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Wave Boundary Layer Turbulence over Surface Waves in a Strongly Forced Condition
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Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

PETER P. SULLIVAN

National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 16 June 2014, in final form 26 December 2014)

ABSTRACT

Accurate predictions of the sea state–dependent air–sea momentum flux require a thorough understanding

of the wave boundary layer turbulence over surface waves. A set of momentum and energy equations is

derived to formulate and analyze wave boundary layer turbulence. The equations are written in wave-

following coordinates, and all variables are decomposed into horizontalmean, wave fluctuation, and turbulent

fluctuation. The formulation defines the wave-induced stress as a sum of the wave fluctuation stress (because

of the fluctuating velocity components) and a pressure stress (pressure acting on a tilted surface). The for-

mulations can be constructed with different choices of mapping. Next, a large-eddy simulation result for wind

over a sinusoidal wave train under a strongly forced condition is analyzed using the proposed formulation.

The result clarifies how surface waves increase the effective roughness length and the drag coefficient. Spe-

cifically, the enhanced wave-induced stress close to the water surface reduces the turbulent stress (satisfying

themomentumbudget). The reduced turbulent stress is correlated with the reduced viscous dissipation rate of

the turbulent kinetic energy. The latter is balanced by the reduced mean wind shear (satisfying the energy

budget), which causes the equivalent surface roughness to increase. Interestingly, there is a small region

farther above where the turbulent stress, dissipation rate, and mean wind shear are all enhanced. The ob-

served strong correlation between the turbulent stress and the dissipation rate suggests that existing turbu-

lence closure models that parameterize the latter based on the former are reasonably accurate.

1. Introduction

The wind stress (or the drag coefficient) at the ocean

surface is an important parameter needed for ocean,

atmosphere, and surface wave models. When a surface

ocean wave field is fully developed, that is, is in equilib-

rium with local wind forcing, the wind stress is a function

of local neutral wind speed (corrected for stability) and

can be parameterized using a bulk formula. However, if

the wave field is not in equilibrium, which is the norm

rather than the exception, the wind stress may deviate

significantly from the bulk parameterization and may

require sea state–dependent parameterization with con-

current predictions of surface wave fields.

Many previous modeling studies have investigated

how the wind stress and drag coefficient are modified by

different sea states, including growing seas (e.g., Makin

and Kudryavtsev 2002; Moon et al. 2004b; Kukulka and

Hara 2008; Mueller and Veron 2009) and complex seas

(e.g., Moon et al. 2004a; Donelan et al. 2012; Reichl et al.

2014). They all start with the momentum conservation

constraint that the wind stress is equal to a sum of the

momentum flux into surfaces waves (form drag of sur-

face waves) and the momentum flux directly into the

subsurface currents through viscous stress. The mo-

mentum flux into waves is normally evaluated by in-

tegrating the fluxes to all wave spectral components and

may include explicitly the enhanced form drag due to

breaking waves (e.g., Kudryavtsev and Makin 2001;

Makin and Kudryavtsev 2002; Kukulka and Hara 2008;

Mueller and Veron 2009; Banner and Morison 2010).

The next step of the drag coefficient estimation is to

model the feedback of the wave form drag on the mean

wind profile. This step is needed to establish a relation-

ship between the wind stress and the wind speed (nor-

mally at 10-m height). The wind profile in some studies is
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simply approximated using log-layer vertical wind pro-

files (e.g., Kudryavtsev and Makin 2001; Mueller and

Veron 2009; Donelan et al. 2012). In this case, the wind

profile is dependent only on the surface roughness pa-

rameter z0, that is, the feedback appears only in the

parameterization of the sea state–dependent z0. Other

studies explicitly account for the feedback of the modi-

fied turbulent stress due to wave form drag on the mean

wind shear in the wave boundary layer using various

turbulence closuremodels (e.g.,Makin andKudryavtsev

1999; Hara and Belcher 2004; Kukulka and Hara 2008).

In such studies it is often assumed that the turbulent

stress is reduced because of the increased wave-induced

stress inside the wave boundary layer, where the total

wind stress remains constant, and that this reduced

turbulent stress is responsible for the reduction of the

mean wind shear and the increase of the equivalent

surface roughness (or the drag coefficient).

Although the wave boundary layer turbulence model

is an essential component of the estimation of sea state–

dependent drag coefficients, its validity has not been

thoroughly investigated either numerically or experi-

mentally. This is because the wave modulation of tur-

bulence mainly occurs very close to the water surface,

often below the level of wave crests. Turbulence ob-

servations are extremely difficult to carry out very close

to moving water surfaces. While numerical studies, such

as direct numerical simulation (DNS) and large-eddy

simulation (LES), can be carried out over wavy surfaces,

interpretations of such results are not trivial. For example,

the traditional definition of the wave-induced stress in

terms of the wave-correlated velocity components (e.g.,

Makin and Kudryavtsev 1999; Hara and Belcher 2004)

breaks down below the level of the wave crests. The more

recent modeling studies of Sullivan et al. (2000), Chalikov

and Rainchik (2011), and others, formulated in a wave-

following coordinate system, clarify how the momentum

flux is partitioned into the contribution of the wave-

correlated fluctuating velocities and the contribution of

the wave-correlated pressure acting on a sloped surface

and that the latter may become increasingly important

very close to the water surface.

The main objectives of this study are 1) to develop a ro-

bust theoretical framework to describe and interpret wave

boundary layer turbulence,which is applicable in areas very

close to the water surface, and 2) to investigate the wave

boundary layer turbulence and its impact on themeanwind

profile and the drag coefficient using LES results.

2. Governing equations for wave-induced motions

Let us consider air with a constant density ra and

a constant kinematic viscosity na. Since this study focuses

on processes inside the thin wave boundary layer just

above the water surface, density stratification of the air

and the Coriolis effect are ignored. We start with a rect-

angular coordinate (x1, x2, x3)5 (x, y, z), where x and y

are horizontal and z is vertically upward, with z5 0 at the

mean water surface. The air velocities in (x1, x2, x3)5
(x, y, z) directions are denoted by (u1, u2, u3)5
(u, y, w). The continuity, momentum, and energy equa-

tions are written as

›ui
›xi

5 0, (1)

›ui
›t

1
›

›xj
(uiuj 1 pdij 1sij)5 0, and (2)

›

›t

�
1

2
uiui

�
1

›

›xj

�
1

2
uiuiuj1 ujp1 uisij

�
1 2nS2ij 5 0,

(3)

where

Sij 5
1

2

 
›ui
›xj

1
›uj

›xi

!
(4)

is the strain rate tensor, sij 522nSij is the viscous stress,

p5 ptotal/ra 1 gz is the dynamic pressure divided by ra,

and ptotal is the total pressure.

Next, we introduce the Reynolds decomposition of a

variable a:

a5 a1 a0 , (5)

where the overbar denotes Reynolds (ensemble) aver-

age, and the prime denotes a turbulent fluctuation.

The Reynolds averaged equations of continuity, mo-

mentum, mean energy, and turbulence kinetic energy

(TKE) become

›ui
›xi

5 0, (6)

›ui
›t

1
›

›xj
(uiuj1 pdij 1 tij)5 0, (7)

›E

›t
1

›

›xj
(Euj 1ujp1 uitij)2 tij

›ui
›xj

5 0, and (8)

›e

›t
1

›

›xj
(e uj1 u0jp0 1 eu0j)1 tij

›ui
›xj

1 «5 0, (9)

where tij 5 u0iu
0
j, tij 5 u0iu

0
j is the Reynolds stress,

E5 (1/2)uiui is the mean kinetic energy, e5 (1/2)tii 5
(1/2)u0iu

0
i is the TKE, and
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«52s0
ij

›u0i
›xj

5
1

2
n

 
›u0i
›xj

1
›u0j
›xi

!2

(10)

is the viscous dissipation of the TKE. Since all the vis-

cous terms except « are negligible outside the viscous

sublayer, they have been omitted for simplicity.

In this study, a simple periodic surface wave train is

considered. The wave train is treated as a deterministic

motion, that is, the wave motion is retained after en-

semble averaging is taken. We introduce a second av-

eraging, denoted by brackets h i applied in a horizontal

x 2 y plane to filter out the wave-induced motions.

(In general, this second averaging can be taken in time

t instead of in x and y. However, when a coordinate sys-

temmoving with a wave train is introduced later, the time

averaging does not filter out the wave-induced motions.)

The triple decomposition of a variable a is defined as

a5 a1 a0 5 hai1 ~a1 a0 , (11)

where the Reynolds (ensemble) average a is split into

the horizontal mean hai and the wave fluctuation ~a. The

former is a function of z only. Then the continuity and

momentum equations of the wave fluctuation are

›~ui
›xi

5 0, (12)

and

›~ui
›t

1
›

›xj
(~uihuji1 huii~uj 1 ~twij 1 ~pdij 1 ~tij)5 0, (13)

where twij 5 ~ui~uj is the momentum flux due to wave fluc-

tuations, and ~twij 5 twij 2 htwij i. The continuity equation of

the horizontal mean requires that hwi5 0, and the mo-

mentum equation governing the horizontal mean is

›

›z
(htwi3i1 hpidi31 hti3i)5 0. (14)

The vertical (i 5 3) component of Eq. (14) yields

htw33i1 hpi1 ht33i5 0, while the horizontal compo-

nents yield

›twindi3

›z
5 0, twindi3 5 htwi3i1 hti3i, i5 1, 2, (15)

that is, the wind stress is constant in z and is equal to a sum

of the horizontally averaged turbulent stress hti3i and the

horizontally averaged stress due to wave fluctuations htwi3i;
the latter is often called ‘‘wave-induced stress.’’

Let us define the kinetic energy of the horizontal

mean Em 5 (1/2)huiihuii and the kinetic energy of the

wave fluctuation Ew 5 (1/2)twii 5 (1/2)~ui~ui. The energy

equations for Em and Ew are obtained by multiplying

Eqs. (14) and (13) by huii and ~ui, respectively:

›Fm

›z
2 htwi3i

›huii
›z

2 hti3i
›huii
›z

5 0,

Fm 5 huiihtwi3i1 huiihti3i, and (16)

›Fw

›z
1 htwi3i

›huii
›z

2

*
~tij
›~ui
›xj

+
5 0,

Fw5 hEw ~wi1 h ~w ~pi1 h~ui~ti3i , (17)

and the turbulence kinetic energy Eq. (9) becomes

›Ft

›z
1 hti3i

›huii
›z

1

*
~tij
›~ui
›xj

+
1 h«i5 0,

Ft 5 h~e ~wi1 hw0p0i1 hew0i . (18)

Here,2htwi3i(›huii/›z),2hti3i(›huii/›z), and 2h~tij(›~ui/›xj)i
denote energy transfers from horizontal mean to wave

fluctuation, from horizontal mean to turbulence, and

from wave fluctuation to turbulence, respectively.

Vertical energy fluxes of horizontal mean, wave fluc-

tuation, and turbulence are denoted by Fm, Fw, and Ft,

respectively.

If Eqs. (17) and (18) are added together, we obtain the

energy equation for the sum of Ew and e:

twindi3

›huii
›z

1
›(Fw1Ft)

›z
1 h«i5 0. (19)

Here, the first term is the total shear production (i.e.,

total loss of the horizontal mean energy), the second

term is the total transport term, and the third term is the

viscous dissipation. If we integrate Eq. (19) from z5 0 to

a reference height z 5 zr that is located above the wave

boundary layer (where Fw and Ft are negligibly small),

and set the surface current to be zero, we obtain

twindi3 huiiz5z
r

2 (Fw 1Ft)z501

ðz
r

0
h«i dz5 0, (20)

where (Fw1Ft)z50 is equal to the energy flux into surface

waves. Therefore, the relationship between wind stress

andwind speed at z5 zr can be obtained if the energy flux

into the surface waves and the TKE viscous dissipation

« below z 5 zr are known (Hara and Belcher 2004).

In previous studies (e.g., Makin and Kudryavtsev

1999; Hara and Belcher 2004), Eqs. (12) to (18) are the

basis of a wave boundary layer model used to estimate

how the mean wind profile and drag coefficient are

modified by surface waves. However, in rectangular

coordinates these equations are valid only above the

highest wave crest because the horizontally averaged
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variables, such as the mean wind speed huii, cannot be
defined below. Therefore, the validity of these wave

boundary layer turbulence models over real waves

(whose amplitude is not infinitesimal) has not been in-

vestigated either experimentally or numerically (i.e.,

against direct numerical simulations or large-eddy sim-

ulations). This is particularly problematic in strongly

forced conditions (when the wind speed is much larger

than the wave phase speed) because the mean wind

profile is modified mostly in a very thin layer whose

height is often smaller than the wave amplitude.

3. Governing equations in wave-following
coordinates

To investigate thewave-inducedmotions near or below

the wave crest, we need to introduce a wave-following

coordinate system. In this study we focus on a simple

problem of a single periodic wave train with a fixed

wavelength and a fixed phase speed. The wave shape is

assumed unchanged as the waves propagate. We first in-

troduce a frame of reference moving with the wave phase

speed so that the wave motion becomes steady in time.

Next, we introduce a coordinate mapping (without time

dependence) from a wavy surface to a flat surface. (Al-

though it is straightforward to introduce a time-dependent

coordinate mapping following a time-dependent surface

elevation field with multiwave components, such an ap-

proach will be discussed in a future study.) Let us in-

troduce a coordinate system (j1, j2, j3)5 (j, h, z),

j5j(x, y, z), h5h(x, y, z), z5z(x, y, z) , (21)

with

J5
›(j,h, z)

›(x, y, z)
, (22)

such that z5 0 is at the water surface and z5 z as z/‘.
At this stage we do not need to specify the functional

form of Eq. (21). It is expected that the horizontal co-

ordinates (j, h) are either the same as or slightly depart

from (x, y) and that constant z planes smoothly transi-

tion from the actual wavy water surface to a flat surface

as z increases. We will later demonstrate that our results

are relatively insensitive to different choices of mapping.

The continuity and momentum equations are now

written as (Anderson et al. 1984)

›Ui

›ji
5 0, and (23)

1

J

›ui
›t

1
›

›jj

�
uiUj 1

1

J
p
›jj

›xi
1

1

J
sik

›jj

›xk

�
5 0, (24)

where

Ui 5
1

J
uj
›ji
›xj

(25)

is the contravariant flux velocity perpendicular to a

constant ji surface, and p, ui and sij are the same vari-

ables as in rectangular (Cartesian) coordinates except

they are now functions of ji and t. Notice that the mo-

mentumEq. (24) is written for the Cartesianmomentum

component raui but now varies with the mapped co-

ordinates ji. This expression is more convenient when

the wind stress (vertical flux of x and y momentum) is

considered later. Physically, the first term in the bracket

uiUj represents a flux of xi momentum (momentum in the

xi direction) across a constant jj plane due to an advec-

tive velocity Uj, and the second term (1/J)p(›jj/›xi) is a

flux of xi momentum in the jj direction due to the pres-

sure force applied on a constant jj plane. When the

constant jj plane is not parallel to the xi axis, this pressure

term introduces tangential stress. Finally, the energy

equation can be derived by multiplying Eq. (24) by ui:

1

J

›

›t

�
1

2
uiui

�
1

›

›jj

�
1

2
uiuiUj 1Ujp1

1

J
uisik

›jj

›xk

�

1
1

J
2nS2ij 5 0. (26)

Let us introduce the Reynolds decomposition as be-

fore. Since the wave field is independent of t in the

mapped coordinate, all Reynolds averaged variables are

independent of t. The Reynolds averaged equations of

continuity, momentum, mean energy, and TKE become

›Ui

›ji
5 0, (27)

›

›jj
(uiUj 1 t p

ij 1 tij)5 0, (28)

›

›jj
(EUj 1Ujp1 uitij)2 tij

›ui
›jj

5 0, and (29)

›

›jj
(eUj1U 0

jp
01 eU0

j)1 tij
›ui
›jj

1
1

J
«5 0, (30)

where tij 5 u0iU
0
j , tij 5 u0iU

0
j is equivalent to the Reynolds

stress tij in the rectangular coordinate, and t p
ij 5

(1/J)p(›jj/›xi) is the stress due to the Reynolds aver-

aged pressure.

Next horizontal averaging, denoted by brackets h i, is
introduced with the averaging performed in j and h (at

a fixed z) to filter out wave-induced motions. Then, the
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continuity and momentum equations of the wave fluc-

tuation become

› ~Ui

›ji
5 0, and (31)

›

›jj
(~uihUji1 huii ~Uj 1 ~twij 1 ~t

p
ij 1 ~tij)5 0, (32)

where twij 5 ~ui ~Uj is the momentum flux due to wave

fluctuations, ~twij 5 twij 2 htwij i, and ~t p
ij 5 t p

ij 2 ht p
ij i. The

horizontally averaged continuity equation requires that

hWi5 0. Note that in general hwi 6¼ 0. (For example, if

we introduce a surface drift current that is larger in the

windward side than in the lee side of the crest, hwi. 0 at

z5 0.) The horizontally averaged momentum equation

becomes

›

›z
(htwi3i1 ht p

i3i1 hti3i)5 0, (33)

where the quantity inside the bracket is a flux of xi
momentum in the z direction. The vertical component of

Eq. (33) yields htw33i1 ht p
33i1 ht33i5 0, and the hori-

zontal components of Eq. (33) yield

›twindi3

›z
5 0, twindi3 5 (htwi3i1 ht p

i3i)1 hti3i, i5 1, 2.

(34)

Again, this equation shows how the wind stress (hori-

zontally averaged flux of x and y momentum in the z

direction) is realized in the wave boundary layer. In

contrast to Eq. (15) in rectangular coordinates, where

the wind stress is a sum of the turbulent stress and stress

due to wave fluctuations (wave-induced stress), in

Eq. (34) the wind stress is a sum of the turbulent stress

hti3i and the two wave-induced terms htwi3i and ht p
i3i. The

first term htwi3i represents a flux due to wave fluctuations

and is equivalent to htwi3i in the rectangular coordinates

defined in the previous section; we call this stress ‘‘wave

fluctuation stress.’’ The second term ht p
i3i is a flux due to

pressure applied on a tilted constant z plane (tilted be-

cause of the waves); we call this stress ‘‘pressure stress.’’

(Note that this pressure stress is defined in the entire

domain above the water surface, not just at the water

surface.) Therefore, it is natural to define a sum of these

two wave-induced terms htwi3i1 ht p
i3i as wave-induced

stress. Very close to the water surface (z/0) the wave

fluctuation stress approaches zero (because W/0, i.e.,

the velocity normal to the stationary water surface must

approach zero; see Sullivan et al. 2014), and the pressure

stress dominates the wave-induced stress as expected.

Far from the water surface (z/‘), where a constant z

plane becomes flat (z approaches z), the pressure stress

becomes zero; hence, the wave fluctuation stress alone

determines the wave-induced stress. Between these two

limits both wave-induced terms may contribute to the

wave-induced stress.

The energy equations for horizontal mean and wave

fluctuation are obtained by multiplying Eqs. (33) and

(32) by huii and ~ui, respectively, and by using the fol-

lowing identity

*
~t p
ij

›~ui
›jj

+
1 ht p

ij i
›huii
›jj

5

*
1

J
p
›jj

›xi

›~ui
›jj

+
1

�
1

J
p
›jj

›xi

�
›huii
›jj

5

*
1

J
p
›jj

›xi

›ui
›jj

+
2

*
1

J
p
›jj

›xi

›huii
›jj

+
1

�
1

J
p
›jj

›xi

�
›huii
›jj

5

*
1

J
p
›jj

›xi

›ui
›jj

+
2

�
1

J
p
›z

›xi

›huii
›z

�
1

�
1

J
p
›z

›xi

�
›huii
›z

5

*
1

J
p
›jj

›xi

›ui
›jj

+
5

�
1

J
p
›ui
›xi

�
5 0. (35)

The resulting equations are

›Fm

›z
2 (htwi3i1 ht p

i3i)
›huii
›z

2 hti3i
›huii
›z

5 0,

Fm 5 huii(htwi3i1 ht p
i3i)1 huiihti3i, and (36)

›Fw

›z
1 (htwi3i1 ht p

i3i)
›huii
›z

2

*
~tij
›~ui
›jj

+
5 0,

Fw 5 hEw ~Wi1 h~ui~t p
i3i1 h~ui~ti3i . (37)

The TKE equation is obtained from Eq. (30):

›Ft

›z
1 hti3i

›huii
›z

1

*
~tij
›~ui
›jj

+
1

�
1

J
«

�
5 0,

Ft 5 h~e ~Wi1 hW0p0i1 heW 0i . (38)

If we compare Eqs. (36) to (38) with Eqs. (16) to (18), it

is clear that the wave-induced stress htwi3i in the rectan-

gular coordinate is replaced by the wave-induced stress

(htwi3i1 ht p
i3i) in the mapped coordinate. Adding Eqs.

(37) and (38) yields the equation for the sum of the TKE

and wave fluctuation energy:
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twindi3

›huii
›z

1
›(Fw1Ft)

›z
1

�
1

J
«

�
5 0. (39)

In summary, if a wave-following coordinate is in-

troduced, it is possible to decompose a variable into the

horizontal mean, wave fluctuation, and turbulence com-

ponents and to derive the continuity, momentum, and

energy equations everywhere, including regions below

the wave crest level. In particular, the wave-induced

stress is naturally defined such that it is a sum of the

wave fluctuation stress (i.e., Reynolds-like stress) and the

pressure stress. A wave-following coordinate also allows

us to examine the energy budget (including the TKE

dissipation rate) and the mean wind profile very close to

the water surface and to clarify how surface wavesmodify

the equivalent roughness length and the drag coefficient.

Note that the formulation in a wave-following co-

ordinate is not new (e.g., Sullivan et al. 2000), and

the same momentum Eq. (33) has been obtained by

Chalikov andRainchik (2011) with a particular choice of

wave-following coordinates. The derivation of the en-

ergy equation in a wave-following coordinate system

was made in earlier studies as well (e.g., Hsu et al. 1981).

Here, a similar but more general approach has been

applied (with different choices of mapping) and has

been extended to include energy Eqs. (36) to (39).

Naturally, the definitions of the horizontal mean and

wave fluctuations depend on a particular choice of

mapping. We will therefore employ different mapping

approaches and investigate the sensitivity of the results.

4. LES of wind over a periodic wave train

Next, we analyze an LES of wind over a periodic wave

train using the formulation in wave-following co-

ordinates with the triple decomposition of the variables

outlined previously. Both mean wind and waves are

assumed to be in the x direction, that is, they are aligned.

The location of the water surface is specified as

z5 a cos(kx) , (40)

and the velocities at the water surface are set, using the

linear deep-water wave solutions, as

u5 av cos(kx)2 c, w52av sin(kx) , (41)

where a is the wave amplitude, k is the wavenumber,

v5
ffiffiffiffiffiffi
gk

p
is the angular frequency, and c5v/k is the

phase speed. Therefore, the surface boundary condition

accounts for the wave orbital velocity but no additional

mean surface currents (drift velocities) are added. Both

for the simulations and for the data analysis we in-

troduce the following coordinate mapping:

j5 x, h5 y, z5 z(x, z) (42)

or inversely

x5 j, y5h, z5 z(j, z) . (43)

This mapping does not change the horizontal co-

ordinates and only stretches or shrinks the vertical axis

according to the water surface elevation. Such a map-

ping is preferable because it is straightforward to extend

it to a wavy surface with multiwave components. Other

commonly used coordinates over a single wave train

include the area-conserving mapping (e.g., Belcher and

Hunt 1993) and the conformal mapping (e.g., Benjamin

1959). These approaches modify the horizontal co-

ordinate in a manner related to the wavelength, and the

formulation becomes complex (i.e., not as convenient

for application) if two or more wave trains of different

wave lengths coexist. We will not examine such co-

ordinates in this study. In the LES, z5 z(x, z) is de-

termined numerically, and in the analysis different

choices of z5 z(x, z) are examined.

The actual LES calculations are performed in a fixed

frame of reference, that is, the waves vary in time and

continually propagate through the computational box.

The size of the LES computational domain is lj 3 lh 3 lz,

with lj 5 lh 5 5l, and lz 5 l, where l5 2p/k is the

wavelength. Doubly periodic boundary conditions are

imposed in the horizontal directions. At the top of the

box, a slip (no tangential stress) condition is imposed,

while at the water surface the roughness of the smaller

unresolved waves is parameterized by setting the

equivalent roughness length z0. The discretization em-

ploys (Nj, Nh, Nz)5 (256, 256, 128) grid points. The

vertical distribution of points in computational space is

nonuniform. The spacing ratio between neighboring

cells is held constant at 1.0028, with the first point off the

water surface located at z1 5 0. 0065l. The mapping

between physical and computational space vertical co-

ordinates is

z5 z1 h(x, t)

 
12

z

lz

!3

, (44)

where the shape of the underlying wave is

h(x, t)5 a cos[k(x2 ct)] . (45)

The wind forcing is applied by an external pressure

gradient ›P/›x that yields a surface stress ts 5 (›P/›x)l

and a surface friction velocity u*s 5 jtsj1/2. The simula-

tion is carried forward for 50 nondimensional large-scale

turnover times (t̂ 5 50), approximately 130 000 time

steps. The surface stress becomes statistically steady at
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nondimensional time t̂5 25, and flow statistics are then

computed over the interval t̂5 [25, 50]. The details of

the LES algorithm and numerical methods used to solve

the governing equations are fully described in Sullivan

et al. (2014).

If we normalize all the variables using a length scale

1/k, a velocity scale u*s, and a time scale 1/ku*s, the

problem depends on three nondimensional parameters,

that is, the wave steepness ka, the normalized roughness

length kz0, and the normalized wind forcing u*s/c. In this

study we choose a strongly forced condition where

u*s/c5 0. 632 with a finite wave steepness ka 5 0.226,

which is typical for dominant wind waves in laboratory

conditions and is also applicable to small-scale waves in

the open ocean. The roughness length of the unresolved

waves is set kz0 5 0.002 70 such that the resulting wind

field is consistent with typical observed conditions.

To analyze the LES results we do not use the mapping

Eq. (44) of the LES calculations but employ the fol-

lowing vertical mapping:

z5 z(j, z)5 z1 a cos(kj)e2skz , (46)

with varying s, such that z5 0 is exactly at the water

surface and z5 z if kz � 1. We start with s5 1:

z5 z(j, z)5 z1 a cos(kj)e2kz . (47)

The Jacobian of this transformation is calculated to be

J5
›z

›z
5

1

12 ka cos(kj)e2kz
. (48)

Since the flow is forced by a constant horizontal

pressure gradient ›P/›x, the stress is not constant in z or

in z. The horizontally averaged xmomentum equation is

modified to

�
1

J

�
›P

›x
1

›

›z
[(htw13i1 ht p

13i)1 ht13i]

5

�
1

J

�
›P

›x
1

›twind13

›z
5 0. (49)

When the mapping Eq. (47) is used, h1/Ji5 1, and the

wind stress twind13 varies linearly in z:

twind13 5 (htw13i1 ht p
13i)1 ht13i5 ts 2

›P

›x
z , (50)

or

htw13i1 ht p
13i

twind13

1
ht13i
twind13

5 1, (51)

if normalized by the wind stress.

The horizontally averaged energy equations are also

modified to

hui
�
1

J

�
›P

›x
1
›Fm

›z
2 (htw13i1 ht p

13i)
›hui
›z

2 ht13i
›hui
›z

5 0,

(52)�
~u
1

J

�
›P

›x
1

›Fw

›z
1 (htw13i1 ht p

13i)
›hui
›z

2

*
~tij
›~ui
›jj

+
5 0, and (53)

›Ft

›z
1 ht13i

›hui
›z

1

*
~tij
›~ui
›jj

+
1

�
1

J
«

�
5 0. (54)

If we add Eqs. (53) and (54), we obtain the energy

equation for the sum of wave fluctuation and turbulence:

�
~u
1

J

�
›P

›x
1

›hui
›z

twind13 1
›(Fw 1Ft)

›z
1

�
1

J
«

�
5 0, (55)

where the first term is the energy input from the external

pressure force, the second term is the shear production

(conversion from the mean energy), the third term is the

transport term, and the last term is the TKE viscous

dissipation.

If Eqs. (53) to (55) are multiplied by 2kz/u3*, with

u2*5 jtwind13 j, the normalized energy equations become

2

�
~u
1

J

�
›P

›x

kz

u3
*

2
›Fw

›z

kz

u3
*

2 (htw13i1ht p
13i)

›hui
›z

kz

u3
*

1

*
~tij
›~ui
›jj

+
kz

u3
*

5 0, and (56)

2
›Ft

›z

kz

u3
*

2 ht13i
›hui
›z

kz

u3
*

2

*
~tij
›~ui
›jj

+
kz

u3
*

2

�
1

J
«

�
kz

u3
*

5 0,

(57)

and

2

�
~u
1

J

�
›P

›x

kz

u3
*

1
›hui
›z

kz

u*
2

›(Fw 1Ft)

›z

kz

u3
*

2

�
1

J
«

�
kz

u3
*

5 0.

(58)

In the constant stress layer over a flat surface, where

the pressure forcing is zero and the mean wind profile

is logarithmic, it is known that the normalized wind

shear (›hui/›z)(kz/u*) and the normalized dissipation

h(1/J)«i(kz/u3*) are both close to 1 and the transport

term is small. Even if the stress is not strictly constant,
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the normalized wind shear is expected to be close to 1

over a flat surface (according to the mixing length scal-

ing), provided the normalization is done using the

height-dependent friction velocity u* instead of the

constant surface friction velocity u*s.

5. Results and discussion

a. Overview of LES results

In Fig. 1 the results of the LES are first presented in

physical space x–z coordinates moving at the phase

speed c. The streamlines of the (ensemble averaged)

wind are shown in Fig. 1a. The figure clearly shows

a cat’s eye pattern (closed stream lines) on the lee side of

the wave crest. This pattern arises because the wind

blows to the right, but air velocity along the wave surface

is always negative (to the left) in the coordinate system

moving with the wave. Above the cat’s eye the stream-

line is significantly modulated relative to the wave

shape, although the flow is not separated in a sense that

both the velocity and tangential stress along the wave

surface are always negative. The pressure plot in Fig. 1b

shows that the location of maximum pressure has sig-

nificantly migrated downwind from the wave trough,

that is, the high pressure acts on a positive surface slope

and pushes the wave to the right (i.e., contributes to the

air–water momentum flux).

Figure 1c shows that the TKE dissipation is large near

the surface as expected. (It varies like 1/z over a flat

surface.) However, the high dissipation rate (strong

turbulence) region appears to be advected by the mean

flow (indicated by the streamline) and is detached from

the surface at the location of the cat’s eye. Below the

cat’s eye the dissipation rate is significantly reduced near

the surface, suggesting that turbulence is very weak

there. The TKE plot in Fig. 1d shows that the TKE is

nearly constant (which is expected in a constant stress

layer) but is also significantly reduced near the surface

below the cat’s eye. We will next show that this weak-

ening of turbulence near the surface is related to the

modification of the mean wind profile and the increase

of the equivalent surface roughness.

b. Mean wind profile

Next, we introduce the mapping Eq. (47). This map-

ping allows us to define the horizontal mean and the

wave fluctuations everywhere above the wave surface.

In Fig. 2, the computed normalized mean wind speed

hui/u*s and the computed normalized mean wind shear

(›hui/›z)(kz/u*) are plotted as a function of normalized

height kz. From here on kz is always plotted in a log scale

since we focus on the processes very close to the wave

surface. The computed normalized mean velocity hui/u*s
matches the theoretical surface value 2c/u*s 521. 58 at

the roughness height kz 5 kz0 5 0.00270 as expected. It

is seen that the computed normalized shear is close to 1

when kz is roughly between 0.7 and 3, suggesting that the

mean wind profile is similar to that over a flat surface

above kz5 0.7. (Above kz5 3, the results are affected by

the top boundary and should be ignored.) Since there is

a well-established region where the mean wind profile

and the mean shear behave like those over a flat surface,

FIG. 1. LES results shown in rectangular x–z coordinates. All variables are normalized. The vertical axis is

stretched by a factor of 2. (a) Streamlines. The streamfunction is set to zero at the water surface. The black lines are

streamfunction contours at 0.2 intervals beginning at 0.0, and the red lines are at20.02,20.04. (b) Pressure (p/u2*s).

(c) Dissipation rate («/ku3*s). (d) TKE (e/u2*s).
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these profiles can be extrapolated down toward the sur-

face by setting the normalized wind shear to be always 1,

as shown by the green lines. (This corresponds to the log

profile if the wind stress is constant in height.) Then, the

mean velocity reaches the surface value at kz 5 0.0122

instead of kz 5 kz0 5 0.00270, that is, the equivalent

surface roughness in the presence of waves is 4.5 times

larger than the prescribed flat surface roughness.

The normalized wind shear has been defined such that

the area integral of the normalized shear in Fig. 2b is

approximately proportional to the increase of the nor-

malized wind speed in Fig. 2a, that is, the area shaded in

blue is approximately equal to the area with green

hatches. (If the wind stress is constant in height, these

two areas are exactly the same.) It is apparent that the

increase of the equivalent surface roughness is mainly

caused by the reduction of the wind shear (relative to

that over a flat surface) very close to the surface (kz ,
0.15). It is interesting that there is a small region where

the wind shear is enhanced (kz between 0.15 and 0.7).

However, the equivalent roughness length increases

because the decrease of the wind shear below kz 5 0.15

is more significant than its increase above kz 5 0.15.

c. Momentum flux budget

Next we examine the momentum flux budget. In

Fig. 3a the computed normalized turbulent stress

ht13i/twind13 and computed normalized wave-induced

stress (htw13i1 ht p
13i)/twind13 , as defined in Eq. (51), are

plotted against normalized height. Here, the turbulent

stress is a sum of the resolved stress and the SGS stress.

The computed normalized total stress (a sum of the

turbulent stress and the wave-induced stress), shown

with a red line, is very close to 1 everywhere. This as-

sures that the LES conserves momentum accurately.

It is evident that thewave-induced stress increases and

the turbulent stress decreases very close to the surface

(kz , 0.2). The wave-induced stress is roughly 40% of

the total stress at/near the surface, that is, the form drag

of the surface waves supports about 40% of the total

wind stress. Interestingly, there is a small region where

the normalized wave-induced stress is negative (mo-

mentum flux is upward) and the turbulent stress is en-

hanced (larger than the total wind stress) around 0.2 ,
kz , 0.7. This range of kz is similar to the range where

the mean wind shear is enhanced in Fig. 2b. Let us ex-

amine the two components of the wave-induced stress

separately. As discussed earlier, the wave-induced stress

is a sum of the wave fluctuation stress htw13i/twind13 and the

pressure stress ht p
13i/twind13 . Very close to the surface the

pressure stress dominates as expected. It is always pos-

itive (downward momentum flux) and monotonically

decays with height. In contrast, the wave fluctuation

stress is always negative (upward momentum flux). Its

magnitude is the largest around kz 5 0.35 and ap-

proaches zero near the surface and far from the surface.

Figures 3c–f show the spatial distribution of the stress

components with their horizontal averages given in

Fig. 3a. Note that Fig. 3d shows the excess normalized

turbulent stress (t13/t
wind
13 2 1) rather than the total

turbulent stress. The streamlines in the mapped co-

ordinate are shown in Fig. 3b as a reference. Figure 3f

FIG. 2. Blue lines show (a) normalized mean velocity hui/u*s and (b) normalized mean ve-

locity shear (›hui/›z)[(kz)/u*], plotted against normalized height kz. Green lines show an ex-

trapolation of the profiles with the normalized mean velocity shear set to be 1. Note that the

area shaded in blue and the area with green hatches are approximately equal.
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shows that the pressure stress is the largest at the wave

surface where the high pressure acts on a positive sur-

face slope (roughly p, kj, 13p/8). It is also positive

where the negative pressure acts on a negative sur-

face slope (roughly 0, kj, 7p/8). It monotonically

decays with height. Figure 3e shows that the wave fluc-

tuation stress is significant only at midheights (around

0. 05, kz, 1). The two strongly negative regions ap-

pear where the streamline leaves the surface (with

positive ~u and positive ~W) and where the streamline

approaches the surface (with negative ~u and negative

~W). It is interesting that the location of the enhanced

turbulent stress in Fig. 3d is not correlated with the lo-

cations of the negative wave-induced stress in Fig. 3c.

However, they exactly compensate each other when

they are averaged horizontally in Fig. 3a.

d. Energy budget

The energy budgets of the wave fluctuation energy

Ew, TKE e, and the sum of the two (Ew 1 e) are exam-

ined in Fig. 4. All the terms in Eqs. (56) to (58) are

evaluated based on the computed values and are plotted

FIG. 3. (a) Normalized budget of horizontally averaged momentum flux: normalized turbulent stress (ht13i/twind13 )

(blue); normalized wave-induced stress [(htw13i1 ht p
13i)/twind13 ] (magenta); wave fluctuation stress (htw13i/twind13 ) (green);

pressure stress (ht p
13i/twind13 ) (cyan); and total stress [(htw13i1 ht p

13i1 ht13i)/twind13 ] (red). (b) Streamlines in mapped

coordinates. The black line is a streamfunction contour at 0, the red dashed lines are at20.02,20.04, and20.06, and

the blue lines are at 0.02, 0.04, 0.08, 0.16, 0.32, . . . (c) Normalized wave-induced stress [(htw13i1 ht p
13i)/twind13 ].

(d) Normalized excess turbulent stress (t13/t
wind
13 2 1). (e) Wave fluctuation stress (tw13/t

wind
13 ). (f) Pressure stress

(t p
13/t

wind
13 ).

MARCH 2015 HARA AND SULL IVAN 877



against kz. Figure 4a shows that the wave fluctuation

energy Ew is generated by shear production (conversion

of mean energy) near the surface, is transferred upward,

and then is converted back to the mean energy (negative

shear production). In addition, some Ew is converted to

TKE near the surface, but some TKE is converted back

to the Ew farther above. The effect of the pressure

forcing (dark green) is negligibly small, and the overall

energy conservation (red) is reasonably accurate. All

the terms are negligible above around kz5 1.

The TKE budget is shown in Fig. 4b. The normalized

shear production term and the normalized viscous dis-

sipation term are both close to 1, and the transfer term is

small above around kz 5 0.7, suggesting that the TKE

budget is similar to that over a flat surface. The shear

production is significantly enhanced around kz 5 0.35

because both the mean wind shear and the turbulent

stress are enhanced compared to those over a flat

surface. The TKE dissipation is also enhanced in this

region, although some of the TKE is transferred above

and below instead of being dissipated. In contrast, below

about kz 5 0.15 both the shear production and the vis-

cous dissipation are significantly reduced.

Finally, the budget of the wave fluctuation energy plus

TKE (Ew 1 e) is examined in Fig. 4c. Note that the shear

production term (blue) is now identical to the normal-

ized mean wind shear examined in Fig. 2b. Therefore,

this plot helps us understand how the mean wind profile

is modified by the surface waves. It is clear that the shear

production term (blue) is mostly balanced by the nor-

malized viscous dissipation term (magenta). The con-

tribution of the flux term (cyan) is not negligible but

is relatively small. This suggests that the reduction/

enhancement of the mean wind shear is closely related

to the reduction/enhancement of the TKE viscous dis-

sipation. Figure 4d shows the spatial distribution of the

FIG. 4. (a) Normalized budget of wave fluctuation energy Ew evaluated based on computed values. Dark green, cyan, blue, and green

lines correspond to first, second, third, and fourth terms of Eq. (56), respectively. Red line shows the sum of the four terms. (b) Normalized

budget of TKE e evaluated based on computed values. Cyan, blue, green, and magenta lines correspond to first, second, third, and fourth

terms of Eq. (57), respectively. Red line shows the sum of the four terms. (c) Normalized budget of wave fluctuation energy plus TKE

(Ew 1 e) evaluated based on computed values. Dark green, blue, cyan, and magenta lines correspond to first, second, third, and fourth

terms of Eq. (58), respectively. Red line shows the sum of the four terms. (d) Spatial distribution of normalized excess dissipation rate

(«kz/Ju3*2 1).
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magnitude of the excess normalized TKE viscous dissi-

pation («kz/Ju3*2 1), such that its horizontal average

plus 1 is identical to the negative of the magenta line in

Fig. 4a. This figure shows significant reduction of the

dissipation rate near the surface, particularly at the lo-

cation of the cat’s eye pattern, and enhancement of the

dissipation rate just downstream of the top of the cat’s

eye pattern. This spatial distribution of the excess nor-

malized TKE viscous dissipation is quite similar to that

of the normalized excess turbulent stress (Fig. 3d),

suggesting that the reduction/enhancement of the TKE

viscous dissipation is correlated with the reduction/en-

hancement of the turbulent stress.

Based on the above analyses we can summarize the

relationship between the modification of the mean

profile and the modification of the turbulence due to

surface waves. When the wave-induced stress increases

and the turbulent stress decreases (from the momentum

flux budget) very close to the surface (roughly kz, 0.15),

the TKE dissipation rate also decreases. The reduction

of the TKE dissipation rate is balanced by the reduction

of the mean wind shear (from the energy budget). This

reduction of the mean wind shear makes the equivalent

surface roughness increase. Interestingly, exactly oppo-

site trends (decrease of the wave-induced stress, increase

of the turbulent stress, increase of the TKE dissipation,

and increase of themeanwind shear) appear around kz5
0.35. However, the effect of the enhanced wave-induced

stress (roughly kz , 0.15) is stronger than the effect of

the reduced wave-induced stress (around kz 5 0.35), and

the equivalent roughness length increases because of the

surface waves.

e. Discussion of different mappings

In this subsection, we investigate how the above anal-

yses of the LES results changes if a different mapping is

introduced. It is expected that the most significant

changes occur if the wavy surface at the air–water in-

terface transitions to a flat surface at a different rate as z

increases. In particular, it is possible to introduce a verti-

cal coordinate that is not stretched or compressed but

simply translates up and down as the surfacemoves.With

such a mapping the wave fluctuation terms appear at all

heights, even at a large height where true wave effects are

negligible. (For example, a simple uniform horizontal

wind velocity uwould introduce a wave fluctuation ~W far

away from the surface with this mapping.)

Let us examine twomore cases of s5 2 and s5 0.1 in

the mapping Eq. (46). The former transitions from

a wavy surface to a flat surface twice as fast, while the

latter transitions 10 times slower. The latter case is very

similar to the translating vertical coordinate (no stretch-

ing or compressing) discussed above. The results of the

momentum budget and the energy budget with different

mappings (different s) are presented in Fig. 5. Figure 5a

shows that the energy budget terms are quite insensitive

to different mappings. Both the normalized mean wind

shear profile (blue) and the profile of the normalized

dissipation (magenta) are hardly affected. Figure 5b

shows that both the turbulent stress (blue) and wave-

induced stress (magenta) are quite insensitive to different

mapping as well. They are enhanced and reduced in al-

most identical manners regardless of the mapping. The

profiles of the pressure stress (cyan) and wave fluctuation

stress (green) are significantly modified by different

mapping. As s decreases (as the waviness persists to

higher elevations), the magnitude of both stress compo-

nents increases at midheights, and its decay is much

slower with height. This is not surprising since smaller s

tends to introduce artificially large wavy fluctuations as

explained above. Nevertheless, once the two stress com-

ponents are added, the effects of different mapping

FIG. 5. Effects of different mappings. Dashed lines show s5 0. 1, solid lines show s5 1, and dotted lines show s5 2. (a) Normalized

budget of wave fluctuation energy plus TKE (Ew 1 e), as in Fig. 4c. (b) Normalized budget of horizontally averagedmomentum flux, as in

Fig. 3a. (c) Normalized simulated wind stress measurement (hu0w0 1 ~u ~wi/u2*) (blue), sum of the residual terms (green), and total (red).
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mostly cancel out and the resulting wave-induced stress is

quite independent of mapping. From the momentum

conservation, the turbulent stress profile is quite in-

dependent of mapping as well.

In summary, most of the results presented in this study

are quite robust since they are not significantly affected

by different choices of mapping, provided the wavy air–

water interface smoothly transitions to a flat surface.

The enhanced wave-induced stress, the reduced turbu-

lent stress, the reduced TKE dissipation rate, and the

reduced mean wind shear are all robust features inside

the wave boundary layer very close to the air–water

interface, and they explain how the equivalent surface

roughness is increased by surface waves.

f. Implications for observations made from a moving
platform

Field measurements of the wind stress are sometimes

performed using anemometer measurements from

moving platforms, such as ships and buoys. Although

measured velocities are carefully motion corrected be-

fore the stress calculations aremade, such estimates may

still be different from those from a fixed platform if the

wind measurement is performed at different elevations

depending on the phase of the surface wave. For ex-

ample, if the platform is wave following, the wind

measurement is effectively performed at a constant z

with s � 1 instead of at a constant z. Therefore, it is

interesting to simulate such observations using the LES

results. Assuming that the stress estimation is made from

measured u andw (by subtracting their timemean, taking

their product, and taking its time mean), the resulting

stress estimate corresponds to hu0w0 1 ~u ~wi. In Fig. 5c, this

simulated wind stress estimate hu0w01 ~u ~wi/u2* [as well as

the sum of the residual terms (twind13 2 hu0w0 1 ~u ~wi)/u2*]
is shown for different mappings. Above kz 5 2 the sim-

ulated wind stress is very accurate. Between kz5 0.5 and

2 the simulated wind stress remains quite accurate. The

error is larger with a smallers but does not exceed 7%. In

contrast, the stress below kz 5 0.4 is significantly under-

estimated by this simulation. In particular, the simulation

almost entirely misses the flux around 0.05 , kz , 0.1,

perhaps because the simulated wind stress misses the

important contribution of the pressure stress very close to

the surface.

It should be emphasized here that this is a single result

with a particular wind and wave condition. More LES

simulations with different wind forcing conditions must

be performed before any conclusions are drawn re-

garding the accuracy of wind stress measurements from

a moving platform.

g. Turbulence closure inside the wave boundary layer

As discussed in section 1, the predictions of the sea

state–dependent drag coefficient are often carried out

by first estimating the total wave-induced stress by in-

tegrating the contributions from all spectral components

and then imposing a turbulence closure model to relate

the reduced turbulent stress and the modified mean

wind profile. The first step assumes that the wave-

induced stress from different wave components can be

simply summed up, that is, the wave-induced stress is

mainly determined by the first harmonics of velocities

and pressure, which are linearly correlated with the

wave elevation. We may test the validity of this as-

sumption using the LES results. In Fig. 6a, the calculated

FIG. 6. (a) Normalized wave-induced stress as shown in Fig. 3a. Solid lines show the original

calculations, as in Fig. 3a. Dashed lines show the calculations with the first harmonics only,

neglecting the higher harmonics. Note that solid and dashed lines are almost identical. (b) The

normalized TKE viscous dissipation rate as shown in Fig. 4a. Magenta is the original calcula-

tion, as in Fig. 4a. Green is the parameterization Eq. (59). Blue is the parameterization Eq. (60).
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wave-induced stress components (wave fluctuation

stress, pressure stress, and total) using the first har-

monics only (dashed lines) are compared with the

original calculations (solid lines) that include the higher

harmonics. The two results are almost identical. This is

surprising since the spatial distribution of these stress

components, shown in Figs. 3c–f, look quite nonlinear.

Nevertheless, this result suggests that estimations of the

wave-induced stress and the reduced turbulent stress

over multiwave components (as routinely done in many

modeling studies) are reasonably accurate even if the

steepness of each wave component is not very small.

We next test the validity of some of the existing tur-

bulence closure models. While some studies employ

rather complex schemes [e.g., the higher-order turbu-

lence closure scheme by Chalikov and Rainchik (2011)]

that are difficult to test, others use simple parameteri-

zations of the eddy viscosity and/or the viscous dissipa-

tion rate « in terms of the reduced turbulence stress,

which are easily tested using the LES results. For ex-

ample, Makin and Kudryavtsev (1999) parameterize the

dissipation rate «(z) as proportional to [t(z)/t]3/4, while

Hara and Belcher (2004) parameterize «(z) as pro-

portional to [t(z)/t]3/2, where t is the total wind stress

and t(z) is the reduced turbulent stress at a height z. If

these parameterizations are introduced in the present

analysis in mapped coordinates, the normalized dissi-

pation h(1/J)«i(kz/u3*) is parameterized as

�
1

J
«

�
kz

u3
*

5

 
ht13i
twind13

!3/4

, (59)

and

�
1

J
«

�
kz

u3
*

5

 
ht13i
twind13

!3/2

. (60)

These two parameterizations are tested in Fig. 6b. It is

seen that the second parameterization works quite well,

while the first parameterization underestimates the

wave effect. In general, the observed strong correlation

between the reduced turbulent stress and the reduced

TKE dissipation rate suggests that the parameterization

of the latter based on the former is a reasonable ap-

proach. Of course, more LES simulations with different

wind forcing conditions are needed to obtain more

conclusive results.

h. Surface stress and wave growth rate

Since the energy flux EF into surface waves is entirely

because of the normal stress tn and the tangential stress tt
applied on the tilted wave surface, it can be expressed as

EF5EFn 1EFt, EFn5

�
untn
cosu

�
, EFt 5

�
uttt
cosu

�
,

(61)

where u is the angle of the surface tilt, un and ut are the

normal and tangential components of the wave orbital

velocity, and EFn and EFt are the energy fluxes due to

normal stress and tangential stress, respectively. Note

that the factor 1/cosu is needed to account for the in-

crease of the surface area due to the surface tilt. If the

wave surface is smooth, there is a viscous sublayer along

the wave surface, and the tangential stress is determined

by the tangential viscous stress. The normal viscous

stress is zero, and the normal stress is equal to the sur-

face pressure. In this study, however, we parameterize

the impact of unresolved small scale waves using a pre-

scribed roughness length. Therefore, the surface tan-

gential stress is determined by the roughness length and

the horizontal velocity at the first grid level (using the

law of the wall), while the total normal stress is a sum of

the pressure and the turbulent normal stress, which is

evaluated at the first grid level rather than at the wave

surface. (It is expected that the total normal stress is

almost constant in the local normal direction above the

wave surface over a distance that is much smaller than

the wavelength.We have ascertained that the LES result

indeed satisfies this expectation over a first few grid

levels above the water surface. Therefore, it can be as-

sumed that the total normal stress evaluated at the first

grid level is almost identical to that at the true water

surface.)

In Fig. 7, we plot the tangential stress along the wave

surface as well as the normal stress components (pres-

sure, turbulent normal, and total) evaluated along the

first grid level. As expected, the total normal stress

variation is significantly larger than the tangential stress

variations. Below the cat’s eye both stresses are close to

zero. Using these surface stress results, the normalized

energy flux (EF/u3*s) into the surface waves is calculated

to be EF 5 0.782, EFn 5 0.676, and EFt 5 0.106.

Therefore, the tangential stress accounts for 14% of the

total energy flux. However, this number likely varies if

the equivalent surface roughness is allowed to vary

along the wavy surface (reflecting the modulation of

small-scale waves). Interestingly, the DNS by Yang and

Shen (2010) of turbulent wind over waves with a similar

wave age shows a comparable contribution of the tan-

gential stress to the energy flux into waves, even though

the physical meaning of the tangential stress is very dif-

ferent. (The tangential stress in the DNS is the viscous

stress applied on a smooth wavy surface, while our tan-

gential stress is mostly the form drag due to unresolved

smaller waves.) It is noteworthy that the contribution of
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the total normal stress (EFn 5 0.676) consists of the

pressure contribution (0.603) and the turbulent normal

stress contribution (0.073). Therefore, the pressure con-

tribution alone accounts for 77% of the total energy flux,

missing 14% by the turbulent tangential stress contribu-

tion and 9% by the turbulent normal stress contribution.

The wave growth rate b (in a dimensional form) is

often expressed as

b5 cb
u*s
c

� �2ra
rw

v , (62)

where cb is a nondimensional coefficient, and rw is water

density. Since the (dimensional) energy flux is equal to

a product of the wave energy (1/2)rwga
2 and the growth

rate b, the coefficient cb can be expressed as

cb5 2
EF

u3
*s

u*s
c
(ka)22 . (63)

The LES result then yields cb 5 19.4. If the tangential

stress contribution is ignored, cb 5 16.7. If the contri-

bution of pressure alone is used, cb 5 14.9. These

numbers are near the lower end of observational results

and are quite consistent with previous theoretical and

numerical results of the linear wave growth rate in the

strongly forced conditions (see Belcher 1999), even

though our LES calculation has been performed with

a relatively large wave steepness.

6. Concluding remarks

We have derived the momentum and energy equa-

tions inside the wave boundary layer by introducing

a wave-following coordinate and triple decomposition

(horizontal mean, wave fluctuation, and turbulent fluc-

tuation) of variables. The formulations are valid very

close to the water surface, even below the wave crest

level, and can be derived with different choices of

mapping. The formulations naturally define the wave-

induced stress as a sum of the wave fluctuation stress and

the pressure stress and show that the sum of the wave-

induced and turbulent stresses remains constant with

height. They also describe the energy balance occurring

inside the wave boundary layer.

Next, an LES result of wind over the sinusoidal finite-

amplitudewave train (in a strongly forced condition) has

been analyzed using the proposed formulations with

three different coordinate-mapping choices. The results

show that the enhanced wave-induced stress very close

to the water surface (around kz , 0.15) reduces the

turbulent stress (from the momentum budget). The re-

duced turbulent stress is correlated with the reduced

TKE viscous dissipation rate. The reduced dissipation

rate is then balanced by the reduced mean wind shear

(from the energy budget), which causes the equivalent

roughness length to increase. Interestingly, the exactly

opposite trends (increased turbulent stress, increased

dissipation rate, and increased mean wind shear) occur

around 0.15, kz , 0.7 and reduces the overall increase

of the roughness length and drag coefficient. These re-

sults are quite insensitive to different choices of map-

ping. The observed strong correlation between the

dissipation rate and the turbulent stress suggests that the

existing parameterization of the former in terms of

the latter is a reasonable approach.

There are many remaining questions to be answered.

So far, only one case of wind forcing u*s/c, normalized

roughness length kz0, and wave steepness ka has been

studied. Clearly, more LES experiments varying all

these parameters are needed to fully understand wave

boundary layer turbulence. Furthermore, a surface drift

velocity can be added, and both the roughness length

and the drift velocity can be made variable along the

wavy surface. Conditions of misaligned wind and waves

are of significant interest as well.
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FIG. 7. Surface stress components (normalized by the surface

friction velocity squared): turbulent tangential stress (magenta),

total normal stress (solid blue), pressure (dotted blue), and tur-

bulent normal stress (dashed blue). The tangential stress is evalu-

ated along the water surface, while the normal stress components

are evaluated along the first grid level.
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