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Abstract: 8 

Sequencing reduced-representation libraries of restriction-site associated DNA (RADseq) 9 

to identify single nucleotide polymorphisms (SNPs) is quickly becoming a standard 10 

methodology for molecular ecologists. Because of the scale of RADseq data sets, putative loci 11 

cannot be assessed individually, making the process of filtering noise and correctly identifying 12 

biologically meaningful signal more difficult. Artifacts introduced during library preparation 13 

and/ bioinformatic processing of SNP data can create patterns that are incorrectly interpreted as 14 

indicative of population structure or natural selection. Therefore, it is crucial to carefully 15 

consider types of errors that may be introduced during laboratory work and data processing, and 16 

how to minimize, detect, and remove these errors. Here, we discuss issues inherent to RADseq 17 

methodologies that can result in artifacts during library preparation and locus reconstruction, 18 

resulting in erroneous SNP calls and ultimately, genotyping error. Further, we describe steps that 19 

can be implemented to create a rigorously filtered data set consisting of markers accurately 20 

representing independent loci and compare the effect of different combinations of filters on four 21 

RAD data sets. Finally, we stress the importance of publishing raw sequence data along with 22 

final filtered data sets in addition to detailed documentation of filtering steps and quality control 23 

measures.  24 
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1 The Rise of RAD 25 

Advances in sequencing technology coupled with increases in computational power have 26 

resulted in a shift towards genome-scale data analysis, for which data sets typically consist of 27 

thousands to tens-of-thousands of loci. At the same time, bioinformatic pipelines have become 28 

more user-friendly and accessible to scientists without extensive backgrounds in bioinformatics 29 

or programing. As a result, new analytical methods are rapidly being developed for studies 30 

assessing levels of population structure and genomic diversity, identifying and mapping 31 

quantitative trait loci (QTL), and screening for FST outliers putatively indicative of selection, 32 

Increasingly, restriction site-associated DNA sequencing (RADseq)-derived single nucleotide 33 

polymorphisms (SNPs) are becoming the molecular marker of choice. RADseq methods are 34 

time- and cost-efficient techniques that utilize restriction enzymes to generate DNA fragments 35 

from which thousands of SNPs can be identified using next-generation sequencing. This set of 36 

methods does not require a fully sequenced reference genome as loci can be reconstructed de 37 

novo from sequencing reads, greatly widening the types of organisms that can be studied beyond 38 

traditional model species (Miller et al. 2007; Baird et al. 2008; Davey & Blaxter 2010). In 39 

addition to the original RADseq protocol (Miller et al. 2007), ddRAD (Peterson et al. 2012), 40 

ezRAD (Toonen et al. 2013) and 2b-RAD (Wang et al. 2012) are commonly applied techniques. 41 

Despite differences between RADseq techniques and more traditional approaches, typically 42 

limited to data sets consisting of mitochondrial and/or nuclear loci (e.g. 10 – 100 microsatellite 43 

loci) all are unified by the assumption that the final data set consists of markers that each 44 

represent a single locus and that these loci are unlinked (freely-recombining), a condition that 45 

must be met when allele and genotype frequencies are being used to infer biological processes. 46 

Recent reviews have summarized differences between individual RADseq techniques, 47 

compared their respective advantages and disadvantages, and pointed out some potential sources 48 

of genotyping error that can lead to biased datasets (Andrews et al. 2014; Puritz, et al. 2014). 49 

More effort, however, is required to establish widely-accepted protocols to detect and remove 50 

putative markers that in reality do not represent single loci, identify and correct erroneous SNP 51 

calls, and assess genotyping error (but see Ilut et al. 2014; Li & Wren 2014; Mastretta-Yanes et 52 

al. 2015). For other commonly used molecular markers such as AFLPs and microsatellites, 53 

sources of genotyping error (e.g. allelic dropout, null alleles, stuttering) and best-practice 54 

methods to efficiently detect and correct for them are well established (Bonin et al. 2004), and 55 
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standards of reporting regarding data quality control have been formalized. Currently, published 56 

RADseq studies report (and practice) a wide array of data filtering and error detection procedures 57 

after variant calling, but many publications underreport quality control methods, making it 58 

difficult for the reader to assess data quality. 59 

Generating SNP data sets using RADseq approaches involves three general steps: library 60 

preparation, bioinformatic processing, and filtering for data quality. It is important to realize that 61 

error potentially resulting in artifacts downstream can be introduced at any of these steps. The 62 

introduction of some error during technical stages is unavoidable; therefore, it is important to 63 

employ quality control steps that allow for the identification and reduction of error before the 64 

dataset is analyzed. Here, we briefly review and make recommendations on how to limit and 65 

detect common sources of technical artifacts during library preparation and bioinformatic 66 

processing and suggest a set of filtering strategies that can be employed to create a robust data 67 

set consisting of markers representing physically unlinked, correctly reconstructed loci (Table 1). 68 

Further, we apply different combinations of suggested filters to several RAD data sets and 69 

discuss the effectiveness of different filtering strategies. 70 

2 Minimizing artifacts associated with library preparation 71 

The goal of library preparation for a typical RADseq experiment is to consistently sample 72 

the same set of fragments with sufficient coverage to correctly identify all alleles present at each 73 

locus across all individuals within and across sequencing runs. In this context, ‘library’ refers to 74 

a set of RADseq fragments isolated from a given number of individuals that are barcoded and 75 

sequenced together on a single lane. Common technical artifacts introduced during library 76 

preparation include (1) coverage effects, (2) locus drop-in/drop-out, (3) PCR artifacts, and (4) 77 

library effects. Another common artifact, allele dropout, causes alleles to systematically remain 78 

unsampled due to physical properties of the genome, i.e. cut-site or length polymorphisms. 79 

Because allele dropout has a biological origin, it should be considered a biological artifact that 80 

cannot be technically mitigated but rather can only be managed during bioinformatic processing 81 

(discussed in detail in section 4.3). In contrast, technical artifacts are associated with technical 82 

choices made by researchers and thus can be limited by careful planning during library 83 

preparation, as discussed below. 84 
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2.1 Coverage effects: DNA quality, quantity and restriction digestion  85 

RADseq methods, with the possible exception of recently developed hybrid enrichment 86 

methods (Schmid et al. 2017; Suchan et al. 2016), require high molecular weight DNA to ensure 87 

consistent digestion using restriction enzymes. Compared to other molecular markers, RADseq 88 

protocols also require greater amounts of DNA (up to 500ng), and while there is some flexibility 89 

in how much DNA is used, lower starting amounts of DNA increase the risks of low quality data. 90 

Inconsistent digestions can be due to partially degraded DNA, inhibitors present in the reaction 91 

(usually left over from extraction), and star-activity of the enzymes (i.e. cleavage of 92 

noncanonical recognition sequences). This is problematic because it inhibits consistent recovery 93 

of all fragments and produces downstream variance in coverage and/or missing data among loci 94 

within and between libraries (Graham et al. 2015). To help ensure consistent digestions, 95 

researchers should use high fidelity versions of restriction enzymes and perform trial digestions 96 

to determine adequate concentrations and sufficient digestion times. Quality control measures 97 

such as running digested samples on a fragment analyzer or agarose gel can be implemented to 98 

compare digestion results. Unit definitions for enzymes and standard protocols are generally 99 

based on the digestion of purified Lambda phage DNA; therefore, it is often advisable to use 100 

more enzyme than manufacturer guidelines suggest. In addition, purifying genomic DNA before 101 

digestion can remove inhibitors (e.g. phenol or pigments) carried over from extraction. 102 

When read depth per locus per individual (hereafter ‘coverage’) is insufficient, alleles 103 

may not be detected. Coverage effects may occur when initial DNA quality differs among 104 

individuals or standardization of the amount of DNA prior to pooling is inconsistent resulting in 105 

an unequal distribution of sequenced reads among individuals and loci. The use of high 106 

sensitivity quantification kits, and standardization of DNA quantity prior to enzyme digestion 107 

and again prior to adapter ligation can help to mitigate this issue. Similarly, pooling too many 108 

individuals on a sequencing lane can result in systematic low read depth across all samples and 109 

loci. This can be avoided by reducing the number of individuals per sequencing lane or by 110 

adjusting the size selection window and enzyme(s) used to decrease the number of targeted 111 

fragments. For loci affected by coverage effects, false homozygote calls will result in biased 112 

allele frequency estimates which may cause genomic diversity to be underestimated, FST and 113 

effective population size to be incorrectly estimated, and an increase in false positives/negatives 114 

in FST-outlier tests (Arnold et al. 2013; Gautier et al. 2012). 115 
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2.2 Locus drop-in/drop-out due to size selection 116 

Size selection is a crucial step for ensuring the consistent sampling of the same set of 117 

fragments across ddRAD libraries. The magnitude of the variance in the distribution of fragment 118 

lengths between libraries is dependent on the method used for size selection (Puritz et al. 2015). 119 

Two commonly employed methods are manual gel cutting and automated (e.g. Pippin Prep) size 120 

selection. While the latter is expected to increase the accuracy and precision of size selection, 121 

there can still be inconsistencies caused by factors including salt concentration of the loaded 122 

samples, and variable ambient laboratory temperature that can result in changes in the size 123 

distribution of eluted fragments. Size selection anomalies can therefore result in fragments 124 

dropping-in or out of the targeted size window for individually prepared libraries. To ensure 125 

consistent fragment recovery it is important to make sure that both means and variances of 126 

fragment size distributions are similar across runs. Because small fragments may be amplified 127 

preferentially, libraries with wider variances may have suboptimal coverage for larger fragments 128 

as compared to libraries with less variance even if means are similar. Thus, it is important to 129 

implement quality control steps to determine whether the selected fragments fall into the 130 

expected distribution given the targeted size window. For example, a fragment analyzer or high-131 

resolution electrophoresis gel can be used to determine the actual length of the fragments 132 

retained in each library prior to sequencing.  133 

2.3 PCR Artifacts 134 

With the exception of proposed PCR-free protocols (e.g. ezRAD; Toonen et al. 2013), 135 

and protocols performing PCR before size selection (Elshire et al. 2011), the final step of library 136 

preparation is PCR amplification, during which artifacts may also be introduced. These can be 137 

classified as (1) PCR error, including PCR chimeras, heteroduplexes, and Taq polymerase error 138 

that could be exponentially propagated during PCR cycling, and (2) PCR bias, i.e. the 139 

preferential amplification of shorter fragments and those with higher GC content. PCR artifacts 140 

can be minimized by using high fidelity polymerase and high annealing temperatures to limit 141 

copy error, reducing the number of cycles to minimize PCR bias, and providing sufficient 142 

extension time based on fragment size. Additionally, several authors have recommended the 143 

incorporation of barcodes with degenerate bases to aid in detection and removal of PCR 144 

duplicates (Tin et al. 2015; Schweyenet al. 2014), i.e. reads stemming from the same fragment 145 

template, which artificially increase read depth and therefore increase confidence in a SNP call 146 
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despite not actually representing independent observations. Finally, multiple reactions can be 147 

completed with fewer cycles and combined into a final product to further mitigate PCR error and 148 

bias.  149 

2.4 Library effects 150 

One of the principal benefits of reduced representation sequencing techniques is the 151 

reproducibility of the library preparation process. In theory, repeating the process with the same 152 

restriction enzymes and size selection window should consistently yield the same set of 153 

fragments. In practice however, subtle differences between experiments, frequently beyond the 154 

control of the researcher, can result in a situation where different sets of fragments are sequenced 155 

and/or coverage differs greatly among libraries (‘library effects’). Library effects can be caused 156 

by a number of factors including differences in reagents and protocols used, ambient laboratory 157 

temperature, poor accuracy and/or precision of size selection, and differences in DNA pool 158 

quality and/or concentration (Bonin et al. 2004). While not all library effects can be avoided, 159 

measures can be implemented to reduce the impact of library effects and identify markers most 160 

severely affected. 161 

The most effective ways to decouple the putative biological signal from patterns 162 

introduced by library effects are by (1) randomly allocating individuals from different treatments 163 

or geographic localities across libraries and (2) including technical replicates (repeated samples) 164 

across libraries (Meirmans 2015). Randomizing samples across libraries broadly diminishes the 165 

chances that artifactual signal will be confused as a biologically meaningful pattern, while also 166 

allowing for downstream identification and removal of library effects. By performing a PCA, or 167 

similar analysis, with data grouped by library and identifying and examining those markers most 168 

associated with axes discriminating libraries, library effects can be mediated by removing biased 169 

loci (Figure 1). When studies incorporate multiple libraries prepared at different times, under 170 

different conditions and sequenced on multiple lanes, including a subset of individuals across 171 

libraries (‘technical replicates’) should be standard practice. Incorporating these technical 172 

replicates enables a direct comparison of genotypes across libraries, allowing for the 173 

identification of loci that are consistently sampled with sufficient coverage to identify both 174 

alleles, as well as loci exhibiting systematic genotyping errors. Implementing randomization of 175 

individuals and including technical replicates during the library preparation stage is crucial for 176 

identifying library effects during bioinformatic processing and data filtering. 177 
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3 Minimizing artifacts associated with bioinformatics 178 

During bioinformatic processing of RADseq data in the absence of a fully sequenced and 179 

assembled genome, reads are first clustered into contigs (contiguous sequence alignments) with 180 

the goal that each contig should represent a single locus. Second, reads are clustered or aligned at 181 

each reconstructed locus to identify and call SNPs for each individual. Artifacts most commonly 182 

introduced at this stage are (1) clustering errors, i.e. the chosen values for the parameters of the 183 

clustering algorithm result in under-splitting or over-splitting of putative loci and (2) artifactual 184 

SNPs resulting from mapping errors or failure to identify PCR or sequencing error. 185 

3.1 Clustering error 186 

One of the main advantages of RADseq methods is the fact that SNPs can be identified 187 

de novo, i.e. without a draft genome. The critical step in generating markers that accurately 188 

represent these loci is the clustering of sequences into contigs that each represent a single locus 189 

(Ilut et al. 2014). Several pipelines for marker reconstruction exist, including Stacks (Catchen et 190 

al. 2013), PyRAD (Eaton 2014), dDocent (Puritz et al. 2014), and AftrRAD (Sovic et al. each of 191 

which differs slightly in the strategies and methods employed. While the algorithmic details of 192 

each pipeline are different, they all make the assignment of putative homology (orthology) of 193 

fragments based on the number of mismatches or percent similarity. Efficacy of this technique 194 

requires that the maximum divergence among alleles at a given locus is smaller than the 195 

minimum divergence among loci (Ilut et al. 2014). Under-splitting occurs when sequence 196 

similarity thresholds are too low such that multiple loci are combined into a single cluster 197 

forming multi-locus contigs. The formation of multi-locus contigs will occur more frequently 198 

with paralogs, repetitive elements and otherwise superficially similar sequences in the genome. 199 

These multi-locus contigs can inflate the mean estimated heterozygosity. Conversely, over-200 

splitting occurs when sequence similarity thresholds are too high, causing alleles of the same 201 

locus to be split into two or more contigs. Over-splitting results in deflation of mean estimated 202 

heterozygosity. Picking similarity thresholds that result in no over- or under-splitting is not 203 

possible because every genome contains elements that will suffer over- or under-splitting at 204 

every threshold selected (Ilut et al. 2014). However, it is generally better to err on the side of 205 

under-splitting, because methods to identify and remove multi-locus contigs are more effective 206 

than those for identifying over-split loci (Ilut et al. 2014; Mastretta-Yanes et al. 2015; Willis et 207 

al. 2017). In addition, understanding differences between bioinformatic pipelines is critical to 208 



8 

 

 

properly clustering the data. For example, Puritz et al. (in prep) found that rates of over-splitting 209 

vary between dDocent, PyRAD, Stacks, and AftrRAD across various combinations of parameters. 210 

Because effective thresholds for clustering will depend on the bioinformatic pipeline and vary by 211 

organism, enzyme(s), and dataset, researchers should test parameters to identify values where 212 

over-splitting is minimized. 213 

3.2 Artifactual SNPs  214 

Artifactual SNPs, those that do not exist in the actual genome but are called from the 215 

mapped reads, may be the result of erroneous read clustering/mapping, PCR error, and/or 216 

sequencing error. Because the rate of sequencing error varies by platform employed, chemistry 217 

and read length, the typical user cannot control all error introduced at this stage, therefore, it is 218 

important to account for sequencing error during bioinformatic analysis. FASTQ-format 219 

sequence reads include PHRED-scale quality scores indicating the probability of a base call 220 

being correct. The quality score, Q, equals -10 log10 P, with P being the probability of a base-221 

calling error; for example, Q = 30 corresponds to the expectation that 1 in 1000 base-calls will be 222 

incorrect, i.e. the probability of a correct base call is 99.9%. Quality scores can be used during 223 

bioinformatic processing to trim low-quality sections from the beginnings and/or ends of reads or 224 

to eliminate reads entirely, failure to do so can affect mapping quality downstream and/or 225 

introduce artifactual SNPs. Similarly, library effects may be introduced at this stage if sequence 226 

data is not carefully assessed for quality (especially at the 3’ and 5’ ends) and properly trimmed. 227 

A PHRED-like quality score is also used by several variant callers, including freebayes and 228 

GATK (Depristo et al. 2011; Garrison & Marth 2012), to determine the probability of a SNP call 229 

being real or artifactual.  230 

4 Filtering SNP data 231 

Despite attempts to limit the introduction of technical artifacts during library preparation 232 

and bioinformatic processing, SNP data sets require rigorous filtering because the inclusion of 233 

only a few incorrectly genotyped loci in a data set can create a significant, misleading signal 234 

(Davey et al. 2013; Li & Wren 2014; Meirmans 2015; Puritz et al. 2014). This is especially 235 

important for Fst-outlier detection to determine loci potentially under selection because signal 236 

caused by genotyping error is likely to stand out in pattern and magnitude from the signal 237 

produced by the background SNP data (Hendricks et al. 2018; Xue et al. 2009). Full post-238 

processing exploration of each dataset should include an evaluation of the quality of each locus 239 
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and individual, the confidence in both SNP calls and genotypes, and whether specific loci are 240 

likely to be multi-locus contigs. This should involve generating frequency distributions of 241 

parameters including missing data per locus and individuals, read depth, and heterozygosity to 242 

determine appropriate threshold values for these parameters. In addition, the comparison of 243 

multiple filtered data sets generated using different parameter values provides guidance for 244 

which combinations of thresholds retain the most loci while minimizing artifacts. 245 

Beyond identifying parameters and threshold values that best identify and remove 246 

specific types of artifacts, other important considerations include the order in which filters are 247 

applied, whether individual genotypes should be selectively coded as missing (e.g. due to 248 

insufficient coverage) or entire loci removed, whether to remove specific SNPs or entire SNP-249 

containing contigs, and whether threshold values should be applied across the entire data set or 250 

separately across biologically meaningful groups, e.g. geographic sampling locations or, to 251 

mitigate library effects, separately across individuals grouped e.g. by library/sequencing lane. 252 

Additionally, every data set will be unique in terms of the number and quality of 253 

samples/sequencing runs, and differences in the protocols employed (e.g. enzyme combinations, 254 

targeted coverage, etc.); this means that individual data sets will differ in terms of missing data, 255 

coverage, etc. Therefore, while certain parameters should always be considered during filtering, 256 

the exact steps employed, and the applied thresholds will be specific to each data set.  257 

To illustrate the effects of various filtering strategies and parameter thresholds, we 258 

employed six different filtering schemes (FS) across four different data sets (Hollenbeck et al. 259 

2018; O’Leary et al. 2018; Portnoy et al. 2015; Puritz et al. 2016). All data sets were created 260 

using the dDocent pipeline and differ in terms of the focal organism, type of reference used to 261 

map reads, the type of reads and the number of libraries sequenced (Table 1). The red snapper 262 

data (Puritz et al. 2016) set consists of previously published data that has been recalled against a 263 

fully sequenced draft genome consisting of large contigs (154,064 contigs; N50 = 233,156 bp; 264 

total length 1.23 Gb) while the other three were assembled de novo as previously published. For 265 

all FS, we first filtered genotypes, loci and individuals. Because most researchers analyze 266 

datasets of bialleic SNPs, as a final step we decomposed multi-nucleotide variants and retained 267 

only SNPs. Details of full FS are available in Table 2 and fully annotated scripts for filtering are 268 

available at https://github.com/sjoleary/SNPFILT. The results of these FS are discussed in the 269 

following sections to illustrate suggested filters. 270 

https://github.com/sjoleary/SNPFILT
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4.1 Low quality loci versus low quality individuals 271 

Filtering parameters used to identify loci and individuals that did not sequence well 272 

include genotype call rate per locus (i.e. proportion of individuals a locus is called in) and 273 

missing data per individual, as well as genotype depth and the mean depth per locus, i.e. mean 274 

number of reads at a given locus across individuals. For data sets characterized by high levels of 275 

missing data (e.g. red snapper, Figure 2), applying hard thresholds can result in retaining little to 276 

no loci in the filtered data set. For example, for the red snapper data set, setting hard cut-offs 277 

retaining only loci with genotype call rates >95% and individuals with <25% missing data, leads 278 

to a final data set of only 10 SNPs on 3 contigs in 262 individuals (raw data set contains 279 

1,106,387 SNPs on 25,168 contigs for 282 individuals, Table 3). 280 

As an alternative strategy, starting with low cutoff values for missing data (per locus and 281 

individual) and iteratively and alternately increasing them may result in more high-quality loci 282 

and individuals being retained. For example, in the red snapper data set, first removing low 283 

confidence genotypes by filtering for minimum genotype read depth >5, SNP quality score >20, 284 

minor allele count >3, minimum mean read depth per locus >15 changes the distribution of 285 

missing data per locus and individual and decreases the mean missing data from approximately 286 

75% to 35% (Compare Figure 2A, B with C, D). Then iteratively increasing the stringency of 287 

allowed missing data (final threshold values of a 95% genotype call rate and 25% allowed 288 

missing data per individual) results in 9,478 – 12,056 SNPs on 1,626 – 1,680 contigs and 187 – 289 

189 individuals being retained (Table 3), depending on the FS outlined in Table 2. This occurs 290 

because poor quality individuals tend to deflate genotype call rates in otherwise acceptable loci, 291 

and poor-quality loci increase missing data in otherwise acceptable individuals. Applying an 292 

iterative filtering strategy consistently results in more loci and individuals being retained overall, 293 

even in data sets consisting of individuals sequenced on a single sequencing lane for which the 294 

initial distributions of missing data per locus and individuals are more favorable (Figure 3). For 295 

example, after removing low confidence loci from the flounder data set as described above and 296 

then setting a hard cutoff for a genotype call rate of >95% and allowed missing data per 297 

individual of <25% results in a data set consisting of 15,682 SNPs on 3,802 contigs over 170 298 

individuals, while iterative filtering results in data sets consisting of 18,663 – 24,103 SNPs on 299 

4,789 – 5,341 contigs over 164 – 167 individuals (Table 3). 300 
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4.2 Confidence in SNP identification  301 

The ability to filter loci depends on the pipeline used to reconstruct and genotype loci and 302 

the set of parameters reported. As previously mentioned, variant callers such as report PHRED-303 

like quality scores for variants (SNPs) indicating the confidence in the SNP call being correct. 304 

Similarly, users can set a minimum genotype depth below which genotypes are coded as missing 305 

to determine the minimum number of reads that need to be present at each locus to be confident 306 

that false homozygotes are excluded from the data (for further discussion see section 4.3).  307 

Further, users often choose to set a minor allele count to remove potentially artifactual 308 

SNP calls. For example, a minor allele count of three requires an allele to be observed in at least 309 

two individuals (homozygote and heterozygote). It is common practice to assume that loci with a 310 

minor allele frequency < 5% are not informative at a population level and to remove them from 311 

data sets. Unfortunately, this strategy will remove true rare alleles from the data set that could be 312 

informative in understanding patterns of connectivity and local adaptation. Because minor and 313 

private alleles can be vital to accurately drawing inferences about past demographic events (e.g. 314 

genetic bottlenecks), elucidating fine-scale population structure, understanding patterns of local 315 

adaptation, and analyzing shifts in frequency spectra (Cubry et al. 2017; O’Connor et al. 2015; 316 

Slatkin 1985), being able to distinguish between true minor alleles and genotyping error would 317 

allow for better analysis of data sets. Carefully applying the filters as discussed in this section 318 

can allow users to make this distinction, as illustrated by comparing the difference between data 319 

sets created using specific filters before and after applying a minor allele count threshold. 320 

4.3 Confidence in genotypes: allele dropout/coverage effects 321 

While artifactual SNPs as described above will result in genotyping error (individuals 322 

called heterozygous for alleles that do not exist), genotyping error at real SNPs may also occur. 323 

Allele dropout and coverage effects can lead to unsampled alleles and individuals incorrectly 324 

genotyped as homozygotes. Whereas coverage effects can be technically mitigated by setting a 325 

target number of read per-individual, per-locus based on the total number of reads expected on 326 

each sequencing lane and the number of fragments excepted, allele dropout is an unavoidable 327 

artifact of using restriction enzymes and size selection during library preparation. For targeted 328 

fragments to be amplified and sequenced, adapters must be correctly ligated to the “sticky” ends 329 

left by the enzymes, but polymorphisms may occur in the enzyme recognition site (cut-site 330 

polymorphisms) resulting in alleles that are not cut by the restriction enzymes. Similarly, length 331 
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polymorphisms (insertion-deletions, or “indels”) may result in allele dropout when alleles fall 332 

outside of the selected size window. In either case, the result is allele-specific sequencing failure.  333 

Allele dropout cannot be avoided by optimizing standard laboratory procedures, but can 334 

be accounted for during filtering by removing genotypes below a certain threshold of minimum 335 

reads, and by identifying loci with high variance in read depth among individuals (Cooke et al. 336 

2016; Davey et al. 2013). Low coverage can result in false homozygotes because the number of 337 

reads may not be high enough to successfully call both alleles. Loci can be filtered based on a 338 

threshold of minimum mean depth per locus and users can code individuals’ genotypes at 339 

specific loci as missing if they fall below a minimum depth threshold that reflects the number of 340 

reads required to confidently call homozygotes. This increases the confidence in individual 341 

genotypes, and results in the removal of loci that consistently have genotypes not called with 342 

high confidence across individuals. Unfortunately, during filtering it is difficult to distinguish 343 

between allele dropout and coverage effects because they create similar patterns of missing data, 344 

variance in depth and excess homozygosity. In both cases, failure to remove potentially affected 345 

loci causes the introduction of false homozygotes and may result in biased estimates of 346 

population genetic parameters based on allele frequencies and heterozygosity (DaCosta & 347 

Sorenson 2014; Gautier et al. 2012), though the magnitude of this bias will vary depending on 348 

the magnitude of the true biological signal in the data. 349 

Hence, it is important to consider the statistical model being used for variant calling, and 350 

how the model relates to read depth. For example, freebayes and GATK (Depristo et al. 2011; 351 

Garrison & Marth 2012) are Bayesian callers that integrate data across all samples when 352 

determining genotypes, meaning lower read-depth genotypes can be called with greater 353 

accuracy. This is in contrast to genotyping models implemented in STACKS or PyRAD 354 

(Catchen et al. 2011; Eaton 2014) which genotype individuals one at a time without the ability to 355 

integrate data across samples until genotyping is completed. Finally, when deviations from 356 

Hardy-Weinberg proportions are not expected, χ2 tests of Hardy-Weinberg expectations for 357 

individual loci within demes can also indicate heterozygote deficits that may indicate allele 358 

dropout. 359 

4.4 Identification of multi-locus contigs 360 

Multi-locus contigs can be identified by assessing distributions of read depth, excess 361 

heterozygosity, and the number of haplotypes observed per each individual at each marker (Ilut 362 
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et al. 2014; Li & Wren 2014; Willis et al. 2017). In general, total or mean read depth per locus 363 

should be approximately normally distributed. Loci with coverage falling well above this 364 

distribution may be reads clustered or mapped from multiple loci. Loci with excess coverage are 365 

best identified by generating a frequency distribution of coverage and choosing thresholds, for 366 

example, two times the mode (Willis et al. 2017) or the 90th quantile 367 

(https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters; Figure 4). Appropriate 368 

thresholds will vary between data sets and species. Because fixed or near-fixed differences may 369 

exist between non-orthologous loci, multi-locus contigs often have an excess number of 370 

heterozygotes ( Hohenlohe et al. 2011; Willis et al. 2017). VCFtools (Danecek et al. 2011) 371 

provides a statistical framework for assessing heterozygote-excess via a χ2 test of Hardy-372 

Weinberg expectations for VCF files. Finally, reads in multi-locus contigs often exhibit more 373 

than two haplotypes per individual, and therefore loci can be removed based on a threshold for 374 

the number of individuals with excess haplotypes (Ilut et al. 2014, Willis et al. 2017). While each 375 

of these filters applied alone may catch many or even the majority of multi-locus contigs, the 376 

most effective strategy to remove multi-locus contigs appears to be applying each filter in 377 

parallel and removing markers flagged by any of the three filters (Willis et al. 2017). 378 

4.5 INFO-flag filtering of vcf files 379 

Freebayes and other multi-sample variant callers create annotated output files (VCF-380 

files) containing additional data pertaining to individual SNPs, coded as “INFO”-flags. Using 381 

utilities such as VCFtools (Danecek et al. 2011), the suite of tools from vcflib 382 

(https://github.com/vcflib/vcflib), and simple PERL and BASH scripting, it is possible to create 383 

custom filters based on these flags. Li (2014) investigated false heterozygote calls on a SNP data 384 

set generated from a haploid genome and estimated that the raw data set contained one erroneous 385 

call in 10 – 15 kb. After implementing a set of filters based on the INFO-flags, the genotyping 386 

error rate was reduced to one in 100 – 200 kb. The INFO-flag filters include allele balance, 387 

mapping quality ratio, reads mapped as proper pairs, strand bias, and the relationship of read 388 

depth to quality score. 389 

Allele balance (AB) compares the number of reads for the reference allele to the number 390 

of reads for the alternate allele across heterozygotes. The expected allele balance is 0.5; large 391 

deviations may indicate false heterozygotes due to coverage effects, multi-locus contigs, or other 392 

artifacts. Figure 5 shows AB for a raw data set, and for data sets that have been filtered for low 393 

https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
https://github.com/vcflib/vcflib)
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quality genotypes, loci and individuals. In both unfiltered and filtered data sets, loci with 394 

high/low AB are present, indicating that problematic loci will remain unless AB is explicitly 395 

filtered for.  396 

Reads supporting either allele in a heterozygote should have similar mapping quality 397 

values, the ratio of mapping quality between alleles, therefore, should be approximately one. The 398 

mapping quality of a read is the probability of a given read mapping similarly well to another 399 

location in the reference; reads stemming from paralogous or multi-copy loci should therefore 400 

have reduced mapping quality, as they will map similarly well to multiple locations in the 401 

reference. Hence, systematically large discrepancies between the mapping quality for reads 402 

supporting the reference and alternate alleles at a SNP may be indicative of read-mapping errors, 403 

due to repetitive elements, paralogs, or multi-locus contigs. Users should remove loci where 404 

reads supporting the alternative allele have a substantially lower mapping quality compared to 405 

reads supporting the reference allele. For example, dDocent_filters 406 

(https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters), a companion script to 407 

the dDocent pipeline, suggests a lower threshold of 0.25 (Figure 6). Similarly, reads supporting 408 

the reference allele are expected to have high mapping quality scores thus limiting how much 409 

higher the mapping quality of reads supporting the alternative allele can become. Therefore, high 410 

ratios only occur when mapping quality of reads supporting the reference allele are low, resulting 411 

in a need for an upper threshold value (default 1.75 for dDocent_filters Figure 6). Users are 412 

encouraged to assess their data sets to identify appropriate cut-offs. Standard filtering steps do 413 

not remove all loci with biased mapping quality ratios (Figure 6). As mentioned in section 4.2, 414 

assessing mapping quality ratios has the added benefit that it can help to identify minor alleles 415 

that are not true alleles (Figure 6B), allowing researchers to retain true minor alleles that may 416 

contain an important biological signal.  417 

For paired-end libraries, artifacts can also be identified by examining the properly paired 418 

status of reads and potential strand bias. The forward and reverse reads of a known pair should 419 

always map to the same contig; improper read paring, in which forward and reverse reads of a 420 

known pair map to different contigs, indicates mapping anomalies such as multi-copy or 421 

improperly assembled loci. Strand bias describes the relationship between forward and reverse 422 

reads and SNP-calls at a given locus. For most paired-end RADseq libraries, the forward and 423 

reverse reads do not overlap because the actual RAD fragments will be too long. For example, a 424 

https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
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350 bp RAD fragment characterized with 125 bp pair-end reads will have 100 bp of 425 

uncharacterized, intervening sequence. Therefore, a given SNP should only be apparent on either 426 

the forward or reverse read. Calls of the same SNP in in both forward and reverse reads often 427 

indicate mapping anomalies. However, the implications of this criterion depend on read length 428 

and fragment length, and therefore the expected overlap of paired reads in a given data set. 429 

Finally, the relationship between SNP quality score and read depth should be assessed; 430 

these measures should be positively correlated, because, theoretically, increasing read depth 431 

should decrease the likelihood of false homozygous calls (Li & Wren 2014). Users may choose 432 

to apply a general threshold value for the ratio of locus quality to read depth and/or apply a 433 

separate SNP quality score threshold value for loci with high read depth. For example, 434 

dDocent_filters (https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters), a 435 

companion script to the dDocent pipeline, implements this by considering SNPs with a depth > 436 

mean + 1 standard deviation as high coverage and then removing high coverage SNPs for which 437 

the quality score is less than two times the read depth (Figure 7, Li & Wren 2014). 438 

5. Physical linkage 439 

After filtering, most RADseq data sets will generally contain sets of SNPs located on the 440 

same contig. SNPs located within a few hundred base pairs of each other are generally physically 441 

linked (Hohenlohe et al. 2012; Miyashita & Langley 1988), whereas most commonly used 442 

analyses assume that all genetic markers are independent, of course, due to the fact that RAD 443 

methods randomly sample the genome it is possible that selected fragments are linked as well 444 

and users should, where appropriate, test for linkage disequilibrium between loci to avoid biasing 445 

results. Treating physically linked SNPs as independent markers provides biased results, 446 

including false signals of population structure. A common method to remove this bias is to retain 447 

only one SNP from each contig (“thinning”). This is an appropriate strategy but one that reduces 448 

the information content of a given marker if multiple SNPs are contained on a single contig. 449 

Another way to deal with physical linkage is to infer haplotypes for each contig based on the 450 

combination of filtered SNPs within paired reads (Willis et al. 2017). This strategy will produce 451 

the same number of markers as thinning, but many markers will be multi-allelic, therefore, 452 

haplotyping manages physical linkage while preserving the total information content of the data 453 

set.  454 

https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
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6. Conclusions & outlook (on the importance of reproducible research) 455 

With the shift from data sets consisting of markers for tens to hundreds of microsatellite 456 

loci to several thousand SNP-containing loci, bioinformatic processing has become the only 457 

viable means of ensuring data quality. If careful quality control is implemented, RAD methods 458 

are a powerful instrument in the molecular ecologist’s tool box to assess levels population 459 

structure and connectivity and local adaptation in non-model species for which genomic 460 

resources might not (yet) be available. Many studies currently report very few details pertaining 461 

to quality control methods applied to the output from SNP calling pipelines beyond very basic 462 

filtering, frequently limited to the removal of markers and/or individuals with low coverage or 463 

high levels of missing data. Enabling this under-reporting is a lack of clear quality control 464 

standards. Nevertheless, it is incumbent upon the authors to document data preparation and 465 

quality control steps and make these available to the scientific community along with raw data 466 

sets to ensure that data analyses are transparent and fully reproducible (Leek & Peng 2015; Peng 467 

2014). 468 

Here, we have provided a discussion of several of the places that errors and artifacts may 469 

be introduced into RADseq datasets and provided recommendations for how to minimize, detect, 470 

and account for these artifacts from laboratory through bioinformatic and filtering stages. We 471 

hope that these recommendations facilitate discussion about standardization of quality control in 472 

RAD-based population genomics data sets. While a detailed description of each filtering step 473 

would exhaust available space for the methods section of a manuscript, researchers should 474 

include detailed procedures in the supplementary material and deposit custom script(s) in public 475 

data or code repositories (e.g. Portnoy et al. 2015; Puritz et al. 2016; O’Leary et al. 2018). 476 

Further, platforms such as GitHub (http://github.com) allow for convenient archiving as well as 477 

assigning DOIs (digital object identifiers) to make code citable. A description of processing 478 

should accompany data sets archived in readily interpretable formats, along with the associated 479 

meta-data, and consist of the tools (name and version) and exact parameters used for processing. 480 

In addition to making data analysis fully transparent and reproducible, this will allow developed 481 

approaches to be applied to other data sets and facilitate the development of new and better 482 

approaches in the application of genomics to molecular ecology. 483 
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Figures and Tables 644 

Figure 1: Library effects (adapted from Puritz et al. 2015). PCA of RAD data set combining four 645 

libraries (yellow squares, red diamonds, blue triangles, green circles) before (A) and after (B) 646 

correcting for library effects by removing affected markers. 647 

Figure 2: Missing data per locus and individual (indv), respectively for unfiltered red snapper 648 

data set (A, B) and after coding genotypes with <5 reads as missing and removing low quality 649 

loci with SNP quality score <20 and minimum mean depth <15 reads (C, D). Red dashed line 650 

indicates mean proportion of missing data. 651 

Figure 3: Missing data per locus and individual, respectively for unfiltered southern flounder 652 

data set (A, B) and after coding genotypes with <5 reads as missing and removing low quality 653 

loci with SNP quality score <20 and minimum mean depth <15 reads (C, D). Red dashed line 654 

indicates mean proportion of missing data. 655 

Figure 4: Distribution of mean depth per locus across all loci for red snapper data set after 656 

removing low confidence/quality loci (minimum genotype depth >3, SNP quality score >20, 657 

minor allele count >3, mean minimum depth across all individuals >15), and iterative filtering of 658 

missing data to final threshold of genotype call rate >95% and allowed missing data per 659 

individual <25%. Blue dotted line indicates 95% percentile (123.5) and red dashed line 2x the 660 

mode (156) as potential cut-offs to remove loci with excessively high depth indicative of multi-661 

locus contigs following Willis et al. (2017). 662 

Figure 5: Allele balance in heterozygous genotypes (proportion of reads corresponding to the 663 

reference allele) for (A) unfiltered red drum data set, (B) data set with genotype read depths <3 664 

reads coded as missing and loci with SNP quality score <20, mean depth <15 reads and/or >30% 665 

missing data removed, and (C) data set filtered as (B) and loci with a minor allele count <3 666 

removed in addition. Except for minor sampling error, reference and alternate allele should be 667 

supported by the same number of reads, i.e. allele balance should be 0.5 (red dashed line); values 668 

away from this indicate potential anomalies. The blue dotted lines indicate default cut-off values 669 

of 0.2 and 0.8 implemented in dDocent_filters 670 

(https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters). 671 

Figure 6: Ratio of mean mapping quality scores for the reference and alternate allele for 672 

southern flounder data set. (A) Genotypes with <5 reads have been coded as missing and loci 673 

with SNP quality score <20, mean read depth <15 reads, >30% missing data and/or and minor 674 

https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
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allele count of <3 removed; (B) same data set without applying minor allele count filter. Red 675 

dashed line indicates loci with mapping quality ratio of 1, i.e. the further away the larger the 676 

discrepancy between the mapping quality of the reference and alternate allele. Blue dashed lines 677 

indicate cut-off values for ratio of mean mapping quality score of 0.25 and 1.75 (alternate to 678 

reference allele) as implemented in dDocent_filters 679 

(https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters) to remove loci with high 680 

discrepancy of mapping quality for the alleles of a given locus (indicated in red below the dashed 681 

line). 682 

Figure 7: Comparison of SNP quality score and total depth per locus for the bonnethead shark 683 

data set. Vertical blue dashed line identifies loci with high depth (mean + 1 standard deviation). 684 

Loci with a quality score <2x the depth at that locus are below the diagonal blue dashed line 685 

(indicated in red). 686 

Table 1: Overview of described potential issues in raw RAD data sets, their causes, and 687 

strategies for technical and bioinformatic mitigation 688 

Table 2: Detailed description of six different filtering schemes applied to example data sets, the 689 

order of the rows indicates the order in which filters we applied. Applied filters are designed to 690 

remove loci with low confidence SNP calls (minimum genotype read depth (minDP), SNP 691 

quality score (qual), mean read depth per locus across all individuals (meanDP), minor allele 692 

count (mac), missing data (allowed missing data per individual (imiss), genotype call rate 693 

(number of individuals that have been called for a given locus (geno)) and INFO-filters as 694 

described in the manuscript. 695 

Table 3: Comparison of the number of SNPs, contigs (cont) and individuals (indv) in the raw 696 

data sets and number (proportion) retained in each data set for six different filtering schemes 697 

(FS) as described in Table 2. 698 

Supplementary Information 699 

Table S1: Comparison of four published ddRAD data sets compiled using the dDocent pipeline. 700 

(A) Comparison of sequencing type used to create reference and call genotypes, the number of 701 

combined libraries, approximate genome size, and enzymes used to fragment DNA. All data sets 702 

were run on the Illumina platform to obtain either paired end (PE) or single end (SE) reads. 703 

https://github.com/jpuritz/dDocent/blob/master/scripts/dDocent_filters
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