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Anisotropic quantum spin chains

J. Kurmann, G. Miiller,® and H. Thomas®?

Institute for Theoretical Physics, University of Basel, CH-4056 Basel (Switzerland)

M. W. Puga® and H. Beck®

Institute of Physics, University of Neuchdtel, CH-2000 Neuchdtel (Switzerland)

We have studied two models for anisotropic quantum spin chains. (i) XY-chain with a field in the plane: The
magnetization of the ferromagnet behaves as h'/® for small fields, in agreement with scaling laws. The
antiferromagnet shows a critical field at which the ground state is a simple Néel state and which separates
power law from exponential decay of spatial correlations. (ii) Anisotropic XY-chain: The dynamic z-

component spin correlation function can be decomposed into a spin wave and a soliton contribution. The
nature of quantum soliton excitations is studied and their form compared to soliton solutions of classical

equations of motion.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.40.Fa, 75.30.Gw

1. INTRODUCTION
In recent years, much work has been done on s = 3
spin chains with a Hamiltonian having at least one
rotational exis in spin space [1,2]. Finite chain cal-
culations, Fermion representation and Bethe ansatz
techniques have been combined in order to cbtain infor-
mation about dynamical correlation functions {2]. On
the other hand interesting non-linear excitations con-
tribute to the dynamics of classical fully anisotropic
spin chains (e.g. planar systems with a magnetic field
in the plane). At low T and in the continuum approxi-
mation, the equation of motion of a polar angle of the
classical spin is mapped onto a Sine—Gordon (SG) equa-
tion which allows for soliton solutions. Their contri-
bution to dynamical correlation functions at low T can
then be calculated [3,4,5]. Experimentally the effect
of solitons seems to have been seen in the inelastic
neutron cross sections [6,7].

Little work has been done for anisotropic quantum
spin chains, specially concerning dynamics. The study
of such systems would be of great importance for va-
rious reasons. First, it would be interesting to
elucidate the relevance of the notion of a "soliton" in
a quantum system, using the language of eigenstates and
correlation functions instead of searching for special

solutions of equations of motion, as in the classical
case., Second, there are numerous mappings between 1-4
quantum and 2-d classical systems [1], such that
results for 1-d quantum correlation functions also
provide insight into the behavior of 2-d classical
models.

Except for special cases, Fermion representation
techniques are not too useful for anisotropic spin
chains, since interacting Fermions with a gap {or a
"mass'") are not easily treated by a Luttinger approxi-
mation. We have studied two special cases of an
anisotropic XY-chain :

N
H=-~J ] {(1+7)8;(n)s(n+1) + (1-v)Sy(n)Sy(n+1)
n=1

+ hS,(n)} (1)
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In section 2 we present some new results on static
properties for y = 0, including the existence of a
"eritical" field, for which the true quantum ground
state of the antiferromagnet (J < 0) is & simple Néel
state. Section 3 presents exact results for a dynemi-
cal correlation function for h = 0 (which case is
solvable in the Fermion representation), shedding some
light on the nature of quantum solitons.

2, ISOTROPIC XY-CHAIN WITH AN IN-PLANE FIELD

We have studied various properties of (1) for
Yy = 0 by diagonalizing H for finite chains (N g 10)
with periodic boundary conditions. Here are a few
interesting results

(a) § > O (ferromagnetic exchange) : By extrapolating
to the 1limit N + =, we found the following behavior for
the magnetization : oy a nl/8 for small h with 6 = 3.
This is in agreement with the dimensional scaling law

6§ =-1+23/(a-2+n) (2)
and n = 3/2, since in the isotropic chain (h = 0) cor-
relations decay as [8]

<5, (n)Sg(n+R)> « RI*¥2N = g-1/2 (3)
Saturation is not reached at any finite field, pertur-
bation theory showing that

(4)

_ -2
xsat 9%~ h

o
for large fields.
(b) J < 0 (antiferromagnetic coupling) : The magnetiza-
tion for N = 8, which displays steps, is shown in _
Fig. 1. The last step always occurs at h = hy = /2
with mean magnetization ay{h.) = /2/4. Above this
field, the system seems to behave like an XY ferro-—
megnet. Moreover spin correlation functions for large
R seem to have power law decay — as in (3) - for h<hg,
but an exponential decay for h > hy. At he we find the
surprising but rigorous result that, for any N, the
ground state is a Néel state of the form
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Fig. 1 Magnetization o,(h) for antiferromagnetic
XY-chain of N = 8 spins in a field in
x~direction.

lG> = g[wn> (5)
with
Jvy> = /ig [exp{-(-1)R %)Env + exp{(-1 )" i%)ln\b] (6)

which is readily verified. Such a "eritical" field
leading to a "classical" ground state even exists for
arbitrary field direction, exchange anisotropies and
spin quantum number [9]. The special case of the ani-

sotropic XY antiferromagnet with a field in z-direction.

discussed by Barouch and McCoy [101, has two critical
fields. At one field the ground state is of the Néel
type, at the other the susceptibility diverges. For
the isotropic XY model with a field in the plane, these
two special fields apparently coincide.

3. DYNAMICS OF ANISOTROPIC XY-FERROMAGNETS

Through a Jordan-Wigner and a subsequent Bogolubov
transformation Hamiltonian (1) with h = O can be mapped
onto free Fermions with energies [11]

1/2

E(k) = J[cos?k + yZsin2k]

(M

(The sign of the root is chosen such that E(k)+-Jcosk
for y + 0). The spin correlation function

G(q,w) = Jdt elut ) eiqn<sz(nt)sz(0,0)> (8)
n

can be calculated exactly for this model at any tempe-
rature T [12,13). Straightforward calculations yield

n/2

_1 -
o(q,u) = (1 +e 8o (1 heBe)
-n/2
n/ 9)
{C0x,a)8(u-e, ~c_) + ePEHD(k,q)8(w+e, ~e_))
1969 J. Appl. Phys., Vol. 52, No. 3, March 1981

with ey = e(k £ q/2) (10)

1/2
e(k) = +J [5in?k +y2cos2k] >0.

(11)
The functions-C and D, whose detailed form is not given
here for brevity, are determined by the coefficients of
the Bogolubov transformation [12]. Egqu. (9) is valid
for w > 0 and we have

G(q, ~w) = e Bv(q,0). (12)
Corresponding to the two terms in the curly bra-
% of (9), G contains two contributions, G'1/ and

a{1)involves creation of a particle-hole (p-h)
pair with & minimum energy 2y. Thus there is a
gap in the spectral ction : G{1) = 0 for w<2y.
On the other hand G(! # 0 even at T = 0, since a
p-h pair can be created out of the ground state
where all states with negative energy (7) are
filled. We call G{1) the "spin wave" or "magnon"
part of G.

(ii) ¢'2) represents "scattering” of a particle (or
hole) from k+q/2 to k- q/2. There is no gap in
the spectrum for q = 0, but G(z) involves
exp(-Be ) : the particle or hole state is only
occupied at finite T. We term 6{2) mso1iton” part
of G.

This nomenclature is motivated by interpreting H
as the energy of classical spins

> . - .
S = (sinfcos¢, sinbsing, cosb ).
At low T they will be confined to the xy-plane, and for

small y the angle ¢(R,t) = 2¢(R,t) will satisfy, in
the continuum approximation, the SG-equation (J=1) :

%y 1 3%y, .
o T e m?siny (13)

with ¢ = ¥2 and m = 2/;; For such classical SG-chains
the dynamic correlation functions have been worked out
for low T [3,4}. There is a "magnon™ part {surviving
at T = 0), due to small amplitude solutions of {(13),
and a "soliton" part. The z-component correlastions due
to solitons can be brought into the form [Y4]

-8 u(k)
G,p(au) = Jdk e N §(w - q/2V(k))
(1b)
viw) | °

=

T[g !

cosh (k)

1/2

with B8 = (kpT)7!, u(k) = (k2 +42)"'7,

du
dk

v(k) = k (k2 +72)_1/2.

The last factor is the square of the "soliton fo
factor", the g-Fourier transform of the shape of (R)
corresponding to the soliton solution $(R,t =0) of (13)
[4].

Evaluating the quantum soliton part, G(z), of (9)
for low T and small q (using the continuum approxima-
tion e{k) = u(k)) yields
2
|

o(2)(a.0) « Jdke-euma(w_qwk)niqu(k,q) . (15)

Magnetism & Magnetic Materials—1980 1969

Downloaded 29 Nov 2007 to 131.128.70.27. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



It obviously has the same structure as the classical

result (14).

We want to comment and to interpret this

fact in the following way :

(1)

(ii)

(1%) and (15) still differ in two respects. There
are different factors in the exponent : the clas-
sical soliton "rest mass" is 8m = 16/y, whereas in
the quantum system it is given by vy, the minimum
energy necessary to create a particle or a hole.
The different y-dependence of the soliton energy
is the effect of guantum mass renormalization
{14]. Moreover the velocities occurring in the
§-function differ by /2. Here we simply change the
scales of length, time and energy in such a way
that (14) has precisely the form (15) in order to
compare them in a direct way (as we do in Fig. 2).
The main difference lies in the function F w»
which differs from the form factor in {1h). Ve
propose to interpret F u 85 the form factor of a
"quantum soliton" and %ind its real space "shape
function" F,, (R-V(k)t,k) by Fourier transforma-
tion. Fig. 2 shows a comparison of

Fop(R,k) « (cosn{2u(k)R/¥Y))71 [4] and Fgu(R,k)
for y=0.1 and k=0.2. For these parameter values
the "quantum soliton" has steeper slopes near R=0
(due to a slower decrease of Fg,(k,q) for q + =),
and is somewhat less localized, having small
oscillations in the wings.

(iii) Obviously it is interesting to ask what role the

entity "soliton" - which we have identified so far
by comparing classical and quantum correlation
functions - actually plays in a quantum spin sys-
tem. It cannot simply be found as a "soliton-
shaped" eigenstate of H, because the eigen~
functions of (1) are "delocalized" due to trans-
laticnal invariance. However, our dynamic
correlation function can be represented as

Goulat) = 771 Ze_BEA<)\|SZ(q,t)[)\|><)\'[SZ(—q,O)|A>,(l6)

<kls, 0,016 = s g M

1970

A

]3> being an eigenstate of H with eigenvalue E,.
At low T the "soliton part” 5(2) is founa vy
choosing, for |A> and |A'>, states with a single
particle or hole at wavenumber k, respectively k',
on top of the filled Fermi sea. The relevant
matrix elements will then have the form

k+k' oy eile(k)-e(k")t (17)

and, for smell q (K = (k+k')/2) :

M(K,q) ei(e(k)—e(k'))t = M(K,q) eiV(K)q‘t (18)

Then {16) is written as

: 2
Gqulae) = 271 J e B0 VIS u(i,q) [ (29)
K
and (as long as we only account for small q) the

Fourier transform of M has the form of a travel-
ling wave

T M(K,q) eta(V(K)+-R) =
°%

= k_Xk'<k|5‘>z(q,t)lk'> = Fo,(R-V(K)t|K).  (20)
q

J. Appl. Phys., Vol. 52, No. 3, March 1981

Its shape and velocity are determined by the
"center of mass wave number" K. According to
these arguments, the guantity which bears the
typical "solitary wave features" in the quantum
spin chain is a matrix element of the time depen-
dent spin operator between certain eigenstates of
H.

Fig. 2 Comparison of the "shape function" F(R,k) of

&)

1.

10.
11.

12.

1k,

and a quantum (bt) soliton

a classical (a)
= 0.1, k = 0.2)

excitation (y
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