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Masayuki Yamamoto4, and Angela L Slitt1

1Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston,
RI, 02881;

2Pathology and Laboratory Medicine, VAMC, Providence

3Pathobiology and Diagnostic Inv., Michigan State University, East Lansing, MI 48824;

4Division of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai,
Japan

Abstract

The Nuclear factor-E2 related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1)

pathway upregulates antioxidant and biotransformation enzyme expression to counter cellular

oxidative stress. The contribution of Nrf2 to other cellular functions, such as lipid homeostasis is

emerging. The present study was conducted to determine how enhanced Nrf2 activity impacts

progression of metabolic syndrome with long-term high fat diet (HFD) feeding. C57BL/6 and

Keap1-Knockdown (Keap1-KD) mice, which exhibit enhanced Nrf2 activity, were fed a HFD for

24 weeks. Keap1-KD mice had higher body weight and white adipose tissue mass compared to

C57BL/6 mice on HFD, along with increased inflammation and lipogenic gene expression. HFD

feeding increased hepatic steatosis and inflammation to a greater extent in Keap1-KD mice

compared to C57BL/6 mice, which was associated with increased liver Cd36, fatty acid binding

protein 4 (Fabp4), and monocyte chemoattractant protein 1 (Mcp1) mRNA expression, as well as,

increased acetyl CoA carboxylase 1 (Acc1) and Steroyl CoA desaturase 1 (Scd1) protein

expression. The HFD altered short-term glucose homeostasis to a greater degree in Keap-KD mice

compared to C57BL/6 mice, which was accompanied by down regulation of Insulin receptor

substrate 1 mRNA expression in skeletal muscle. Together, the results indicate that Keap1

knockdown, on treatment with HFD, increases certain markers of metabolic syndrome.
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INTRODUCTION

Metabolic syndrome is described as a cluster of risk factors that increase risk for developing

cardiovascular disease [1]. Some of the risk factors include central obesity, atherogenic

dyslipidemia (elevated triglycerides and low HDL cholesterol), insulin resistance (with or

without glucose intolerance), and a proinflammatory state. In 2003-2009, in an analytic

sample that consisted of 3,423 adults, 20 years of age and over, 34% of American adults met

the criteria for metabolic syndrome [2].

Nuclear factor E2 related factor 2 (Nrf2) is a basic leucine zipper transcription factor, which

regulates basal and inducible expression of multiple antioxidant and biotransformation genes

[3]. Kelch-like ECH-associated protein 1 (Keap1) is a cysteine rich protein that binds Nrf2

in the cytosol, and is a critical determinant for Nrf2 nuclear accumulation. Dose-dependent

accumulation of Nrf2 in nucleus and increasing Nrf2 target gene expression occurs in Nrf2-

knockout, Keap1-knockdown and liver-specific Keap1 knockout mice [4]. The effects of

Nrf2 and Keap1 knockout/knockdown are well described in models of liver injury caused by

acetaminophen, diquat, cadmium, alcohol, or oxidative stress [5-10]. But the effects are

largely undescribed for hyperlipidemia and tissues important to metabolic syndrome, such as

adipose tissue and skeletal muscle (SKM).

Central obesity is a major hallmark of metabolic syndrome. Multiple nuclear receptors

influence stem cell differentiation to adipocytes and adipocyte maturation. For example,

multiple CCAAT-enhancer-binding protein isoforms (Cebpα and Cebpβ) are required at

various stages of adipocyte differentiation [11]. Peroxisome proliferator-activated receptor-

gamma (Ppar-γ) is known as a key regulator of fat synthesis, which regulates additional

genes that contribute to lipid storage, such as Fatty acid binding protein 4 (Fabp4), Cluster

of Differentiation 36 (Cd36, fatty acid translocase), Lipoprotein lipase (Lpl) and steroyl

CoA desaturase (Scd1) [12]. Acetyl CoA carboxylase 1 (Acc1) catalyzes formation of

malonyl CoA, which is a vital substrate for fatty acid biosynthesis [13]. Malonyl CoA also

inhibits β-oxidation of fatty acids. Phosphorylated Acc1 (pAcc1) is an inactive form of

Acc1. Fatty acid synthase (Fas) uses precursors like acetyl CoA and malonyl CoA to

synthesize long chain saturated fatty acids. Steroyl CoA desaturase 1 (Scd1) catalyzes

synthesis of unsaturated fatty acids from saturated fatty acids [13]. Lipoprotein lipase (Lpl)

breaks down triglycerides (TG) from lipoproteins to release free fatty acids [14]. In

summary, all of the abovementioned enzymes/ enzyme complexes are responsible for fatty

acid levels in the tissues as well as serum.

Adipocytes function to not only store fat, but also produce and secrete ‘adipocytokines’ that

include bioactive products such as inflammatory mediators (e.g. Interleukin-6, IL-6;

monocyte chemoattractant protein, Mcp1; tumor necrosis factor, Tnf), which are considered

to be a cause of insulin resistance and non-alcoholic fatty liver disease [15, 16]. Obesity

increases the presence of M1 pro-inflammatory macrophages in adipose tissue, increases
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secretion of pro-inflammatory cytokines, and increases M1 hepatic macrophages and

inflammation [17].

In adipose tissue, Nrf2 binds to an ARE present in the Ppar-γ promoter to promote adipocyte

differentiation [18]. Nrf2 knockout mice were protected against hepatic steatosis induced by

high fat diet (HFD) feeding [19], indicating that Nrf2 presence is needed for hepatic lipid

accumulation. Huang et al. (2010) illustrated that targeted Nrf2 deletion protects against

high fat diet induced steatosis through dowregulation of Cd36, Sterol regulatory element

binding protein 1c (Srebp-1c), Fas, Ppar-γ expression, and upregulation of Small

heterodimeric partner (Shp) -dependent pathways. Moreover, OB-Keap1KD exhibit

increased hepatic steatosis compared to OB mice [20]. In contrast, Kay et al. (2011) report

inverse that NRF2 and SREBP1c are inversely regulated in human livers with steatosis [21].

Because hepatic steatosis is a manifestation of metabolic syndrome, better understanding of

Nrf2 function in hepatic lipid accumulation in the face of dyslipidemia is needed.

The study herein describes the effect of chronic HFD-feeding on markers of metabolic

syndrome including 1) WAT mass and hepatic steatosis, 2) glucose clearance, and 3) WAT

and liver inflammation in C57BL/6 and Keap1-knockdown mice. Overall, Keap1-KD mice

exhibited increased markers of metabolic syndrome with long-term HFD feeding.

MATERIALS AND METHODS

Animals

Mice with Keap1 knockdown (Keap1-KD), congenic to C57BL/6 background were

generously shared by Dr. Curtis Klaassen (Kansas University Medical Center, Kansas City,

KS) and Dr. Masayuki Yamamoto (Tohoku University Graduate School of Medicine,

Sendai, Japan). The mice are described in multiple publications from Yamamoto and

Klaassen [22-24]. Male age-matched C57BL/6 and Keap1-KD mice were bred in-house and

fed diet containing either 10% kcal fat (LFD, Research Diets Inc, D12450B) or 60% kcal fat

(HFD, Research Diets Inc, D12492) starting at wean (3 weeks) (n=4 or 5 per group). Body

weights were measured every week starting from six weeks of age (3 weeks on diet). At the

age of 27 weeks, blood, liver, SKM, and WAT, and brown adipose tissue were collected.

The study herein was reviewed and approved by the University of Rhode Island Institutional

Animal Care and Use Committee (IACUC protocol # AN11-11-007) and the number of

mice used was based upon required power analysis.

Glucose tolerance test (GTT)

The GTT was performed on the mice at 25 weeks of age. Mice were fasted for 8 hours

overnight and were administered a bolus dose of glucose solution by oral gavage (1g/kg

body weight). The blood glucose levels were recorded at 0, 15, 30, 60, and 120 minutes after

glucose administration from tail blood using a Contour® glucometer (Bayer HealthCare

LLC, Tarrytown, NY).
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Hepatic triglyceride (TG) quantification

Total lipids were extracted from liver tissue by methanol-chloroform extraction according to

[25] and TGs were quantified using a kit from Pointe Scientific Inc (Canton, MI) according

to manufacturer’s protocol.

Hematoxylin and Eosin staining

After harvesting, a small section of liver tissue from the central lobe of the liver, WAT, or

brown adipose tissue was stored in formaldehyde for 24 hour and then in 75 % ethanol until

further processing for paraffin embedding. Paraffin-embedded tissues were cut to

approximately 5 m sections, and then stained with hematoxylin and eosin.

Oil red O staining

Frozen liver tissues were sectioned (5 M) on Vibratome UltraPro 5000 Cryostat® (GMI

Inc., Ramsey, MN). Sections were then fixed in 10% formalin for 5 min and slides were

washed in water. Then slides were immersed in 60% isopropanol five times and incubated in

Oil red O solution for 15 min. The slides were immersed in fresh 60% isopropanol solution

twice and then counter stained with hematoxylin. Excess hematoxylin was removed with a

water wash and the slides were covered using Vectamount aqueous solution and coverslips.

Neutrophil staining

Neutrophil staining of paraffin embedded liver and WAT sections was performed as

described in [26]. Briefly, 4μM sections on adhesive slides were dried, de-paraffinized and

placed in TBS of pH 7.5 for 5 min. Enzyme Induced Epitope Retrieval (20 minutes in 0.04%

Pepsin in 0.2NHCl) followed by subsequent rinses and blocking for endogenous peroxidase

using 3% Hydrogen Peroxide/Methanol bath (1:4 ratio) for 20 minutes followed by rinses

with water. Pretreatment was followed by blocking with rabbit serum and endogenous

Biotin blocking by incubation in Avidin D (Vector) and d-Biotin (SigmaAldrich, St.Louis,

MO) for 15 minutes. Slides were then incubated with primary antibodies diluted in normal

diluent for 1 hr (Neutrophil-NIMP R14 from Santa Cruz Biotech, CA). Biotinylated

secondary antibody incubation was followed by RTU VectaStain Elite ABC Reagent

(Vector Laboratories, Burlingame, CA), reaction developed by Nova Red followed by

counterstain Gill 2 Hematoxylin (Richard Allen, Kalamazoo, MI). The slides were then

rinsed, dried and permanently mounted with Flotex media.

Serum cytokine analysis

Serum Mcp1 levels were measured using Mouse Mcp1 ELISA Max kit (# 432704) from

Biolegend (San Diego, CA) according to the manufacturer’s protocol.

Total RNA extraction and mRNA quantification

Total RNA from liver, WAT and SKM was isolated by phenol-chloroform extraction using

RNA Bee reagent (Tel-Test Inc, Friendswood, TX) according to the manufacturer’s

protocol. RNA concentration was quantified by absorbance at 260 nm using a

spectrophotometer (Nanodrop ND1000, Thermo Fisher Scientific, Waltham, MA) and the

samples were diluted to 1 g/ L. Formaldehyde–agarose gel electrophoresis followed by UV
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illumination was used to visualize RNA and confirm integrity. Messenger RNA was

quantified by QuantiGene (QGP) Plex 2.0 or 1.0 assay.

For QGP 2.0 assay, all the reagents including capture buffer, magnetic capture beads,

preamplifier, amplifier, label probe, diluents, and substrate solution were provided in the kit

(Affymetrix, Santa Clara, CA). On day one, 1000ng of RNA was incubated with capture

beads and target specific probe set mixture for hybridization for 18-22 hrs. After

hybridization, the beads were washed on BioPlex Pro wash station I (BioRad, Hercules CA),

using magnetic plate washer. Then beads were hybridized with preamplifier, amplifier and

label probe for 1 hr each and with washings in-between with wash buffer. After incubation

with label probe, the beads were washed and incubated with streptavidin phycoerythrin

(SAPE) for 30 min. The beads were then washed with SAPE washing buffer and re-

suspended in it for reading on Bioplex microplate luminometer. The data was processed by

BioPlex Manager software 5.0. Target gene expression was normalized to Hprt1 expression.

The QGP 1.0 assay (also referred to as the Branched DNA Signal Amplification assay)

procedure has been described in detail elsewhere [27, 28]. All reagents for analysis

including lysis buffer, amplifier/label probe diluent and substrate solution were supplied in

the QuantiGene 1.0 assay kit (Panomics, Fremont, CA). Oligonucleotides were first

dissolved in 10 mM Tris-HCl (pH 8.0) containing 1 mM EDTA and were diluted 1:100 in

lysis buffer before use [29]. On day one, total RNA samples (10 μg, 1 μg/μL) were added to

wells containing 50 μL of capture hybridization buffer and 50 μL of diluted probe set. The

RNA was allowed to hybridize overnight with probe set at 53°C. On day two, subsequent

hybridization steps were followed as mentioned in manufacturer’s protocol, and

luminescence was measured with a GloRunnerTM microplate luminometer interfaced with

GloRunner DXL Software (Turner Biosystems, Sunnywale, CA). The luminescence for each

well was reported as relative light units (RLU) per 10 μg of total RNA. The raw data was

used to plot graphs for mRNA expression.

Total protein extraction and western blotting

About 50mg of liver tissue was homogenized in 1mL RIPA buffer using Dounce

homogenizer. The homogenate was centrifuged at 12000 rpm for 10 minutes, and the

supernatant was stored at −80°C for future use as a total protein fraction. The extract was

quantified for protein content by Lowry assay. Relative protein expression was evaluated by

western blot. Fifty microgram of total protein extract pre-mixed with Laemmli was loaded

on polyacrylamide gel (4% stacking, 12% resolving), transferred on PVDF membrane,

stained with different antibodies enlisted in supplementary table ST1. The membrane was

then incubated with ECL+ (GE Healthcare, Waukesha, WI) and chemiluminescence was

exposed to X-ray film. The resulting bands on autoradiography films were evaluated using

Quantity One® software from BioRad.

Statistical Analysis

Groups were analyzed by a one-way ANOVA followed by a Duncan’s Multiple Range post

hoc test and planned comparison between C57BL/6 and Keap1-KD groups were performed
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among HFD groups after performing the one-way ANOVA. Different letters indicate

statistically significant difference between the groups (p<0.05).

RESULTS

Effect of Keap1-KD on body, WAT, and liver weight and food consumption with long-term
HFD feeding

Figure 1A depicts body weight change over 24 weeks. There was no significant difference in

body weight between C57BL/6 and Keap1-KD mice fed the LFD. Keap1-KD mice fed HFD

had significantly higher body weight between weeks 17-24, compared to C57BL/6 mice fed

HFD. At weeks 8 and 9, the HFD did not increase body weight in Keap1-KD mice as much

as C57BL/6 mice. However, around 11th week feeding the HFD, the trends in body weight

gain appeared to reverse, with Keap1-KD mice having body weight higher than C57BL/6

mice. Food consumption (Fig. 1B) for the LFD groups stayed within the range of 15-20 g/

week per mouse for entire duration of the study. For HFD fed mice, it was noted that food

consumption appeared slightly higher in C57BL/6, as compared to Keap1-KD mice

throughout the study (no statistical significance). Blood glucose levels of the mice

throughout the course of study were observed to remain in the range of 100 to 200 mg/dL,

with no significant difference between any of the groups (Supplementary figure SF1). HFD

feeding increased WAT weight (Fig 1C) significantly higher in Keap1-KD compared to

C57BL/6 mice. At 24 weeks of feeding the LFD or HFD, Keap1-KD mice also had an

increased liver-to-body weight ratio as compared to C57BL/6 mice on the respective diet.

Brown adipose tissue of Keap1-KD mice fed HFD displayed hypertrophy in hematoxylin

and eosin stained sections as compared to C57BL/6 mice (Supplementary figure SF2).

Keap1 knockdown increases liver steatosis with chronic HFD feeding

As depicted in Fig. 2A, the HFD increased lipid accumulation in the liver compared to the

LFD. Keap1-KD mice fed the HFD had a higher degree of steatosis compared to C57BL/6

mice, as seen with hematoxylin and eosin staining. Oil red O staining of neutral lipids also

revealed that the HFD significantly increased hepatic steatosis, with higher levels being

observed in Keap1-KD mice (Fig. 2B). Correspondingly, the HFD increased hepatic

triglycerides (Fig. 2C); with significantly higher TG levels being detected in livers of

Keap1-KD mice compared to C57BL/6 mice.

Keap1 knockdown increases lipogenic gene and protein expression in liver

Fig. 3A depicts lipogenic gene expression on mRNA level in liver. Ppar-γ and Cd36 mRNA

expression increased significantly in Keap1-KD mice as compared to C57BL/6 mice, in both

LFD and HFD fed groups. Fabp4 mRNA expression increased in Keap1-KD mice fed HFD

compared to C57BL/6 mice. Lpl mRNA expression was higher in C57BL/6 mice fed LFD

compared to all other groups, whereas Scd1 expression remained unchanged between all the

groups. Fig. 3B and 3C depicts increased mRNA expression of Nrf2 and its target genes,

NADPH quinone oxidoreductase (Nqo1) and glutamate cysteine ligase, catalytic subunit

(Gclc) in livers and WAT of Keap1-KD mice. Expression of Nrf2 and its target genes was

quantified in order to characterize the Keap1-KD model. Protein expression of similar

adipogenic targets also tended to increase livers of Keap1-KD mice fed HFD (Fig. 4). HFD
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slightly increased Pparγ protein expression in Keap1-KD mice, however the change did not

reach statistical significance. Phosphorylated acetyl CoA carboxylase 1 (pAcc1), Acc1, and

Scd1 protein levels were increased in Keap1-KD mice fed HFD compared to C57BL/6 mice.

Fatty acid synthase (Fas) protein expression was equivalent among all groups; however,

HFD groups displayed an increasing trend in expression (not statistical), as compared to

LFD.

Keap1-KD increases liver and WAT tissue inflammation

Neutrophil staining of paraffin-embedded liver sections revealed increased infiltration in the

HFD fed mice, with even more neutrophils in Keap1-KD mice fed HFD (Fig. 5A). Serum

levels of Mcp1 tended to increase in Keap1-KD mice fed either LFD or HFD, but this did

not achieve statistical significance (Fig. 5B). Quantification of relative pro-inflammatory

cytokine mRNA expression in liver tissue supported the histological staining. Mcp1 mRNA

expression in liver was higher in Keap1-KD compared to C57BL/6 mice fed HFD (Fig. 5C).

Tnf mRNA expression remained constant between C57BL/6 and Keap1-KD mice fed same

diet.

Chronic feeding of the HFD caused increased cellularity in WAT (Fig. 6A), which is often

associated with presence of neutrophils and macrophages [30]. After chronic HFD feeding,

WAT from Keap1 mice had increased cellularity and inflammation compared to C57BL/6

mice, as determined by histopathological analysis. Messenger RNA levels of

proinflammatory macrophage M1-marker Tnf was elevated in WAT of Keap1-KD mice fed

HFD as compared to C57BL/6 mice fed HFD (Fig. 6B). Mcp1 and Cd11c mRNA levels

were higher in HFD fed groups, but there was no significant difference between the

C57BL/6 and Keap1-KD mice.

Keap1-KD alters glucose clearance and insulin signaling protein expression in SKM

After 23 weeks of feeding the LFD or HFD, mice were subjected to a glucose tolerance test

(GTT), as a measure of diabetes and insulin resistance. No differences in glucose levels after

glucose administration were detected between C57BL/6 or Keap1-KD mice fed the LFD.

Mice fed the HFD had higher blood glucose levels compared those fed the LFD. After 15,

30 and 60 min of glucose administration, the blood glucose levels of Keap1-KD mice fed

HFD were about 1.5 fold higher compared to C57BL/6 mice fed the HFD (Fig. 7A). Area

under the curve (AUC) for GTT also demonstrated that blood glucose levels remained

significantly high in Keap1-KD mice fed HFD as compared to C57BL/6 mice fed HFD (Fig.

7B) for the duration of 2 hrs.

In accordance with the GTT, the expression of insulin signaling target insulin receptor

substrate 1 (Irs1) was also down regulated in SKM. In HFD fed mice, Keap1-KD mice had

decreased mRNA expression of Irs1 compared to C57BL/6 mice (Fig. 7C). However, Glut4

mRNA and protein expression was similar between all the groups, as determined by QGP

2.0 assay and western blot respectively (Fig. 7C and 7D).
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DISCUSSION

Metabolic syndrome is considered to be a manifestation of obesity, characterized by

increased central abdominal mass, dyslipidemia (e.g. increased serum triglycerides),

increased hepatic steatosis and markers of systemic inflammation, and dysregulation of

glucose tolerance [31]. To date, no study has evaluated the effect of Keap1 knockdown on

development of metabolic syndrome. The present study demonstrates that Keap1

knockdown increased some markers of metabolic syndrome after long term HFD feeding.

Along with increased body weight and WAT mass, Keap1-KD mice fed a HFD displayed

increased hepatic and white adipose markers of inflammation, hepatic steatosis, increased

adipose cellularity, and altered glucose homeostasis. Taken together, these data suggest that

Keap1 knockdown, and perhaps persistent Nrf2 activation, are associated with increased

metabolic syndrome risk with HFD challenge.

The present data indicate that Keap1-KD mice had significantly higher body weight and

adipose tissue mass compared to C57BL/6 mice with chronic long-term HFD feeding, which

are in line with other published findings. Pi et al. described adipose tissue changes in

Nrf2−/− mice [18]. The body weight of Nrf2−/− mice was significantly lower than wild type

mice fed an ad libitum diet. Abdominal fat pad mass, and adipocyte size was also

significantly smaller in mice with Nrf2−/− mice. Nrf2−/− mice were also resistant to diet-

induced obesity, when fed 41% kCal fat diet for 12 weeks after weaning. Also, adipocytes

derived from Nrf2−/− mouse embryonic fibroblasts accumulated less lipids compared to

those derived from Nrf2+/+ mouse embryonic fibroblasts [18]. Another study by Huang et

al. also demonstrated that deletion of Nrf2 (Nrf2−/−) in mice resulted in reduced body

weight in Nrf2−/− mice fed a HFD for approximately three months. These mice also had

lower hepatic TG content when challenged with HFD, compared to Nrf2+/+ mice [19].

Nrf2−/− mice displayed better insulin sensitivity, measured by glucose tolerance, as

compared to wild type mice fed HFD for 180 days [32]. The data herein also demonstrate

that Keap1-KD mice display increased hepatic steatosis compared to C57BL/6 mice. It was

observed that the HFD increased hepatic lipid accumulation along with increased lipogenic

gene and protein expression (e.g. Fabp4 mRNA, Cd36 mRNA, pAcc1 protein), which was

augmented in Keap1-KD mice. This observation is consistent with a report by Huang et al.,

2010, which reported decreased hepatic lipid accumulation in livers of Nrf2−/− mice after

long term HFD feeding. An interesting change in body weights was noted in the HFD fed

groups. Up to about 8-9 weeks of feeding the HFD, C57BL/6 mice appeared to have

significantly higher body weight as compared to Keap1-KD mice, which is consistent with

our previous observation [33]. However, this difference diminished at about 11 weeks of

feeding HFD and then by 19 weeks of HFD feeding, Keap1-KD mice weighed significantly

higher than C57BL/6. Food consumption did not significantly differ between genotypes,

suggesting the observed increase in metabolic syndrome markers in Keap1-KD mice are

related to lipid metabolism and not appetite. Zhang et al. recently reported no alterations in

body and liver weights in Keap1-KD mice fed 40% kCal fat diet for 12 weeks [34]. The

results herein differ from Zhang et al., perhaps because our study used 60% kCal fat diet and

was significantly longer in duration. However, our results are consistent with Zhang et al.

and Xu et al., when duration of feeding is considered. For example, in the present study,
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body weights were similar between C57BL/6 and Keap1-KD mice after 12 weeks of HFD

feeding (15 weeks of age), which is consistent with Zhang et al. Also, our group reported

that Keap1 knockdown protected against HFD-increased weight gain [33], which on a

cursory review seems inconsistent with the present study. Again, when one evaluates the

response of Keap1-KD mice with regard to duration on a HFD, the present data are also

consistent with Xu et al. In Xu et al., HFD feeding started at 9 weeks of age for 5 weeks in

duration. In the present study, Keap1-KD mice had lower body weights compared to

C57BL/6 mice on the HFD after 5 weeks of feeding, consistent with Xu et al [33]. It appears

that short term versus long term HFD in Keap1-KD produce different outcomes with regard

to body weight.

In contrast to the present finding, others report that activation of Nrf2 is protective against

HFD-induced obesity and steatosis, but this is typically reported in conjunction with

pharmacological Nrf2 activating compounds. Chemical activators of Nrf2 including,

oltipraz, CDDO-imidazole, and sulforaphane in separate studies protected mice against

obesity and steatosis [21, 35, 36]. When administered with oltipraz, HFD feeding did not

have obesogenic effects on mice for up to 28 weeks. Body weight, liver weight and adipose

tissue weight gain induced by HFD feeding was prevented with oltipraz co-administration

C57BL/6J mice [35]. Similarly, the synthetic triterpenoid CDDO-imidazole also prevented

weight gain in mice fed HFD for 3 and 13 weeks [36]. In an experiment with hepatocytes,

Nrf2 activator sulforaphane suppressed Liver × receptor (Lxr) dependent steatosis [21]. It is

not clear why pharmacological Nrf2 activators impact HFD feeding differently compared to

genetic models of Nrf2 manipulation, but perhaps other receptor systems (e.g. Constitutive

Androstane Receptor and Pregnane × receptor) might also be activated [24, 37]. One must

also consider the absorption, metabolism, and disposition of the chemical inducers being

administered in comparison to a genetically manipulated mouse model that has whole body

Keap1 knockdown.

The present study also demonstrated that constitutive Nrf2 activation altered glucose

homeostasis. As GTT is an indicator of sensitivity of cells to respond to insulin action,

ability of pancreas to produce insulin and ability of liver to store glucose, expression of

insulin responsive targets in the SKM could partially explain the reason for the insulin

intolerance. SKM is one of the major glucose utilizing tissues in the body and Glut4 is a

predominant glucose transporter responsible for insulin stimulated glucose uptake in SKM

[38]. Keap1-KD mice fed the HFD had unaltered mRNA and total protein expression of

Glut4. However, the mRNA expression of Irs1 mRNA, a protein involved in molecular basis

for action of insulin [39], was decreased in Keap1-KD mice fed the HFD, supporting data

obtained from GTT in Keap1-KD mice. It is possible that glucose uptake in skeletal muscles

was not altered in Keap1-KD mice fed HFD due to total Glut4 protein expression. Glut4

translocation to the membrane or defects in Irs-1 or Akt phosphorylation in response to

glucose or insulin could also be potentially considered. The Keap1-KD mice fed HFD

demonstrate a disturbance in glucose homeostasis with glucose challenge, which does

suggest a potential for development of insulin resistance.

Adipocytes act as endocrine cells, secreting variety of adipocytokines including leptin,

adiponectin, as well as interleukins [40]. In genetic and diet-induced obese mouse models,
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the expression of inflammation and macrophage markers was increased in WAT of obese

compared non-obese mice [41]. Inflammation is one of the most critical etiological factors

in development of insulin resistance [42, 43]. The current data illustrate that the Keap1-KD

mice fed the HFD had increased measures of inflammation in WAT and liver. Both WAT

and liver had increased inflammation, as noted by increased cellularity (WAT) and

neutrophil staining (NIMP R14, Liver). HFD fed Keap1-KD mice were found to have higher

levels of cytokines levels in serum and higher expression of cytokine mRNA in liver, as

compared to C57 mice fed HFD. Expression of pro-inflammatory M1 macrophage markers

was higher in Keap1-KD mice fed HFD, indicating possible role of long term Nrf2

activation in inflammation.

The reason why increased Nrf2 activation might promote lipogenesis and inflammation with

HFD feeding is intriguing. It remains to be determined whether lipid accumulation preceded

inflammation, but it is likely. Nrf2 has been shown to be a positive regulator of the mouse

Ppar-γ promoter, increase Ppar-γ expression, and promote adipogenesis [18], with a similar

mechanism occurring in liver [33]. Thus, the persistent Nrf2 activation in liver appeared to

promote lipid accumulation via upstream Ppar-γ activation. Perhaps an increased

biotransformation due increased Nrf2 activity resulted in increased lipids that caused tissue

injury and inflammation. The data clearly demonstrate increased inflammation in liver and

WAT, yet an underlying mechanism for the increased inflammation remains to be

determined.

Along with Nrf2, Keap1 is also implicated to interact with Nrf1 [44]. Nrf1, like Nrf2, also

belongs to basic leucine zipper family of transcription factors. It plays a role in combating

oxidative stress by increasing glutathione levels [45]. However, a review by Biswas and

Chan mentioned that functions of Nrf1 and Nrf2 are not completely redundant [46]. Nrf1

also plays role in regulating inflammatory targets including inducible nitric oxide synthase

[46]. Although Keap1 has much lower affinity for Nrf1 compared to Nrf2 [47], it is still

possible that Keap1-KD mice would have slightly increased levels of Nrf1. The effect of

Nrf1 on obesity/ diabetes is a relatively under-investigated area.

Our results herein are also of relevance to the study of obesogenic compounds, as the Nrf2

pathway is inducible and functional in adipose tissue and skeletal muscle [33] and Nrf2 is

activated by multiple environmental chemicals [48]. Thus, it is of potential interest to better

understand whether Nrf2 activation via environmental chemical could intersect with

obesogenic or pro-metabolic syndrome effects via environmental chemical exposure [49]. In

summary, the data herein demonstrate that Keap1-KD mice, which have Keap1 knocked

down and constitutive Nrf2 activation, were susceptible to increased markers of metabolic

syndrome, such as diet-induced obesity, hepatic steatosis, and glucose intolerance

concomitant with increased in inflammation in liver and adipose tissue, after long-term HFD

feeding. Overall, this study suggests that Nrf2 has a role beyond combating oxidative stress

and further investigation is needed to better understand Nrf2-Keap1 interactions with

chronic HFD challenge.
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TG triglyceride

Tnf tumor necrosis factor
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HIGHLIGHTS

• Keap1 knockdown increased body weight, adipose tissue mass, and hepatic steatosis

after 24 weeks of high fat diet feeding

• Keap1 knockdown altered short-term glucose homeostasis after 24 weeks of high fat

diet feeding

• Keap1 knockdown increased markers of metabolic syndrome induced by high fat diet

feeding
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Figure 1. Body, liver and WAT weight and adipocyte size of C57BL/6 and Keap1-KD mice fed a
10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD)
A) Body weights (starting from age 6 weeks) and B) food consumption of C57BL/6 (C57)

and Keap1-KD mice fed a LFD or HFD from weaning age to 27 weeks (starting at age 6

weeks). C) Abdominal adipose tissue weight and liver to body weight ratio. Differences

between the groups were analyzed by a one-way ANOVA followed by a Duncan’s post hoc

test. Different letters indicate statistically significant difference between the groups

(p<0.05). For example, letter “a” is significantly different from “b”, but not different from

“a”. Also, “a” is significantly different from “b,c” but not different from “a,b”.
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Figure 2. Hepatic lipid accumulation and triglyceride (TG) content in C57BL/6 (C57) and
Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD)
A) Hematoxylin and eosin staining of formaldehyde fixed paraffin embedded liver tissues

(200X magnification). B) Oil red O staining of liver sections. Frozen liver tissues were

sectioned in 5 m sections, stained with Oil red O, and counter stained with hematoxylin

(200X magnification). C) Hepatic TG content. Lipids were extracted using a methanol-

chloroform based protocol and the resulting TG content was assayed using kit from Pointe

Scientific (Canton, MI). Differences between the groups were analyzed by a one-way

ANOVA followed by a Duncan’s post hoc test. Different letters indicate statistically

significant difference between the groups (p<0.05).
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Figure 3. Lipogenic, Nrf2, and Nrf2 target gene expression in livers and white adipose tissue
(WAT) of C57BL/6 (C57) and Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal
high fat diet (HFD)
Total RNA was extracted from the livers by phenol-chloroform extraction and mRNA was

quantified using Quantigene Plex 2.0 or Branched DNA Signal Amplification assay

(Affymetrix, Santa Clara, CA). A) Peroxisome proliferator activated receptor (Ppar-γ),

Steroyl CoA desaturase (Scd1), Fatty acid binding protein 4 (Fabp4), Lipoprotein lipase

(Lpl), and Cluster of differentiation (Cd36) mRNA expression. B) Nrf2, NADPH:quinone

oxidoreductase (Nqo1), glutamate cysteine ligase (Gclc) mRNA expression in liver. C) Nrf2

and Nqo1 mRNA expression in WAT. Differences between the groups were analyzed by a

one-way ANOVA followed by a Duncan’s post hoc test. Different letters indicate

statistically significant difference between the groups (p<0.05). For example, letter “a” is

significantly different from “b”, but not different from “a”. Also, “a” is significantly

different from “b,c” but not different from “a,b”.
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Figure 4. Protein expression of lipogenic enzymes in livers of C57BL/6 (C57) and Keap1-KD
mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD)
A) Western blots for lipogenic enzymes in liver. Total protein extracts were separated on

polyacrylamide gel, immunoblotted, and chemiluminescence was captured on X-ray films.

B) Western blot quantification. The resulting blots obtained were evaluated using Quantity

One® software (Biorad, Hercules, CA) and band density is plotted as percent of C57BL/6

fed LFD. Differences between the groups were analyzed by a one-way ANOVA followed by

a Duncan’s post hoc test. Different letters indicate statistically significant difference

between the groups (p<0.05).
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Figure 5. Inflammatory markers in liver and serum of C57BL/6 (C57) and Keap1-KD mice fed a
10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD)
A) Neutrophil (NIMP R14) staining of paraffin embedded liver sections. Images displayed

in 200X magnification. B) Serum cytokine Monocyte chemoattractant protein 1 (Mcp1)

levels C) mRNA expression of inflammatory cytokine markers Mcp1, Tumor necrosis factor

(Tnf) and Cd11c in liver. Total RNA was extracted from liver tissue by phenol-chloroform

extraction and mRNA was quantified using Quantigene Plex 2.0 assay (Affymetrix, Santa

Clara, CA). by a Duncan’s post hoc test. Different letters indicate statistically significant

difference between the groups (p<0.05).
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Figure 6. White adipose tissue (WAT) cellularity and inflammation in C57BL/6 (C57) and
Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60% kCal high fat diet (HFD)
A) Hematoxylin and eosin stained sections of paraffin embedded WAT. Images displayed in

200X magnification. B) Messenger RNA expression of proinflammatory macrophage

markers monocyte chemoattractant protein 1 (Mcp1), tumor necrosis factor (Tnf) and Cd11c

in WAT. Differences between the groups were analyzed by a one-way ANOVA followed by

a Duncan’s post hoc test. Different letters indicate statistically significant difference

between the groups (p<0.05).
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Figure 7. Glucose tolerance test (GTT) and expression of insulin signaling molecules in skeletal
muscle (SKM) of C57BL/6 (C57) and Keap1-KD mice fed a 10% kCal low fat diet (LFD) or 60%
kCal high fat diet (HFD)
A) GTT after 23 weeks of LFD or HFD treatment. Mice were fasted overnight and

challenged with an oral glucose bolus (1g/kg). Blood glucose levels were recorded at 0, 15,

30, 60, and 120-minute time points using Contour® glucose meter (Bayer HealthCare LLC,

Tarrytown, NY). *Represents statistically significant difference of glucose levels between

C57BL/6 and Keap1-KD mice fed same diet. B) Area under the curve (AUC) plotted for the

GTT. C) Messenger RNA expression of insulin receptor substrate 1 (Irs1) and glucose

transporter Glut4 in SKM. Total RNA was extracted from liver tissue by phenol-chloroform

extraction and mRNA was quantified using Quantigene Plex 2.0 assay (Affymetrix, Santa

Clara, CA). For parts Differences between the groups were analyzed by a one-way ANOVA

followed by a Duncan’s post hoc test. Different letters indicate statistically significant

difference between the groups (p<0.05). For example, letter “a” is significantly different

from “b”, but not different from “a”. Also, “a” is significantly different from “b,c” but not

different from “a,b”. D) Protein expression of Glut4 from skeletal muscle of C57BL/6 and

Keap1-KD mice fed LFD and HFD by western blot (n=2 per group).
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