

examples are designed to demonstrate accuracy not precision and are chosen to

be exactly solvable by other means. In addition, these problems are intended to

serve as validation tests for the computer code. The problems are organized in

the following way. First, Section 7.1 provides an exact solution for a few problems

involving rigid rotors interacting via some potential function. Next, Section 7.2

provides the rigid-body diffusion Monte Carlo solution and compares results to the

exact values. Section 7.3, provides the rigid-body diffusion Monte Carlo solution

for the more complicated problem of two rigid rotors interacting at multiple atomic

sited via a Lennard-Jones potential. Although an exact solution is not available

for this problem, the results should approach that of the harmonic approximation

as the mass increases. This problem also provides a more realistic framework to

validate all aspects of the method and code..

7.1 Exact Solution

We consider the energy levels of a single rigid rotor in an external field and of

a pair of mutually interacting rigid rotors. The rigid rotors come in two forms: AA

(homo- nuclear or molecular) and AB (hetero- nuclear or molecular). In case of the

former, we are interested in the case of bosons. Undoubtedly, one can prove that

the bosonic ground state is nodeless, and therefore bosonic; Feynman’s argument

[1] can be applied to the current case.

It turns out that the simple form of the pair interaction that we consider is

separable, in the sense that it can be written as sum over products of single-particle

matrix elements. As a consequence, the problem reduces to summing the results
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of a small number of independent particle problems. We calculate these matrix

elements, and along the way we introduce the various different forms of potential

we use.

7.1.1 Matrix elements

Let the dimensionless one-particle Hamiltonian of the rigid rotator be

H =
1

2
L2. (136)

The eigenvalues are

El,m =
1

2
l(l + 1) (137)
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with l = 0, 1, . . . and m = −l,−l + 1, . . . , l; the corresponding eigenkets are |lm〉,

which in the polar-coordinate representation take the form of spherical harmonics

Ylm(θ, φ).

We consider interactions that depend on the angle between the axis of a rotor

and an external field or the axis of another rotor. As will be explained below,

it turns out that the potential energy of the system can be written in terms of

components of one-particle spherical tensors of rank one or two, depending on

the specific form of the interaction. Using the spherical harmonics as a basis, we

represent the potential and calculate the required matrix elements of these tensors.

Recall that given the unit Cartesian vector ~r = (x, y, z) one can construct a

spherical tensor of unit rank:

T
(1)
−1 (~r) =

x− iy√
2

= e−iφ sin θ (138)

T
(1)
0 (~r) = z = cos θ (139)

T
(1)
1 (~r) = −x+ iy√

2
= −eiφ sin θ. (140)

Note that

T (1)
m = 2

√
π

3
Y1m(θ, φ). (141)

Clearly, apart from an interaction coefficient, the tensor component T
(1)
0 de-

scribes the interaction of a single AB rotor with an external field.

A direct product of tensor components can be contracted to form a rotationally

invariant quantity. The contraction process requires Clebsch-Gordan coefficients,

as does the calculation of matrix elements of tensor components by means of the

Wigner-Eckart theorem. For the Clebsch-Gordan coefficients we use the Math-

ematica notation. In other words, C[{j1,m1}, {j2,m2}, {j,m}] is the coefficient

of the total angular momentum state |jm〉 for the direct product of |j1m1〉 and

|j2m2〉, which coefficient vanishes unless m = m1 +m2 and total angular momen-

tum quantum number j satisfies the triangle inequality |j2 − j1| ≤ j ≤ j1 + j2.
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The matrix elements 〈l1,m1|T (k)
m |l2,m2〉 can be computed using the Wigner-

Eckart theorem, which states that the reduced matrix element

〈l1||T (k)
1 ||l2〉 ≡

√
2l2 + 1

〈l1,m1|T (k)
m |l2,m2〉

C[{k,m}, {l2,m2}, {l1,m1}]
(142)

depends only on l1 and l2, as indicated.

Recall that properties of the Clebsch-Gordan coefficients can be expressed

more easily in terms of Wigner 3j-symbols [2],[3].

C[{l1,m1}, {l2,m2}, {l3,m3}] = (−1)l1−l2+m3
√

1 + 2l3

(
l1 l2 l3
m1 m2 −m3

)
(143)

(
j1 j2 j3
m1 m2 m3

)
=

(
j1′ j2′ j3′
m1′ m2′ m3′

)
(144)

for any even permutation 1′2′3′ of 123; and(
j1 j2 j3
m1 m2 m3

)
= (−1)j1+j2+j3

(
j1′′ j2′′ j3′′
m1′′ m2′′ m3′′

)
(145)

for any odd permutation 1′′2′′3′′ of 123.

Wigner 3j-symbols vanish unless the following two conditions are satisfied:

(1) the triangle inequality |j1 − j2| ≤ j3 ≤ j1 + j2 –in all possible permutations of

the sub-indices– and (2) m1 +m2 +m3 = 0.

The extra factor
√

2l2 + 1 in the definition of the reduced matrix element is

a matter of convention; its inclusion results in restoring some of the symmetry of

the reduced matrix elements. For instance one has

C[{l1, 0}, {1, 0}, {l2, 0}]√
2l2 + 1

= −C[{l2, 0}, {1, 0}, {l1, 0}]√
2l1 + 1

. (146)

Also

C[{l,m}, {l,−m}, {0, 0}] = (−1)l−m
√

1

2l + 1
. (147)

The contraction theorem for spherical tensors implies that if S and S ′ are

spherical tensors of rank l, then
∑l

q=−l(−1)qSqS
′
−q is a scalar.
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In particular, for the tensor given in Eq. (140) one has

1∑
q=−1

(−1)qT (1)
q (~r1)T

(1)
−q (~r2) = cos θ1 cos θ2+cos(φ1−φ2) sin θ1 sin θ2 = cos θ12, (148)

where θ12 is the angle between ~r1 and ~r2. This result, Eq. (148), expresses the

potential energy of two mutually interacting AB particles in terms of terms of

tensor components, and it shows that this interaction is separable, i.e., it can be

written as a sum of products of single particle operators.

T
(2)
−2 =

1

2
e−2iφ sin2 θ, (149)

T
(2)
−1 = e−iφ cos θ sin θ, (150)

T
(2)
0 =

3 cos2 θ − 1√
6

, (151)

T
(2)
1 = −eiφ cos θ sin θ, (152)

T
(2)
2 =

1

2
e2iφ sin2 θ. (153)

Note that

T (2)
m = 2

√
2
π

15
Y2m(θ, φ), (154)

while √
2

3
T

(2)
0 = cos2 θ − 1

3
. (155)

The latter equation shows that the potential energy of an AA rotor interacting

with an external field, which is proportional to cos2 θ− 1/3, can be expressed in a

form to which, once again, the Wigner-Eckart theorem can be applied conveniently.

As we did before, we can apply the contraction theorem to construct the scalar

2∑
q=−2

(−1)qT (2)
q (~r1)T

(2)
−q (~r2) = cos2 θ12 −

1

3
(156)

Once again, this shows that the interaction potential of two rigid AA rotors is

separable, i.e., it can be expressed as a sum of products of one-particle matrix

elements.
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By applying the Wigner-Eckart theorem, we find that the reduced matrix

elements for T (1) are given by

〈l1||T (1)||l2〉 =

{
sgn (l1 − l2)

√
max(l1, l2)

2l2+1
2l1+1

if |l1 − l2| = 1

0 otherwise
(157)

The reduced matrix elements for T (2) are given by

〈l1||T (2)||l2〉 =



√
2
3

√
(l−1)l(2l+1)
(2l−3)(2l−1)

if l1 = l2 − 2

−2
3

√
l(l+1)(2l+1)
(2l−1)(2l+3)

if l1 = l2√
2
3

√
(l−1)l(2l−3)

4l2−1
if l1 = l2 + 2

0 otherwise

(158)

where l = min(l1, l2).

We have no rigorous proof that these expressions for the reduced matrix ele-

ments are correct. Instead, we used Mathematica to calculate them explicitly and

this shows that the expressions are correct for any value of l we tried. We found

the expressions by fitting the squares of the reduced matrix elements to Padé ap-

proximants in l. In this way, the values of the coefficients can be found for small

values of l, and, as it turns out, this yields correct results for much larger values

of l.

7.2 Quaternion Based Rigid-Body Diffusion MC Solution

In this section I will describe in detail the rigid-body diffusion Monte Carlo so-

lution to the problems solved exactly in the previous section and present numerical

results.

7.2.1 AB Rotor

Consider a rigid rotor in an external potential defined as

V (θ) = P cos(θ) = P r̂ · ẑ, (159)

where P is a parameter governing the strength of the interaction. This potential

corresponds to a single AA rotor in an external field. Because rotation about the
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axis of the rotor has no meaning, the rotor has only two principal axes, {n̂1, n̂2},

which are arbitrarily chosen in the plane perpendicular to the axis defining the

orientation of the rotor. Ignoring the translational part, the Hamiltonian can be

written in terms of the angles about the principal axes, {ϕ1, ϕ2} and the interaction

angle θ.

H = − 1

2I

(
∂2
ϕ1

+ ∂2
ϕ2

)
+ V (θ) (160)

A suitable basis can be constructed from normalized powers of cos(θ).

bi(θ) = ai cosi(θ) = ai(r̂ · ẑ)i, ai =

√
1 + 2i

4π
(161)

A simple guiding function is

ψg(θ) =

√√√√ N∑
i=0

b2i (θ). (162)

Derivatives with respect to the angles about the principal axes are needed for the

local energy and drift. One simple way to find these is to apply an infinitesimal

quaternion rotation to the unit vector that defines the orientation of the rotor.

∂ϕi(cos (θ)) = ∂ϕi (r̂ · ẑ) =
r̂(ϕi + dϕi) · ẑ − r̂(ϕi) · ẑ

dϕi
(163)

{0, r̂(ϕi + dϕi)} = exp

(
dϕi
2
n̂i

)
{0, r̂(ϕi)} exp

(
−dϕi

2
n̂i

)
(164)

Following the formula for quaternion rotation Eq. (164).

r̂(ϕi + dϕi) = r̂(ϕi) + (n̂i × r̂(ϕi)) dϕi +O
(
dϕ2

i

)
(165)

∂ϕi cos(θ) = ∂ϕi(r̂ · ẑ) = (−1)in̂j · ẑ (166)

And a similar calculation for the second derivative gives

∂2
ϕi

cos(θ) = ∂2
ϕi

(r̂ · ẑ) = −(r̂ · ẑ) = − cos (θ) (167)

~D = 2
∂ϕ1ψg(θ)ϕ̂1 + ∂ϕ2ψg(θ)ϕ̂2

ψg(θ)
= 2

1
sin(θ)

∂θψg(θ)

ψg(θ)

(
−n̂2 · ẑ
n̂1 · ẑ

)
(168)
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The local energies are

EL,bi(θ) =
H (x)bi(x)

bi(x)
=
− 1

sin(θ)
∂θ (sin(θ)∂θb(θ))

b(θ)
+ P cos(θ) (169)

EL,ψg(θ) =
H (x)ψg(x)

ψg(x)
=
− 1

sin(θ)
∂θ (sin(θ)∂θψg(θ))

ψg(θ)
+ P cos(θ) (170)

Calculations were carried out for three basis states, and three values for the

interaction parameter. No attempt was made to optimize the guiding function or

the basis states. On the contrary, the basis states and guiding function are inten-

tionally poor in order to produce results typical of a more sophisticated problem

and to demonstrate the effectiveness of projection. Because the basis states are

not optimized, the true ground state energy is well below the confidence interval

defined by the variational estimate as shown in fig. (11). This feature allows for the

demonstration that the projection in imaginary-time removes this variational bias.

As the projection time increases, the statistical error also increases as the result of

the fluctuating weights. This effect could have been minimized by proper choice

of the guiding function, but is only eliminated in the limit of perfect importance

sampling.

Figure (10) shows the energy of the second excited state of the AB rotor as

a function of projection time, E2(τ). The Monte Carlo estimate for zero projec-

tion time is the variational estimate. This variational estimate can be verified by

simple application of the Reyleigh-Ritz variational procedure described in Section

3.6.1. We are looking for the point with a long enough projection time so that

the variational bias has been projected out but not so long as to be numerically

unstable. The best point is selected based on maximum overlap with the points of

greater projection time. Typically, this is the point where the uncertainty begins

to increase faster than the projected observable decreases and is chosen based on

overlap with points to the right. The exact value is obtained from the results of
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the previous section and is shown for comparison.

In order to remove the time step bias, each of the points on the plot of pro-

jected energy vs. imaginary-time Fig. (10) is the result of extrapolation to zero

∆τ for a number of runs performed with different time-steps. The plot of this

extrapolation for the selected interval is shown in fig. (11). The shaded region

corresponds to the selected interval. The largest eigenvalue and interaction pa-

rameter was chosen for these figures to further exaggerate the variational bias and

statistical noise.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

6.1

6.2

6.3

6.4

6.5
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τ

Selected interval, E2,mc

�
��	

Variational estimateHHHY

Exact value, E2

@
@@I

E2(τ)

Figure 10: Plot of projected energy for the largest calculated eigenvalue of the AB
rotor with V = 3 cos (θ). Each point is the extrapolation to zero time step of the
same point on similar plots of finite time step. E2 is the exact energy.

Table (1) provides the numerical results of the rigid-body diffusion Monte

Carlo calculation of the first three energy levels of an AA rotor.
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Figure 11: Extrapolation to zero projection time for selected interval in fig. (10).

Table 1: Comparison with exact results for the first three energies in dimensionless
units for the AB rigid-rotor in a P cos (θ) potential.

P E0,mc E0 E1,mc E1 E2,mc E2

1 -0.15766(1) -0.1576634 2.09063(8) 2.09076 6.021(6) 6.02415
2 -0.5573(2) -0.55728 2.287(1) 2.2871 5.97(5) 6.098
3 -1.0926(2) 1.09267 2.477(1) 2.4779 6.22(1) 6.227

7.2.2 AA Rotor

Calculations were also carried out for rigid rotor in an external potential that

cannot tell one particle from the other. In this case the potential is given by

V (θ) = P cos(2θ) (171)

Table (2) provides the numerical results of the rigid-body diffusion Monte

Carlo calculation of the first three energy levels of an AA rotor.
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Table 2: Comparison with exact results for the first three energies in dimensionless
units for the AA rigid rotor.

P E0,mc E0 E1,mc E1 E2,mc E2

1 -0.3887(1) -0.38868 2.174(2) 2.1721 6.086(2) 6.0842
2 -0.8725(4) -0.87226 2.287(6) 2.2871 6.225(8) 6.2257
3 -1.430(1) -1.42884 2.35(1) 2.3439 6.41(1) 6.4019

7.2.3 Two rotors
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Figure 12: Two mutually interacting rotors

In the next example the same calculations are applied to a system of two

rigid rotors experiencing a potential that depends on the angle between them.

Each rotor has it’s own orientation vector, r̂m, and principal axes, n̂m,i where m
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indicates which rotor, and i indicates which principal axis.

V (θm,m′) = P cos(θm,m′) = r̂m · r̂m′ (172)

As in the case of the single rotor, a basis can be constructed from normalized

powers of cos(θm,m′).

bi(θm,m′) = ai cosi(θm,m′) = ai(r̂ · ẑ)i, ai =

√
1 + 2i

4π
(173)

The derivation for local energy and drift is almost identical to that of the single

rigid rotor even though the physics is very different. As before, derivatives required

for the local energies and drift can be found by application of infinitesimal rotation

quaternion.

∂ϕm,i cos(θm,m′) = (−1)in̂m,j · r̂m′ (174)

∂2
ϕi

cos(θm,m′) = − cos (θm,m′) = −r̂m · r̂m′ (175)

The drift is then given by

~Dm = 2
∂ϕ1,mψg(θm,m′) ˆϕ1,m + ∂ϕ2,mψg(θm,m′) ˆϕ2,m

ψg(θm,m′)

= 2

1
sin(θm,m′ )

∂θm,m′ψg(θm,m′)

ψg(θm,m′)

(
−n̂m,2 · r̂m′

n̂m,1 · r̂m′

)
(176)

and the local energies by

EL,ψ(θm,m′) =
− 2

sin(θm,m′ )
∂θm,m′

(
sin(θm,m′)∂θm,m′ψ(θm,m′)

)
ψ(θm,m′)

+ P cos(θm,m′),

(177)

7.2.4 Two AB Rotors

Table (3) provides the numerical results of the rigid-body diffusion Monte

Carlo calculation of the first three energy levels of two AB rotors interacting via

V (θm,m′) = P cos (θm,m′).
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Table 3: First three energies in dimensionless units for the two AB rigid rotors
interacting via V (θm,m′) = P cos (θm,m′).

P E0,mc E0,var E1,mc E1,var E2,mc E2,var

1 -0.08211(1) -0.0821016 4.0488(1) 4.04874 12.011(1) 12.0119
2 -0.3154(1) -0.315327 4.1813(2) 4.18152 12.048(1) 12.0484
3 -0.6699(1) -0.66980 4.6754(3) 4.6752 12.109(3) 12.1108

7.2.5 Two AA Rotors

As before calculations were also carried out for the case of distinguishable

and identical particles. Table (4) provides the numerical results of the rigid-body

diffusion Monte Carlo calculation of the first three energy levels of two AA rotors

interacting via V (θm,m′) = P cos (2θm,m′).

Table 4: First three energies in dimensionless units for the two AA rigid rotors
interacting via V (θm,m′) = P cos (2θm,m′).

P E0,mc E0,var E1,mc E1,var E2,mc E2,var

1 -0.36201(3) -0.36198 4.184(2) 4.1861 12.062(2) 12.076
2 -0.7777(2) -0.77715 4.339(2) 4.34436 12.153(6) 12.206
3 -1.2404(3) -1.2391 4.67(5) 4.4741 12.271(5) 12.382

7.2.6 Two AB Rotors and a Harmonic Potential

As a check of the energy associated with the center of mass motion the above

calculations were carried out with the rotor centers interacting by a harmonic oscil-

lator potential. Although this is a trivial case for the exact calculations because the

angular and center of mass coordinates are separable, it is a non-trivial verification

of the computer code for which separability is not a simplifying feature.

V (θm,m′ , Rm,m′) = P cos (θm,m′) +
R2
m,m′

2
(178)

The Hamiltonian in this case is

H = − 1

2I

(
∂2
ϕ1

+ ∂2
ϕ2

)
− 1

2µ
∂2
Rm,m′ + V (θ) (179)
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where Rm,m′ is the distance between the centers of mass and µ is the reduced mass

for the pair of rotors. Since the motion of the centers of mass is independent of the

rotational motion it is easy to see that this interaction simply adds EHO = (n+ 3
2
)

to the rotational energy. It is required that the guiding function prevents the

random walk from separating the rotors. For this reason the guiding function used

is that of the previous section, ψg(θm,m′) eq. (162), multiplied by a simple form

factor.

ψg(θm,m′ , Rm,m′) = ψg(θm,m′) exp

{
−Rm,m′

2

}
(180)

Since the Rm,m′ dependence is not built into the basis states, all calculations are

effectively performed in the ground oscillator state n = 0. Table (5) provides the

numerical results of the rigid-body diffusion Monte Carlo calculation of the first

three energy levels of two AA rotors interacting via V (θm,m′) = P cos (2θm,m′) +

R2
m,m′

2
.

Table 5: First three energies in dimensionless units for two AB rigid rotors inter-

acting via V (θm,m′) = P cos (2θm,m′) +
R2
m,m′

2
.

P E0,mc E0,var E1,mc E1,var E2,mc E2,var

1 1.41788(1) 1.41789 5.5487(1) 5.54874 13.513(1) 13.5119
2 1.1847(1) 1.18467 5.6814(2) 5.68152 13.548(1) 13.5484
3 0.8303(1) 0.83020 6.1755(3) 6.1752 13.609(3) 13.6108

7.2.7 Two AA Rotors and a Harmonic Potential

As before, the calculation was also carried out for the AA rotor case. Ta-

ble (6) provides the numerical results of the rigid-body diffusion Monte Carlo

calculation of the first three energy levels of two AA rotors interacting via

V (θm,m′) = P cos (2θm,m′) +
R2
m,m′

2
.
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Table 6: First three energies in dimensionless units for the two interacting AA

rigid rotors interacting via eq. (178).V (θm,m′) = P cos (2θm,m′) +
R2
m,m′

2
.

P E0,mc E0,var E1,mc E1,var E2,mc E2,var

1 1.13800(3) 1.13802 5.685(2) 5.6861 13.577(2) 13.576
2 0.7227(2) 0.72285 5.845(2) 5.8443 13.70(6) 13.706
3 0.2611(3) 0.2609 5.99(5) 5.9741 13.88(5) 13.882

7.3 Two Rotors Interacting at Multiple Atomic Sites via Lennard-
Jones Potential

In this section I will present the rigid-body diffusion Monte Carlo solution

for the case of two rigid rotors interacting at atomic sites via Lennard-Jones po-

tential. An exact solution for this problem is unavailable, however, as the masses

increase, the results should approach those given by harmonic approximation. This

calculation is presented for the ground state only.

For N rotors with n atoms each interacting via Lennard-Jones potential the

Hamiltonian can be written as.

H =
N∑
m=1

{
− 1

8µ
∇2
m −

1

2µl2

∑
p

∂2
φm,p +

n∑
m′>m;a,a′=1

(
1

r12
ma,m′

a′

− 2

r6
ma,m′

a′

)}
(181)

where a, a′ index atoms on molecules m,m′,and ∇2
m is with respect to the center

of mass of rotor m and µ = 2
1
3Mεσ/~2 is the reduced mass of a single rotor. l is

the length of a rotor and is taken to be one in this example. φm,p represents the

angle about principal axis p on rotor m. rma,m′
a′

is the distance between atom a

on molecule m ans atom a on molecule m′

A simple guiding function is required to prevent the rotors from separating

and is chosen such that there is no drift at the equilibrium configuration.

ψg = exp

{
−
√

2µ
∑

m,m′>m

(∑
a,a′

r−5
ma,m′

a

5
+ 2

√
2Rm,m′

)}
(182)

Rm,m′ is the distance between the center of mass locations of the rotors.
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7.3.1 Interparticle Distance Derivatives

Derivatives of the interparticle distances with respect to angles about the

principal axes are required to evaluate the expressions for the drift and local energy.

In this subsection I present general expressions for these derivatives derived with

the help of quaternion algebra.

O

~rm,cm

n̂m,p
dφm,p

m

~rm′,cm

m′

~rm′,a′

~r′m,a ~rm,a

a a

a′

~r˜m′,a′

~r˜m,a(φm,p)~r˜m,a(φm,p + dφm,p)

~rm′,a′,m,a
~r′m′,a′,m,a

Figure 13: Sketch showing definitions of vectors involved in calculating derivatives
of interparticle distances with respect to angles about the principal axes

Figure 7.3.1 shows the geometry associated with the problem of calculating

derivatives of the interparticle distances with respect to angles about the principle

axes. The interparticle distance vector can be written as

~rm,a,m′,a′ = ~rm,cm − ~rm′,cm + ~r˜m,a − ~r˜m′,a′ (183)
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The derivative of the square of the interparticle distance with respect to the angle

about the principal axis, n̂m,p, can be defined as

∂φm,p

∣∣∣~rm,a,m′,a′

∣∣∣2 =

∣∣∣~rm,a,m′,a′(φm,p + dφm,p)
∣∣∣2 − ∣∣∣~rm,a,m′,a′(φm,p)

∣∣∣2
dφm,p

(184)

~r˜m,a(φm,p + dφm,p) can be found by application of an infinitesimal rotation quater-

nion.

e
dφm,p

2
n̂m,p =

(
cos(

dφ

2
), sin(

dφ

2
)

)
≈
(

1,
dφ

2
n̂

)
(185)

~r˜m,a(φm,p + dφm,p) = Im

e
dφm,p

2
n̂m,p

(
0, ~r˜m,a

)
︸ ︷︷ ︸

pure quaternion

e−
dφm,p

2
n̂m,p


= ~r˜m,a +

(
n̂m,p × ~r˜m,a

)
dφm,p +O

(
dφ2

m,p

)
(186)

Ignoring higher order terms, the new interparticle distance vector is given by

~rm,a,m′,a′(φm,p+dφm,p) = ~rm,cm−~rm′,cm+~r˜m,a+
(
n̂m,p × ~r˜m,a) dφm,p−~r˜m′,a′ (187)

Plugging in the expressions above gives

∂φm,p

∣∣∣~rm,a,m′,a′

∣∣∣2 = 2~rm,a,m′,a′ ·
(
n̂m,p × ~r˜m,a) (188)

∂φ

∣∣∣~rm,a,m′,a′

∣∣∣ = r̂m,a,m′,a′ ·
(
n̂m,p × ~r˜m,a) (189)

which we probably should have been able to guess from the start. A similar

procedure for the second derivative gives

∂2
φm,p

∣∣∣~rm,a,m′,a′

∣∣∣2 = 2

{
~rm,a,m′,a′ ·

[
n̂m,p ×

(
n̂m,p × ~r˜m,a)]+

∣∣∣~r˜m,a
∣∣∣2} (190)

7.3.2 Drift and Local Energy

Now that the derivatives of the interparticle distances are available we can cal-

culate the expressions for the drift and local energy. For the rotational coordinates
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the drift is

~Drot =
2

ψg

∑
m′,p

1

2µ

(
∂αm′,p

ψg

)
α̂m′,p

=

√
2

µ

∑
m′,p

{ ∑
m6=m′,a,a′

r−6
ma,m′,a′

[
r̂m,a,m′,a′ ·

(
n̂m′,p × ~r˜m′,a′

)]}
α̂m′,p (191)

and for the translational coordinates

~Dtrans,m′ =
2

ψg

∑
m′

1

8µ
~∇m′ψg

=
1

2
√

2µ

∑
m6=m′

[∑
a,a′

r−6
m,a,m′,a′ r̂m,a,m′,a′ − 2

√
2R̂m,m′

]
(192)

The rotational part of local energy is.

EL,rot = −

∑
m′,p

(
1
2µ

)(
∂2
αm′,p

ψg

)
ψg

=
1√
2µ

∑
m′,p

∑
m6=m′,a,a′

r−7
m,a,m′,a′

[
7 (∂m′,prma,m′,a′)

2 −
(
∂2
m′,pr

2
m,a,m′,a′

)
2

]
− 2µD2

rot

2

and the translational part

EL,trans = −

∑
m′

(
1
8µ

)
(∇2

m′ψg)

ψg

=
1√
2µ

∑
m′,m6=m′

{∑
a,a′

r−7
m,a,m′,a′ +

P

2Rm,m′

}
− 2µD2

trans

(193)

EL = EL,trans + EL,rot + V (194)

Calculations were performed for multiple masses and time steps. For each mass

value results were extrapolated to zero time step.

Figure (14) shows the plot of ground sate energy vs. projection time for the

smallest mass and time step. As stated in Section 7.2.1, the best interval is selected

as the interval that has maximum overlap with points to the right and is typically

near the point where the uncertainty starts increasing faster than the exponential

decay.
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E0

τ

E0 vs. τ

Selected Interval
�

��	

Harmonic Approximation

Figure 14: E0 vs. τ for a pair of rotors interacting via Lennard-Jones potential.
The parameters for this calculation are: ∆τ = 0.1, µ = 75.

Figure (15) shows a plot of −
∣∣∣E0

∣∣∣ 12 vs. µ−
1
2 . Each point on this plot is an

extrapolation to zero time step of a number of intervals derived from plots like fig.

(14). This plot is becomes linear and approaches the harmonic approximation in

the limit of large mass.
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Figure 15: −
∣∣∣E0

∣∣∣ 12 vs. µ−
1
2 for a pair of rotors interacting via Lennard-Jones

potential. The line represents the harmonic approximation
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CHAPTER 8

Conclusion

This work is intended to contribute to the usefulness of the rigid-body dif-

fusion Monte Carlo method and the scope end of problems to which it can be

applied. I have provided an algorithm for the implementation correlation function

Monte Carlo within the rigid-body approximation that incorporates trial states

constructed from a basis of primary invariants and a new algorithm for implement-

ing rotational Brownian motion that takes full advantage of quaternion algebra.

This contribution allows for the Monte Carlo calculation of excited state properties

within the rigid-body approximation in a way that was not previously available. In

addition, example problems are given that compare results with exact and approx-

imate solutions. Results for example problems clearly demonstrate the correctness

of the method.

A brief introduction to the relevant Monte Carlo methods is presented. In

order to sample an unknown ground state, I defined a stochastic process which

uses the imaginary-time evolution operator to generate samples from an unknown

ground state. This stochastic process involves the implementation of rotational

Brownian motion. The use of quaternion algebra for implementing this rotational

motion in the context of rigid-body diffusion Monte Carlo is described, and com-

pared to matrix methods. The main advantage of quaternions in this application

is the ability to guarantee pure rotation by simple normalization. This provides a

mechanism where new configurations can be generated from an initial configuration

by application of a numerically stable cumulative rotation product and eliminates

the need to compute the principal axes from the moment of inertia tensor every

step.
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Correlation function Monte Carlo is incorporated for the calculation of excited

state properties. This method is an extension of the Rayleigh-Ritz variational

method where the matrix elements are evaluated by Monte Carlo methods. The

construction of trial states and guiding functions from a basis of primary invariants

is discussed. It is shown that the rigid-body approximation greatly reduces the

number of terms required for the construction this basis.

It is my hope that these tools are simple and powerful enough to be accessible

and useful for many applications.
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