THE **UNIVERSITY** OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Graduate School of Oceanography Faculty **Publications**

Graduate School of Oceanography

6-8-2015

Simulation of Observed PCBs and Pesticides in the Water Column during the North Atlantic Bloom Experiment

Lin Zhang

Louis Thibodeaux

Lee Jones

Rainer Lohmann University of Rhode Island, rlohmann@uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

Citation/Publisher Attribution

Lin Zhang, Louis Thibodeaux, Lee Jones and Rainer Lohmann (2015). " Simulation of Observed PCBs and Pesticides in the Water Column during the North Atlantic Bloom Experiment. " Environmental Science & Technology, 49,(23), 13760-13767.

Available at: http://dx.doi.org/10.1021/acs.est.5b00223

This Article is brought to you by the University of Rhode Island. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

Simulation of Observed PCBs and Pesticides in the Water Column during the North Atlantic Bloom Experiment

The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits you.

This is a pre-publication author manuscript of the final, published article.

Terms of Use

This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use.

Supporting Information for

Simulation of observed PCBs and pesticides in the water column during the North Atlantic Bloom Experiment.

Lin Zhang^{1,2}, Louis Thibodeaux³, Lee Jones⁴ and Rainer Lohmann^{1*}

¹Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island 02882-1197, USA

²Biological Science, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA

³ Cain Department of Chemical Engineering, Louisiana State University, LA, USA

⁴Mathematical Science, University of Massachusetts Lowell, Lowell, Massachusetts 01854, USA

* corresponding author: Tel: 001-401-874-6612, Fax: 001-401-874-6811,E-mail: lohmann@gso.uri.edu

Pages: 16

Tables: 8

Figures: 2

Table SI- 1 . Amount of Blanks for PCBs in Air, Water, and Zooplankton Samples. Recoveries for ¹³C-PCB Surrogates.

Average Blanks (pg)	PCB8	PCB18	PCB28	PCB52	PCB44	PCB66	PCB 101	PCB 118	PCB 153	PCE 138
Air Blanks	76.3	54.1	119.8	138.4	84.4	154.0	185.0	95.3	128.7	97.4
S.D.	14.0	23.9	40.7	98.4	52.5	72.6	32.2	46.9	60.4	55.3
Water Blanks	150.2	93.9	197.1	95.1	51.6	113.3	106.8	35.4	76.9	79.2
S.D.	41.0	33.9	37.0	26.1	19.1	42.3	11.2	10.9	44.8	26.1
Zooplankton Blanks	81.8	59.2	97.3	62.8	31.2	21.8	64.9	34.8	64.8	43.6
S.D.	13.1	12.4	17.7	18.4	22.0	17.7	34.2	15.8	17.7	21.4
Average Recoveries	¹³ C- PCB 8	¹³ C- PCB 28	¹³ C- PCB 52	¹³ C- PCB 118	¹³ C- PCB 138	¹³ C- PCB 180	¹³ C- PCB 209			
Air	90%	95%	91%	97%	97%	107%	80%	•		
S.D.	17.0%	19.0%	16.1%	16.2%	16.3%	21.1%	17.1%			
Water	79%	82%	81%	83%	84%	86%	85%			
S.D.	8%	10%	10%	10%	11%	12%	9%			
Zooplankton	70%	87%	79%	84%	84%	89%	66%			
S.D.	20%	20%	18%	20%	21%	25%	23%	_		

Year-	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	PCB	Σισες
day	8	18	28	52	44	66	101	118	153	138	PCB
121.5	72.4	25.7	28.5	11.9	7.2	6.1	9.3	3.4	5.4	3.4	61.9
122.0	82.3	25.4	27.1	12.5	7.4	7.9	12.2	4.6	9.2	5.3	70.9
122.5	61.6	17.2	18.1	10.5	5.6	6.8	11.3	4.3	7.7	4.6	56.4
123.0	70.1	20.0	21.0	8.8	5.9	6.3	9.3	3.4	5.9	4.3	52.7
123.5	18.4	7.1	9.0						4.4		14.3
124.0	22.9	7.8	7.4	3.1	1.8	1.8			2.3	1.4	14.2
125.5	18.4	7.6	9.9	7.4	4.1	4.1	6.4	2.1	4.0	2.5	32.4
126.0	6.7	2.6									
126.5	18.3	6.6	6.0								6.0
127.0	26.7	7.6	6.0								6.0
127.5	18.3	5.7	4.9								4.9
128.0	16.9	5.0	4.6								4.6
128.5	11.2	3.8									
129.0	13.0	4.6									
129.5	12.3	4.7									
130.0	14.0	5.0									
130.5	22.5	6.5	5.4								5.4
131.0											
132.0	11.0	4.1	4.6								4.6
135.0	49.5	17.8	23.0	4.4	3.2	2.7					27.4
136.0	25.7	1.1	8.8								8.8
137.0	12.8	5.1	6.3								6.3
138.0	9.1	4.0	4.4								4.4
139.0	8.1	4.7	2.4								2.4
140.0	8.9	3.2	2.6								2.6
141.0	10.6	3.6									
142.0	13.6	4.2									
142.5	10.4	3.1									

Table SI- 2 . PCB Concentrations (pg m^{-3}) in the Gas Phase on the Year-day of 2008.

Year- day	PCB8	PCB 18	PCB 28	PCB 52	PCB 44	PCB 66	PCB 101	PCB 118	PCB 153	PCB 138	Σ _{ICES} PCB
123.0	0.85	0.44	1.24	1.13	0.51	1.80	1.32	0.18	1.30	0.13	5.29
123.5	0.16	0.32	0.98	0.75	0.38	1.19	0.79	0.21	1.37		4.11
124.0	0.97	0.20	0.23	0.18	0.28	0.25		0.07	0.24		0.72
125.5	0.73	0.20	0.63	0.60	0.21	1.03	0.71	0.24	1.12		3.30
126.0											
126.5											
127.0			0.15	0.32	0.20	1.08	0.62	0.55	0.98		2.62
127.5			0.03	0.89	0.65	2.65	0.40	1.73	2.58		5.64
128.0	0.73	1.27	1.52	0.58	0.61	0.92	0.50	0.68	0.12		3.40
128.5	1.34	0.34									
129.0	0.80	0.25									
129.5	0.98	0.03									
130.0	1.74	0.36						0.37			0.37
130.5	5.36	1.12						0.16			0.16
131.0	1.66	0.68			0.17			0.23	0.35		0.58
132.0	3.17	0.69	0.34								0.34
135.0	11.24	2.44	2.71	0.57	0.26	0.19		0.24	0.04		3.56
136.0	7.10	1.23	1.04					0.09			1.13
137.0	5.73	1.00	0.63	0.31		0.01		0.30	0.21		1.45
138.0	4.23	1.45	0.39								0.39
139.0	3.36	0.72						0.05			0.05
140.0	4.96	0.25	0.22					0.18			0.39
141.0	4.68	0.54	0.23					0.12			0.35
142.0	0.84										
142.5	13.55	1.66						0.12	0.53		0.65

Table SI- 3. PCB Concentrations (pg L^{-1}) in the Dissolved Phase on the Year-day of 2008.

Julian Day	PCB8	PCB 18	PCB 28	PCB 52	PCB 44	PCB 66	PCB 101	PCB 118	PCB 153	PCB 138
123.0	21.69	7.56	3.10	1.58	3.98	0.55	2.40	12.60	1.90	9.03
123.5	29.76	3.66	1.66						1.33	
124.0	5.91	6.09	5.74	3.38	2.11	1.09			3.69	
125.5	5.96	5.69	2.57	2.26	6.01	0.56	2.72	5.08	1.31	
126.0										
126.5										
127.0			7.47							
127.5			30.2							
128.0	5.93	0.64	0.53							
128.5	2.16	1.82								
129.0	4.08	2.84								
129.5	3.31	25.49								
130.0										
130.5	1.10	0.97								
131.0										
132.0	0.89	0.97	2.41							
135.0	1.11	1.16	1.49	1.51	4.12	2.08				
136.0	0.92	1.00	1.49							
137.0	0.56	0.82	1.76							
138.0	0.54	0.44	2.00							
139.0	0.60	1.03								
140.0	0.46	2.05	2.10							
141.0	0.58	1.06								
142.0	4.13									
142.5	0.21	0.32								

Table SI- 4. Fugacity Ratios for Various PCB Congeners as a Function of Julian Day 2008.

Table SI- 5. Air-Water Exchange Velocities (m/d) Calculated Using Three Different Wind Speed Dependency Relationships; Liss and Merlivat 1986 (LM86), Nightingale et al 2000 (N00), and Wanninkhof and McGillis 1999 (WM99).

Velocity (m/d)		PCB 28			PCB 153	3
Year- Day	LM86	N00	WM99	LM86	N00	WM99
123.0	0.79	0.90	1.25	0.54	0.60	0.76
123.5	0.90	1.04	1.52	0.61	0.68	0.89
124.0	1.79	2.34	4.01	1.16	1.39	1.94
125.5	1.58	1.99	3.37	1.05	1.24	1.74
126.0	1.22	1.47	2.36	0.81	0.92	1.26
126.5	0.62	0.71	0.92	0.44	0.49	0.59
127.0	0.34	0.46	0.50	0.26	0.33	0.35
127.5	0.14	0.32	0.33	0.11	0.24	0.25
128.0	0.49	0.59	0.69	0.36	0.41	0.47
128.5	0.40	0.51	0.57	0.30	0.36	0.40
129.0	1.09	1.27	1.97	0.73	0.82	1.11
129.5	1.89	2.41	4.11	1.19	1.40	1.92
130.0	0.95	1.10	1.64	0.64	0.71	0.94
130.5	1.21	1.45	2.33	0.80	0.91	1.24
131.0	0.84	0.96	1.36	0.58	0.64	0.82
132.0	0.99	1.14	1.71	0.67	0.74	0.98
135.0	0.67	0.77	1.00	0.47	0.53	0.64
136.0	0.29	0.42	0.45	0.22	0.31	0.33
137.0	0.62	0.71	0.90	0.44	0.49	0.59
138.0	1.19	1.42	2.26	0.80	0.90	1.23
139.0	1.21	1.44	2.30	0.81	0.92	1.26
140.0	1.57	1.98	3.33	1.02	1.20	1.66
141.0	1.41	1.74	2.88	0.92	1.07	1.48
142.0	1.48	1.85	3.09	0.97	1.13	1.57
142.5	1.79	2.30	3.90	1.13	1.34	1.83

Year- day	lipid (%)	PCB8	PCB 18	PCB 28	PCB 52	PCB 44	PCB 66	PCB 101	PCB 118	PCB 153	Σ _{ICES} PCB
131	4.67%		0.84	0.64	1.32	0.59	0.36	1.79		2.52	6.28
135a	3.09%		0.61	0.67	0.38	0.15	0.19		0.25	0.67	1.98
135b	4.97%	0.12	0.08	0.14	0.28	0.21	0.59	0.50	0.20	0.60	1.73
135c	1.72%	0.28	0.32	0.81			0.44			0.74	1.55
136	4.83%	0.11	0.27	0.24					0.10	0.10	0.45
137a	6.15%	0.16	0.61	0.72	0.40	0.48	0.46	0.29	0.22	0.62	2.26
137b	2.86%	0.64	0.61	1.64	0.63	0.29	0.80	0.64	0.58	0.77	4.26
138a	6.45%	0.86	0.45	0.57	0.26	0.13	0.22	0.21	0.16	0.25	1.44
138b	3.17%	0.58	0.71	1.15	0.84	0.37	1.01	0.71	0.70	1.05	4.45
139	2.24%	0.24	0.72	0.87	0.78	0.31	0.87	0.81	0.59	1.21	4.25
140a	4.83%	0.97	0.57	0.50	0.16	0.18	0.15		0.11	0.48	1.25

Table SI- 6. PCB Concentrations (ng g⁻¹) in the Lipids of Zooplankton on the Year-day of 2008.

Log S _W	Log S _A	ΔU_{AW}	Kaw	Δυ _{οΑ}	Koa	ΔU _{ow}	Kow			ΔU _{AW}	Log K _{AW}	ΔUow	Log K _{ow}		
-0.ъ	4	56.9	-3.6	-62	7.48	ъ.5	3.88	α- HCH		52.9	-2.06	-15	4.71	РСВ З	
0.16	-4.7	67.9	-4.8	-84	8.74	-16	3.91	β- НСН		54.9	-2.06	-19.0	5.29	PCB 8	
-0.6	-4.5	54.3	4	-64	7.72	-9.6	3.76	Υ- НСН		52.4	-1.89		5.42	РСВ 18	
-2.9	-4.4	51.9	<u>-1</u> .5	-76	7.12	-24	5.61	НСВ		51.8	-1.94	-27	5.92	РСВ 28	
-1.86	-5.09	31.7	-3.22		8.62		5.4	X HEP		53.8	-1.96	-27.5	6.26	PCB 52	
-2.82	-5.4	29.2	-2.5		8.82		6.27	тс		58.1	-2.15		6.02	PCB 44	
-2.88	ភ ភូ	34.2	-2.7		8.84		6.19	СС		55.3	-1.83		6.56	РСВ 66	
-3.10	-5.9	39.1	-2.8		9.7		6.94	p,p'- DDE		65.2	-2.08	-19	6.76	РСВ 101	
								-	-	65.2	-2.36	-25	7.08	РСВ 118	
										68.2	-2.13	-27	7.31	РСВ 153	
										64.7	-1.97	-22	7.7	РСВ 138	
										69.0	-2.51	-26	7.66	РСВ 180	

Log So

3.44

4.07

3.18

2.73

3.54

3.31 3.3

3.70

3.84

Year- day	PCB 8	PCB 18	PCB 28	PCB 52	PCB 44	PCB 66	PCB 118	PCB 153	Slope	inter- cept	R square
131		6.09			6.55			6.86	0.38	4.04	0.92
135a		5.39	5.39	5.83	5.77	5.99	6.03	7.21	0.79	0.74	0.74
135b	4.04	4.51	4.72	5.69	5.92	6.49	5.93	7.16	1.29	-2.82	0.82
135c	4.40	5.11	5.47			6.36		7.25	1.26	-2.29	0.97
136	4.21	5.34	5.37				6.05		0.77	0.51	0.70
137a	4.45	5.78	6.06	6.11		7.49	5.87	6.46	0.69	1.54	0.37
137b	5.05	5.79	6.42	6.30		7.73	6.29	6.56	0.64	2.16	0.39
138a	5.31	5.50	6.16						1.22	-1.35	1.00
138b	5.13	5.69	6.47						1.78	-4.52	0.96
139	4.86	6.00					7.06		0.97	0.04	0.80
140a	4.69	6.46	6.60				6.53		0.62	2.28	0.31

Table SI- 8. K_{lipid} for different PCB congeners. Regression Slopes, Intercepts, R-Squares for log K_{lipid} vs log K_{ow} .

Table SI- 9 Summary of Sampling Information for Air and Water Samples Collected

Julian day	Latitude	Longitude	Air volume (m ³)	Water volume (L)	Sample Date	Start Time (GMT)	End Time (GMT)	Air Temp (°C)	Water Temp (°C)
121.5	6/ 1	_21.0	542	()	4/30/2008	19:45	8:30	4 02	()
122.0	64 1	-21.9	538	N/A	5/1/2008	8:50	20:30	6.46	N/A
122.5	64.2	-21.5	495	,,,	5/1/2008	20:50	9.05	4 4 1	,,,
123.0	62.1	-24.6	520	760	5/2/2008	9:20	21:00	7.06	9.28
123.5	60.9	-25.4	549	709	5/2/2008	21:50	8:30	8.36	9.43
124.0	58.7	-25.8	1294	1189	5/3/~5/4/2008	9:25	17:05	8.97	9.93
125.5	60.9	-26.7	922	759	5/4/~5/5/2008	18:10	13:10	8.97	10.62
126.0	60.8	-27.1	364	726	5/5/2008	13:45	21:49	8.99	9.44
126.5	60.9	-27.2	509	796	5/5/5008	22:40	09:03	8.34	9.31
127.0	60.9	-27.4	512	960	5/6/2008	09:43	20:35	7.93	9.22
127.5	60.8	-27.5	510	567	5/6-5/7/2008	20:59	08:38	8.39	9.42
128.0	61.2	-26.5	541	931	5/7/2008	09:03	20:25	9.12	9.61
128.5	61.1	-26.7	572	518	5/7-5/8/2008	20:44	09:25	8.93	9.55
129.0	61.1	-25.7	505	920	5/8/2008	09:50	21:13	8.90	9.92
129.5	61.1	-26.7	499	639	5/8-5/9/2008	21:31	10:37	7.81	9.22
130.0	60.9	-27.6	447	643	5/9/2008	11:01	21:05	8.79	9.26
130.5	60.6	-27.6	473	539	5/9-5/10/2008	21:45	11:22	7.97	9.30
131.0	61.3	-26.6	462	788	5/10/2008	11:22	21:41	8.62	9.62
132.0	61.5	-26.0	941	1015	5/10- 5/11/2008	22:10	19:35	9.39	9.64
135.0	61.2	-26.3	899	871	5/14- 5/15/2008	12:52	12:29	8.15	9.84
136.0	61.3	-26.3	815	1029	5/15- 5/16/2008	12:53	13:01	8.02	9.78
137.0	61.5	-26.0	623	952	5/17/2008	16:40	16:50	8.58	9.81
138.0	61.5	-26.1	894	816	5/17- 5/18/2008	17:15	15:28	8.88	9.85
139.0	61.2	-25.5	1145	755	5/18- 5/19/2008	16:49	20:00	8.81	10.06
140.0	61.2	-25.7	1152	707	5/19- 5/20/2008	20:28	20:03	9.16	9.75
141.0	61.5	-25.8	642	770	5/20- 5/21/2008	20:25	11:03	9.02	9.70
142.0	61.4	-25.5	467	569	5/21/2008	11:28	22:37	9.31	9.73
142.5	62.8	-24.7	548	237	5/21- 5/22/2008	22:58	11:16	8.10	9.05

- -

SI Figures

Figure SI- 1. Sampling Location. Blue lines are the ship track of R/V Knorr. Numbers are Year-day of 2008. Dashline denotes a 2°X2° box for the Eulerian model.

Figure SI-2. Air-Water Exchange Fluxes (ng m⁻² d⁻¹) of Different PCB Congeners Calculated Using Three Different Relationships on Year-Day 123 of 2008.

Figure SI-3, 10,000 Monte-Carlo simulation curves (red) by varying initial dissolved p,p'-DDE concentrations, air-water exchange coefficients (K_{AW}), organic carbon-water partitioning coefficients(K_{OA}), chemical degradation constants (k_deg) 10 times each following normal distribution. Observed dissolved concentrations (black) were plotted to compare with simulations.

Figure SI-4 Residual (observations minus simulation) plot for dissolved p'p-DDE.

Figure SI- 5. Comparison of Modeled and Observed α -HCH Dissolved Phase Concentrations (pg L⁻¹) as a Function of Year-day 2008.

S15