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Excitation spectrum and T =0 dynamics of the one-dimensional anisotropic antiferromagnet

Mahalingam Mohan and Gerhard Miiller*
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
(Received 19 August 1982)

Recent low-temperature inelastic neutron scattering data on the quasi-one-dimensional
(1D) Heisenberg-Ising antiferromagnet (AFM) CsCoCl; call for new theoretical efforts, for
the available theories fail to explain the observed line shapes. In this paper we initiate a de-
tailed study of the dynamical properties of the 1D spin—% anisotropic XYZ AFM with em-
phasis on the dynamic structure factor S,,(g,0) at T=0. The structure of S,,(q,») is
determined by the combined effects of the density of states and the matrix elements. Both
effects are discussed for selected cases: the XY-Heisenberg AFM (planar system), the
Heisenberg-Ising AFM (uniaxial system), and the XY-Ising AFM (biaxial system). The ex-
act solution for S,,(q,w) of the XY-Ising AFM has already many features in common with
the experimental data on CsCoCl,. It is an ideal starting point for a perturbation approach

to the Heisenberg-Ising AFM.
I. INTRODUCTION

One-dimensional (1D) classical and quantum spin
Hamiltonians have been the subject of theoretical
studies for quite some time.! The increasing interest
in the time-dependent properties of integrable and
“nearly integrable” Hamiltonians has resulted in the
development and use of approximate schemes for
their investigation. These approaches draw upon a
combination of existing exact results and the now
widely popular concepts of domain walls or solitons.
Experiments measuring dynamical properties of
quasi-1D magnets are analyzed in the light of these
approaches with partial success. Some basic
discrepancies between theory and experiment have
remained. Available theories, for example, have
failed to explain the observed line shapes of recent
low-temperature inelastic neutron scattering experi-
ments on the quasi-1D Heisenberg-Ising antifer-
romagnetic (AFM) CsCoCl;. Moreover, there is a
general tendency to explain such discrepancies as be-
ing due to the inadequacy of simple model Hamil-
tonians rather than due to the drastic approxima-
tions involved in the solution of these models.

This situation provides a strong motivation to do
exact calculations for simple models of experimental
relevance, or to provide as sound a basis as possible
from which to carry out approximate approaches.
In this paper we direct our attention to the general
1D spin-5 XYZ AFM. It is described by the Ham-
iltonian

N
H(y,A)=J 3, [ (1+p)SFSf 1 +(1—7)SPST |
=1

+ASiSE, ] . (1.1)

27

All cases with purely AFM interaction can be
represented by parameters confined to the triangle
0<y <1, 0<A<1—v in parameter space, as illus-
trated in Fig. 1. In studying the static and dynamic
properties of this Hamiltonian we must take due ac-
count of the important role played by fluctuations.
They prevent long-range order at all nonzero tem-
peratures. Even at T =0, the ground-state configu-
ration is in general very complicated due to quan-
tum fluctuations. They cause large deviations from
the predictions of linear spin-wave theory for both
the excitation spectrum and the dynamic structure
factors. The following models represented by the
three sides of the triangle in Fig. 1 are of particular
interest.

XY HEISENBERG
0 A |

(3)

L@

ISING
FIG. 1. Parameter space (y,A) of the XYZ Hamiltoni-
an H(y,A). Triangle 0<y<1, 0<A<1—v represents
the purely antiferromagnetic cases. Corners correspond
to the familiar Heisenberg AFM H(0,1), XY AFM
H(0,0), and Ising AFM H (1,0). Arrows refer to pertur-
bation approaches as explained in the text.

1776 ©1983 The American Physical Society
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(i) The XY-Heisenberg AFM (y=0, 0<A<]1).
The T =0 dynamics of the planar AFM has been
the subject of a recent comprehensive study. Ana-
lytic expressions for the T =0 dynamic structure
factors S, (g,w) and S,,(q,w) as defined in Eq. (2.7)
below, have been conjectured on the basis of sum
rules.>~* Furthermore, a perturbation calculation in
the fermion representation has been performed,’
starting at the exactly solvable H(0,0) and using
H(0,A)—H(0,0) as perturbation [see arrow marked
(1) in Fig. 1]. S,(q,») has been evaluated for A << 1
and T =0, yielding a result in agreement with the
nonperturbative approach concerning both the exci-
tation spectrum and the line shapes.*> The results
for A=1 have been compared successfully with the
data of inelastic neutron lscattering experiments on
the quasi-ID S=-  Heisenberg = AFM
CuCl,-2N(C5Ds) (CPC).6~#

(i) The Heisenberg-Ising AFM (0<y<]I,
A=1—vy). The T =0 dynamics of the uniaxial
AFM has been investigated by Ishimura and Shiba.’
The trivially solvable Ising AFM H(1,0) is the
starting basis of their perturbation calculation, and
H(1—A,A)—H(1,0) is taken into account as a per-
turbation [see arrow marked (2) in Fig. 1]. To O(A)
the calculation yields an excitation spectrum which
is in reasonable agreement with exact results.!® It
predicts broad, slightly asymmetric peaks for both
Sxx(q,0) and S,,(g,w) at T =0 and fixed q as func-
tions of w (see Fig. 3 of Ref. 9).

CsCoCl, is a good physical realization of a highly
anisotropic  quasi-1D  Heisenberg-Ising AFM
(y=0.754, A=1—y). Low-T inelastic neutron
scattering experiments have recently been performed
on CsCoCl; by Yoshizawa et al.!! at Brookhaven
National Laboratory and by Nagler et al.'? at Chalk
River Nuclear Laboratories. The experimental data
of both groups reveal that the line shapes of
Sz(q,») are a great deal more asymmetric and more
strongly peaked near the lower end of the continuum
spectrum than predicted by the theory of Ref. 9 (see
Fig. 9 of Ref. 11 and Fig. 3 of Ref. 12)." This
discrepancy calls for further theoretical investiga-
tions.

(iii) The XY-Ising AFM (0<y <1, A=0). TE

172

e(k,q)=1( sin? k——% +g2cos? k—%

where the two parameters are the wave number g
(0<g <) and the variable k (0 <k <), which dis-
tinguishes different branches in the continuum.
I(y,A) and g(y,A) are determined by the anisotropy
parameters of the Hamiltonian as described in Ref.
30. For the three sides of the triangle depicted in

+ |[sin®

dynamics of the anisotropic XY model is amenable
to rigorous calculations.!*~!3 In Sec. III we present
the exact expression for S,,(gq,0) at T =0 in closed
form. Although no physical realizations for this
model are known as yet, H(y,0) is a good starting
basis for a perturbation approach to the calculation
of S,(gq,») of the Heisenberg-Ising AFM." In this
approach, H(y,0) is represented by an exactly solv-
able system of noninteracting fermions and
H(y,1—y)—H(y,0) is a fermion interaction [see
arrow marked (3) in Fig. 1].

In this paper we initiate an investigation of the
T =0 dynamics of the 1D S =+ XYZ AFM. The
aim is to provide reliable results for the detailed
structure of S,,(¢,w) and, thereby, contribute to a
better interpretation of the neutron scattering data
on CsCoCl;. In Sec. II, we discuss the exact excita-
tion spectrum of the S =+ XYZ AFM and the cor-
responding density of states. The relevance of these
excitations for the T'=0 dynamics is investigated in
Sec. III.

II. EXCITATION SPECTRUM
OF THE XYZ AFM

Rigorous work on the 1D § =% XYZ model was
initiated in 1931 by Bethe.?’ He introduced a for-
malism for a representation of the eigenstates of the
Heisenberg AFM as linear combinations of Ising-
model eigenstates. This formalism was used later to
calculate the energies of low-lying excited states of
the XY-Heisenberg model and the Heisenberg-Ising
model.'>?!=2*  With the same technique, results
were obtained also for the excitation spectrum of the
XY-Heisenberg AFM in a magnetic field.>?* The
excitation spectrum of the XY-Ising AFM has been
derived in calculations using the fermion representa-
tion.!*=182627  Rigorous results for the general
Hamiltonian (1.1) became available only after the
discovery of the mapping between the XYZ model
and the exactly solvable eight-vertex model.?®?°
Johnson et al.*® used this mapping for the deter-
mination of the energies of low-lying excited states
for the XYZ model. They found as low-lying excita-
tions of (1.1) a two-parameter continuum of the gen-

eral form
172
] , 2.1

Fig. 1, I and g are given explicitly by the following
expression. (i) For the XY-Heisenberg AFM,

I(0,A)=(wJsinu)/p , g(0,A)=0,
A=cosp, (2.2)

k+4

20082
+g“cos >

9
k+2

(ii) for the X Y-Ising AFM,
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I(y,0)=J, g(y,0)=vy, (2.3)
and (iii) for the Heisenberg-Ising AFM,
I(y,1—y)=20VYK(g') /7, g'=(1—gH)'/%,
(2.4a)
and g (y,1—v) is the solution of
7K (g)/K (g')=sech1[(1—y)/(14+y)], (2.4b)

where K denotes the complete elliptic integral.

For a typical case this excitation spectrum is
sketched in Fig. 2. It consists of two partly overlap-
ping sheets, in the following referred to as € | and
¢ _, respectively. They are bounded by the
branches

€olg)=I(1+g)sing , (2.5a)

€1(q)=2I[sin*(q/2)+g%cos’(g/2)]'*,  (2.5b)

€2(q)=2I[cos*(q/2)+g%in%(q/2)]'*,  (2.50)
as indicated in Fig. 2. The special wave number ¢,
is determined as

cosq.=(1—g)/(14g) . (2.6)

The excitation spectrum has a gap of magnitude
AE =2Ig. The gap disappears for the XY-
Heisenberg line (y =0) where g vanishes. In the Is-
ing case (A=0, y =1) the continuum collapses into a

w/I

q

FIG. 2. Excitation spectrum (2.1) of the S =5 XYZ
AFM as predicted in Ref. 30 consists of two partly over-
lapping sheets € ;. and € _. Continuum %  lies between
the boundaries €o(q) and €,(g) in the range
9. <q<g.=m—q. and between €,(q) and €,(q) for
7. <q <w. Continuum ¥ _ is bounded by €;(g) and €,(q)
for 0 < g < g, and by €(q) and €,(q) for g. <g <G..

single horizontal branch.

It is interesting to know how the excitations (2.1)
found via the mapping on a solvable 2D model* are
distinguished if identified in the following different
(but still rigorous) approaches:

(1) For the XY-Heisenberg line the continuum of
excitations (2.1) have been identified one by one in
the framework of Bethe’s formalism as belonging to
the class C of “extended” spin-wave states as op-
posed to “bound” states?>! Therefore, we call (2.1)
spin-wave continuum (SWC) excitations.

(ii) For the XY-Ising line the states (2.1) are iden-
tified as particle-hole excitations of a free-fermion
system with single-particle energies'*

er(k)=1I sgn(cosk)(cos*k +g%sin’k)!/? .

The relevance of these excitations for the T =0
dynamics is, in general, not known. Let us call a set
of excitations relevant for the dynamics if it contri-
butes significantly to the dynamic structure factor,

Su(g0)= e 4 [* dre®(SHOSE, z) .
R (-}

2.7

At T =0, S, can be written as

Suu(g0)=d "' 3 M{d(0+Eg—E,) ,
A
2.8)
d
Mé=3 27| (G;|S*q) | 1) |?,
i=1

where

SHg)=N"1273 explighS},
]

|G;), i=1,...,d is the d-fold degenerate ground
state with energy Eg, and A runs over all eigenstates
| A) of (1.1) with energies E,.

Hence the excitations which are relevant for the
T =0 dynamics are those which have non-negligible
spectral weight M%. In Sec. III we shall attempt to
answer the question whether the SWC excitations
(2.1) belong to or even exhaust the class of relevant
states. We can write the SWC contribution to
S, (g,@) more explicitly in the form

Suu(3,0)=S}(q,0)+Sp(g0)

+ + + \ (2.9)
Spu(g,0)=Mp,(q,0)D*(g,0)

where the functions M ;;L,L(q,a)) represent the matrix
elements | (G;|S¥(q) |[SWC) |? for excitations in
the continuum %, respectively. D¥(q,w) are the
normalized densities of states in the continua €3,
determined by
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D(q,0)=D*(q,0)+D (g,0)
= [ dkblo—e(kg)] .

The explicit evaluation of (2.10) with (2.1) is derived
in Sec. IIT A below.*

For a typical example D *(g,w) is shown in Fig. 3.
It exhibits the characteristic 1D Van Hove singulari-
ties at both the upper and lower continuum bounds.
These are likely to have their effect on the dynamic
structure factor itself as we shall see.

(2.10)

III. MATRIX ELEMENTS AND SPECTRAL
WEIGHT DISTRIBUTION

Numerically exact finite-chain calculations? have
proved to be very useful for the identification of
those sets of excitations which play an important
role in the T=0 dynamics of Hamiltonian (1.1).
Several authors have used this method to analyze
the spectral weight of the various excitations contri-
buting to S,,(g,») at T =0.2>93=36 The results of
such investigations have indicated very strongly that
most of the spectral weight in S,,(q,) at T=0 is
due to the SWC excitations (2.1). Exact results
prove that for A=0 the SWC excitations even ex-
haust all spectral weight in S (g, ) at T =0."’

Given the strong evidence that the SWC excita-
tions are predominant in the 7' =0 dynamics struc-
ture factor S,,(¢q,®) of Hamiltonian (1.1) at T =0,
it is legitimate to study the SWC contributions to
Suu(g,0) solely, assuming that a good approxima-
tion for these contributions represents a good ap-
proximation for the dynamic structure factor itself.
Having conjectured the form (2.9) for the SWC con-
tributions to S,,(¢,»), and having evaluated an ex-
act result for their density of states D*(q,w ), we are
left with the task of prov1d1ng results for the matrix
element functions M W(q, ®) in order to determine
Suu(g,@). In the following, we present the exact
solution for S,(g,w) of the XY-Ising AFM (Sec.
III A); we review the result of S,(q,0) for the XY-
Heisenberg AFM from a calculation based on sum
rules (Sec. III B), and we propose two approaches to|

D*(q, w) x I

T
! 2
w/1

FIG. 3. Normalized density of states D*(g,w) of the
SWC excitations (2.1) as a function of frequency for wave
numbers ¢ =nw/10, n=0,1,...,10, and g =0.1.
D~(q,w) is simply imagined from this figure by noting
the relation D ~(¢q,0 )=D (7 —q,0).

calculate S,(g,0) of the Heisenberg-Ising AFM
(Sec. III C).

A. XY-Ising AFM (0<y <1, A=0)

Here we derive a closed form analytlc expression
for the exact S, (g,w) of the S =— XY-Ising AFM
at T=0. In the fermion representatlon of spin
operators the time-dependent correlation function
(S{(t)Sf g ? can be expressed as a density correla-
tion function of a system of noninteracting fer-
mions. An integral expression for this quantity has
been given in Ref. 14 (see also Ref. 17). An integral
expression for the dynamic structure factor is readi-
ly obtained by Fourier transform.!® For T'=0 it
reads

Sa(g0)=7 [ dk[1—f (kg)8[o0 —e(kq)], (3.1a)
N P O P BCTO ') q
sin |k 5 [sin k+2 g-cos |k 5 cos k—f—2
f(k:q)= 1/2 172 » (3.1b)
sin? k—% +g2cos? k—% sin? k+% +g2%cos? k+%

where €(k,q) is given by (2.1) and I =J, g =¥ according to (2.3). Evidently, the SWC excitations (2.1) exhaust
all the spectral weight of S,,(q,w). Hence representation (2.9) is exact.
The evaluation of the integral (3.1a) requires the knowledge of the roots of the 8-function argument. We

find that for (g,w)E €  there are two roots k. and mw—k ., and for (q,0)E ¥ _

there are two other roots,
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k_ and m —k _, determined by

2 +
cos2k s = ) cosq;T'(qz,a))
(1—g*)sin“g

T(q,0)=[0>—T*(1—g)%sin’q]"*[w>—I*(1+g)*in’q]'/? .

Thus (3.1) can be written in the form (2.9) with

Si(go)=|€'(ks,q)| [1—f(ks,9)], (g0)EL+

MAHALINGAM MOHAN AND GERHARD MULLER 27

(3.2a)

(3.2b)

(3.3)

where €’(k,q)=(3/3k)e(k,q). The two factors in (3.3) are identified as the density of SWC states D*(g,») and
their matrix elements M, (g,w), respectively. The explicit expressions read

D¥*(qw)=|€"ks,q) | '=nilq0)/es(qo0),
Mz(g0)=[1—f(k+,q)]=24+(q,0)/ns(q0),

SE(g,0)=D*(g,0)Mi(gw)=z:(q0)/e+(g0),

where

n.(g,0)=(2sin’q)~{[w?—I*(1+g?)sin’q] +cosqT(g,0)} ,
e+ (g,0)=(2sin’q) "' T(q,0)[2I*(1+g?)sin’q —w*(1+cos’q) F2 cosqT (g,0)]'/?,

—1

zi(q,w)=

4(1—g2)sin2%

-1

29

—y2 |4(1—g?)cos 5

for any (g,w) confined to the continua ¢ , and ¢ _,
respectively. The expression for S, (g, ) simplifies
considerably for ¢ =0 and g =,

28341 —w?)'?
(1—gHo(0?—4gIH)1?’
(3.6a)

2(w2_4g212)l/2

(1—gHo @12 —oH)1/2
(3.6b)

For g =y=0.1, corresponding to a small anisotro-
py, the functions D*(q,0), M;(g,0), and Sz(g,w)
are shown in Figs. 3—5, respectively.’® The matrix-
element function M (g,) is seen to have an almost
flat shape except near the lower boundary. Conse-
quently, S7(g,0) is dominated by density-of-states
effects. This is reflected by the divergences in
S (g,w) along the boundaries €;(gq) and €,(gq) of
¢ .. However, it is interesting to note that the zero
in M7 (q,0) at w =€,(q), g, <q <, overcomes the
divergence in D (g, ) at the same frequency, caus-
ing S (¢,®) to drop to zero. The function M (g,®)
is very small everywhere in & _ except close to the
lower bound, and goes to zero at w=¢,(q). As a re-
sult, the spectral weight of S;(g,w) is strongly
peaked at the lower bound of ¥ _, again reflecting

S$2(0,0)=8,(0,0)=

S (7m,0)=S4 (T,0)=

[@24+T1%(1—g*)sin’qF T (g,0)] ,

(3.4a)
(3.4b)
(3.4¢)

(3.5a)
(3.5b)

[@*—TX1—gHsin’q+T(q,0)]

(3.5¢)

the divergence of the density of states. For
9. <q <g., the dynamic structure factor has two
peaks.

B. XY-Heisenberg AFM (y=0,0<A<1)

In order to have a second “anchor point” for the
study of the more complicated XYZ AFM we re-
view briefly the principal results of previous work
on the planar AFM.>* The exact result for S, (q,0)
at T=0 is known only for A=0, given by
(3.3)—(3.5) in the limit y—0,

D*(g,0)=[e}(q)—0?]'?, Mt(qw0)=2

for eg(qg)<w <€,(q), (3.7a)
D~ (g0)=[€e)(@)—w’]7*, M;(gw)=0
for ep(g) <w <€,(q), (3.7b)
with
€olg)=Ising , €(1)=2Isin(q/2),
(3.70)

€,(q)=2Icos(q/2) .

Only continuum % , (now gapless) contributes to
Sz(g,0),
Sz(gw)=2[€}(@—a’]"'"2,

€lg)<w<elq), A=0. (3.8)
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~

(a)

(q,w)

+
2

M

Mz (q,0)

0 |

w/l

FIG. 4. Normalized squared matrix elements M7 (q,0)
and M. (q,0) of the SWC excitations (2.1) for the XY-
Ising AFM as a function of frequency for wave numbers
of g =nw/10,n=0,1,...,10,and g =y =0.1.

For 0<A<1, finite-chain results have indicated
very strongly that almost all the spectral weight in
Sz(g,w) at T =0 is still due to & . states, but the
matrix elements M (g,0) are no longer con-
stant.>>3 In Ref. 4, an analytic expression for
M (g,0) has been proposed on the basis of sum-
rule arguments

g —o® |*
M;’ o)< |————— | ,
(g,0) o)
—1
a=T/2=Cos" A (34

r—cos~ 1A

EXCITATION SPECTRUM AND T'=0 DYNAMICS OF THE ONE-. .. 1781

a
=

S (qu)xI
oON OO

(b)

(q,w)xI

Sz

| 2
w/1

FIG. 5. Dynamic structure factors S;(q,») and
Sz (q,0) of the SWC excitations (2.1) for the XY-Ising
AFM as a function of frequency for wave numbers
q=nm/10,n=0,1,...,10,and g =y =0.1.

In combination with the exact density of states
D*(q,) of (3.7a) this leads to the result
Sn(g,0)=4, [0®—€)g)]™®
X[€(g)—w?1°, efg)<w<elq) .
(3.10)

The A-dependent prefactor 4, was determined in
Ref. 3. For A=0 we get a=0, 4 =2, recovering
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the exact result (3.8). For 0<A <1, S,(q,®w) has a
two-peak structure®® as a function of ®. The main
feature is that as A grows from zero, an increasing
amount of spectral weight is transferred from a re-
gion close to the upper continuum boundary to a re-
gion close to the lower continuum boundary. This
behavior is nicely reproduced for A << 1 by a pertur-
bation calculation in the fermion representation.’

C. Heisenberg-Ising AFM (0<y <1, A=1—%)

The exact result>* for S,(g,0) of the XY-Ising
AFM and the result (3.10) for S, (¢,w) of the XY-
Heisenberg AFM provide a sound basis for calcula-
tions aiming towards a reliable prediction for
Sz(g,w) of the Heisenberg-Ising AFM. This would
be most desirable for an interpretation of the ob-
served line shapes of neutron scattering experiments
on CsCoCl;.

Both the nonperturbative approach* and the per-
turbation calculation’ pursued for the XY-
Heisenberg line (y =0) of Fig. 1 can, in principle, be
generalized to any parallel line at y£0. An advan-
tage of the perturbation approach in the fermion
representation over the approach used in Ref. 9 is
that already the result of the unperturbed Hamil-
tonian exhibits nontrivial dynamical properties and

has many features in common with experimental
data on CsCoCls. In fact, for small g, S,,(g,0) of
H(7,0) has the form of a sharp asymmetric peak at
the lower continuum boundary [see Fig. 5(b)], very
much in agreement with the experimental findings
(see Fig. 9 of Ref. 11). For larger g, a second peak
at higher frequency appears in S,(q,0) of the XY-
Ising AFM [see Fig. 5(a)]. Preliminary perturbation
results'® suggest that the effect of the fermion in-
teraction is to shift the spectral weight in S (g,)
towards the lower continuum boundary. Neverthe-
less, the peak in S (g,w) at the upper boundary of
% . seems to persist in the presence of a weak in-
teraction. It is interesting to note that the experi-
mental data presented in Refs. 11 and 12 also indi-
cate the existence of weak resonances at higher fre-
quencies. Progress in both approaches suggested
will be reported on in a subsequent publication.
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