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Sum rules in the dynamics of quantum spin chains

Gerhard Miiller
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881
(Received 22 March 1982)

An infinite set of sum rules is derived for the dynamics of one-dimensional quantum
spin systems. They are employed to derive valuable information on the spectral-weight
distribution in the T'=0 dynamic structure factor S,,(q,0). Applications are presented
for various special cases of the nearest-neighbor XXZ model, including cases with a
discrete excitation spectrum and cases with a continuous spectrum. For the S =% XY-

Heisenberg antiferromagnet, an analytic expression for S,,(¢g,®) is conjectured which sa-
tisfies the infinite set of sum rules. In the XY limit this expression is identical to the
known exact result. A similar conjecture applied to the isotropic Heisenberg antifer-
romagnet with arbitrary spin quantum number S illustrates how the continuous spectrum
of the quantum antiferromagnet collapses into a discrete branch of antiferromagnetic spin

waves in the classical limit S— oo.

I. INTRODUCTION

Several one-dimensional (1D) spin model systems
are exactly solvable at least to some aspects. For
their dynamical properties, however, only very few
rigorous results are available. The dynamics of the
1D classical Heisenberg (HB) model and related
models is highly nontrivial except for T—0 where
the system goes into a fully ordered state. At
T =0 linear spin-wave theory is exact. By con-
trast, the ground state (GS) of quantum spin
chains has in general a very complicated structure
due to zero-point motion (quantum fluctuations).
In some prominent cases it is without true long-
range order. Thus, even the 7=0 dynamics is
nontrivial and therefore very interesting.!

Several approaches to calculate the excitation
spectrum of quantum spin chains have been em-
ployed. Those approaches which start from the
correct quantum ground state include (i) Bethe an-
satz techniques,”? (ii) calculations in the fermion
representation,”!* and (iii) the mapping between
the eight-vertex model and the quantum spin
chain.'® Rigorous results for dynamic correlation
functions, however, have essentially been limited to
the S=+ XY model.'” For other models a number
of approximate approaches have been used in order
to calculate dynamical correlation functions. Valu-
able results have been obtained by (i) perturbation
calculations in the fermion representation,'8~2° (ii)
calculations in the continuum approximation (Lut-
tinger model),??? (iii) Holstein-Primakoff-type ex-
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pansions,>>?* (iv) perturbation calculations using
Ising basis functions,?> and (v) finite-chain calcula-
tions.619:26.27

In many cases, the results thus obtained are evi-
dently not satisfactory, either because they are con-
tradictory to exact results or they exhibit unphysi-
cal features. Moreover, a danger of overinterpreta-
tion is inherent in any approximate approach if its
accuracy cannot be estimated. Under these cir-
cumstances it is important to have a device in
hand which can be used to test the validity of
dynamical results obtained by approximate tech-
niques. Sum rules are such a device. They have
originally been introduced by Hohenberg and
Brinkman?®® to 1D quantum spin dynamics, albeit
in a very specific and limited form. This paper
presents a generalization of the sum rules intro-
duced by Hohenberg and Brinkman to an infinite
set, and it describes a novel way to derive informa-
tion on the T =0 dynamics of quantum spin
chains from this infinite set of sum rules.

In Sec. II various dynamic quantities are defined
and some of their general properties briefly dis-
cussed. The infinite set of sum rules is introduced
in a general form. In Sec. III A the general prop-
erties of these sum rules are derived for the 1D
XXZ model. Applications to cases with a discrete
spectrum [S =% HB-Ising ferromagnet (FM),

S— o0 XY-HB antiferromagnet (AFM)] and to

a case with a continuous spectrum (S =% XY-HB
AFM) are discussed in Secs. III B and IIIC,
respectively. Section IIID deals with the isotropic

1311 ©1982 The American Physical Society
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HB AFM for % <8 < . Here, the sum rules im-
ply that the continuous spectrum collapses into a
discrete one in the classical limit S— co.

II. FUNDAMENTALS

Dynamical properties of a general many-body
system with Hamiltonian H are usually described
in terms of a time-dependent correlation function

S45()=(A()B(0)) —(4)(B) (2.1)
for operators 4 and B, where
(A4)=Tr[exp(—BH)A] ,

B=1/kgT, or by its Fourier transform, the
dynamic structure factor

Supl)= [ d1 S50 . 2.2)

A quantity equivalent to (2.1) is the absorptive part
of the response function as given by Kubo’s formu-

la
|

Xip()=5{[4(1,B]) . 2.3)

Its Fourier transform is related to S z(w) by the
fluctuation-dissipation theorem

Sp(0)=2X4p(w)[1—exp(—Bw)] "' . (2.4)

It is useful to recall the properties
Xap(—o)=—Xp,(w), Syp( '—CD)=€_B‘DSBA(CD).

The static susceptibility X 4z and the equal-time
correlation function ®,p are obtained from the
dynamic quantities X jz(w) and S,p(w), respective-
ly, through the sum rules

=272 o), @.5)
®p=(4B)—(4)(B)=["" S San(@) .

(2.6)

Further sum rules for S,p(w) or X j5(w) are de-
rived from derivatives of X 45(¢)

B Rip= (=i [ 792 e iong iy ) =3P+ A, HLH] ..., HLB]) @)
taken at ¢ =0:
K,({')=f_:° do nX ( )=%<[[[[AaH]’H]’--,HLB])7 n=123,... (2.8)

(where the commutator on the right-hand side is
n-fold). The frequency moments K% are then the
coefficients in a Taylor series of X j B(t) around

t =0. In the important case A =4 =B, both
X14(t) and X (o) are real odd functions. Here,
only the moments with odd n are nonzero in (2.8).
At T=0 (2.4) (for the case A =A41=B) becomes

S 44(0)=2X 14(0)BO(w) where O(x) is the step
function. Here (2.5) and (2.8) can also be expressed
as frequency moments of S ,,(w).

Xaq=2 f ”iﬂm—ls,,,,(w), T=0 2.9

K(n) . _d_wwnSAA(m)
2w (2.10)
n=1,3,5..., T=0.

The explicit knowledge of a number of frequen-
cy moments K ,;’1'9) can be used for a short-time ex-
pansion of X 5(¢), or for a continued-fraction rep-
resentation of the corresponding relaxation func-
tion. It is clear, however, that in general these ap-

[

proaches cannot give reliable results for S, z(w) un-
less a great many frequency moments are known.
In the following sections the sum rules (2.8) will be
employed in a completely different way. It will be
demonstrated how information on the structure of
S4p(w) can be deduced from some general proper-
ties of the quantities K% for the case of 1D spin
systems.

III. SUM RULES FOR THE EXCITATION
SPECTRUM OF 1D SPIN SYSTEMS

A. General properties

Here we shall investigate some applications of
the frequency moments (2.8) for the T=0 dynam-
ics of 1D spin systems, in particular the 1D XXZ
model. The Hamiltonian reads

H= E [ L(STSFy 1 +8787 1)+, 878111
i=1
(3.1
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with periodic boundary conditions assumed. De-
pending on the signs and relative size of the cou-
pling strengths J, J,, the models described by H
are known as

(i) HB-Ising FM (J, <J, <0),

(ii) XY-HB FM (J, <J, <0),

(iii) XY-HB AFM (0<J, <J)),

(iv) HB-Ising AFM (0<J, <J,).

The dynamic structure factor for (3.1), as probed
by inelastic neutron scattering if H represents a
quasi-1D magnet, is given by

Suulg0)=3 e =R [ eio(SpSE, £ ),
R o0

(3.2)
H=X,),Z
The symmetry of H requires S,, =S,,. At T=0
Spuu(g,@) can be written as
J

° dw
0 27

K(n)( )= nS”“(q’w)=%<[[...

with

N .
SH(q)=N"1? > est, u=x,y,z
=1

The explicit evaluation of the multiple commuta-
tors in (3.4) is straightforward, but becomes very
tedious for n > 1. The result for n =1 reads?®

K (g)=—27 2J,(SF"Sf",1 Y(1—cosq) » (3.5a)

Ky (@)= —(J (S7SFy1 ) +J.(SiSF41 )

+(J (ST 1)+, (S{Sf, 1 ) )cosq .
(3.5b)

For the Hamiltonian (3.1) the nearest-neighbor
correlation functions (Sf'Sf, ;) can be derived
from the GS energy.?”>3! For S=+ 5> the GS energy
is exactly known.>! Thus, the moments K (”( ) are
fully determined. The result for K>(q) is relegat-
ed to Appendix A. It contains four-point correla-
tion functions which generally are not known, ex-
cept for special cases where the GS has a simple
structure. Evidently, for general n, K (")(q) isa
linear combination of (n + 1)-point correlatlon
functions with g-dependent coefficients. In Appen-
dix B the important result is proved that K (")(q)
the nth frequency moment of S,,(¢,0) for the
Hamiltonian (3.1) at T=0, is a polynomial in cosq
of degree n:

[[SMq),H],H], ...,

up(q’ _IEM“S(&)+EG El)

(3.3)
d

2 27 [{G; | S¥(q) | A) |?,

where |G;),i=1,...,d denotes the d-fold degen-
erate GS with energy Eg, and the sum A runs over
all eigenstates |A) with energies E;. The excita-
tion spectrum of H can be defined as consisting of
those excited states which have non-negligible spec-
tral weight M¥%. Depending on the choice of the
parameters J, and J, the excitation spectrum may
consist of discrete branches or of continua or of
both.?®

The sum rules (2.8) as applied to the dynamic
structure factor S,, (g,w) of the 1D spin system
(3.1) at T=0 read*®

H],S¥(—q)]), n=1,3,5 (3.4)

r

K(")(q)—- 2 Ay cos™q ,

m=0

(3.6)
'p:': zb}m)<szosfl .. Slf">
J
with IOSII <t Sln, In—lo <n,n =1,3,5, .o
This result turns out to be very valuable even
without the explicit knowledge of the coefficients
A,,. Employed as an infinite set of sum rules it
can provide important information on the possible
structure of S,,,(¢,w) for the Hamiltonian (3.1) at
T=0. A few such applications are presented in
the following.

B. Discrete spectrum

In cases where the excitation spectrum is known
or assumed to consist of a discrete branch €,(q)
and T'=0 dynamic structure factor has the form

Suu(q,0)=21P,,(9)8(0—€,(q)) , 3.7

where ®,,,(q) is the fluctuation intensity (2.6).
Here the sum rules (3.6) predict the following gen-
eral properties of €,(¢) and ®,,(q):

(i) The squared dispersion eu(q) is a quadratic
function in cosg:

€,(q)=(Cq+C,cosq + C,cos’q)' /2 . (3.8)

(ii) Two known frequency moments, e.g., K “)(q)
and K ; (3) . (q) are sufficient to fully determine (3 7)
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€0 =[K(@) /K (@], (3.92)
®,.(q)=[K (P> /[Kol @] . (3.9b)

Further moments are redundant in this case if not
useful as a check of consistency for any underlying
assumptions. Correspondingly an excitation spec-
trum consisting of m branches would require at
least 2m known frequency moments in order to
determine the dynamic structure factor.

This case of a discrete spectrum is realized in
the S=+ HB -Ising FM characterized by Hamil-
tonian (3 1) with J, <J, <0. By rigorous calcula-
tions it was shown that the low-lying excitations
include a discrete branch of magnon states, a con-
tinuum of two-magnon scattering states and an in-
finite set of magnon bound states.””®!® However,
since the GS is well known to be ferromagnetically
ordered, it is obvious that only the one-magnon
states contribute to S,,(q,0) at T=0. Since the
dispersion of these states

emlg)=|J,| —|J, | cosq (3.10)

is already known, K\1'(¢) is sufficient to determine
Sxx(q,0), yielding

Sxx(q,w)=%8(w—eM(q)) . (3.11)

Evidently €,,(g) has the form (3.8), and (3.11) sa-
tisfies the infinite set of sum rules (3.6).

In the case where the Hamiltonian (3.1) has
planar anisotropy ( |/, | < [J.|), the GS has no
longer a simple structure. For = it has been
shown that, due to strong quantum fluctuatlons,
the correlation functions {Sf’Sf*, g ) decay to zero
for large R as a power law.”?"32  Accordingly, the
excitation spectrum relevant for S uu(g,@) is much
more complex (see Sec. III C). It is in the limit
S— « only, that the quantum fluctuations become
negligible, and the GS is fully ordered. For the
planar AFM (0<A< 1, A=J,/J,, J, =J) the clas-
sical GS is the familiar Néel state with staggered
long-range order in the XY plane, e.g.,

(SFY=(SP)=(—1)!s/V2, (SF)=0.

The further assumption that the excitation spec-
trum (in the extended Brillouin zone) consists of a
single branch of AFM magnons is then consistent
with the requirements of the sum rules. The expli-
city known frequency moments (3.5a) and (A1),

K(u”(q)=JSZ(1—cosq), (3.12a)

K3 (q)=473S*(1—cosq)X(1+Acosq), (3.12b)

determine the out-of-plane component S,,(g,w) of
the dynamic structure factor according to (3.9) to
be

Sz(q,0)=271d,(q)8(w—¢,(q)) , (3.13a)
€,(q)=28J[(1—cosq)(1+Acosq)]'/?,
(3.13b)
<I>zz(q)=—;-S[(l—cosq)/(1+Acosq)]1/2 .
(3.13¢)

This is identical to the linear spin-wave result.
Evidently (3.13) satisfies the general condition (3.8)
and is consistent with the infinite set of sum rules
(3.6):

Kz(zn)(q)= 2""J"S"+1(1—cosq )(n+l)/2
><(1+Acosq)(”‘”/2

n
= 3 Apcos™q . (3.14)
m =0
In the same way the linear spin-wave result for the
in-plane component S, (g,®) can be obtained from
sum rules.

Thus, the two assumptions that the classical GS
is realized and that the excitation spectrum con-
sists of only one branch have led to a fully con-
sistent picture in the framework of the sum rules
(3.6), reproducing the classical spin-wave results.
We have to be aware, however, that the sum rules
as applied here do not answer the following two
questions: (i) Under what circumstances is the
classical GS realized in Hamiltonian (3.1)? (i) Is
the assumption of a simple discrete spectrum real-
istic for the case under investigation? An example
of a system with a classical (two-sublattice) GS but
a rather complex excitation spectrum is realized in
the anisotropic XYZ AFM in a magnetic field. >33

C. Continuous spectrum

In the case where the excitation spectrum of the
Hamiltonian (3.1) consists of one or several con-
tinua, there has been no direct, practical way of
deducing the detailed structure of S,,(¢,0) from
any finite number of frequency moments.’> Previ-
ous dynamical investigations employing sum rules
have therefore been limited to qualitative con-
siderations. Calculations for the quantum
chain®®3¢ have relied on K (“(q) only.” Also in
calculations for the class1cal chain (in the form of
a continued-fraction expansion) the number of sum
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rules used has been rather small.’®*° It is the
availability of the infinite set of sum rules (3.6)
which allows us to make more precise statements
on the structure of S,,(q,). 1

In this section we shall concentrate on the S=+
XY-HB AFM, i.e, (3.1) with (0<A<1, A=J,/J|,
J,=J), as an example of a system with a continu-
ous excitation spectrum. In previous work®?’ it
has been demonstrated that S, (q,w) at T =0 is
dominated by a two-parameter continuum of exci-
tations with energies

k,q)=J(rrsi inLeos | L_K
elk,q) (vsmu/,u)smzcos Y

b

(3.15)
A=cosu, O<k<g<m.
The continuum is bounded by the two branches

€r(g)=J(msinu/2u)sing , (3.16)

eu(q)=(1rsiny/p)sin4‘2L .

The exact S,,(g,w) is known only for the XY
model (A=0) (Refs. 10 and 11 ):

O(w—e€.(q))O(ey(q)—w)

. 3.17)
[GZU(q)—wZ]I/2

Sz(q,0)=

This result reflects the density of states in the con-
tinuum (3.15). For A=0 the matrix elements M5
of (3.3) are nonzero and constant for the states
(3.15) and zero for all the other states. It has been

shown by finite-chain calculations that for (3.1)
with 0 <A <1 the continuum states (3.15) still
predominate S,,(q,w), but the matrix elements are
no longer constant.®?’ Approximate calculations
based on two different approaches?*~?? have con-
sistently led to the conclusion that this discontinui-
ty in S;(q,w) at w =€ (q) present for A=0
changes to a power-law singularity of the form
[w>—€2(1)]~° for nonzero A. On the other hand,
extrapolations of finite-chain calculations suggest
that the matrix elements (more precisely, the quan-
tities NM3) of the continuum states go continuous-
ly to zero if their energies approach the upper
bound €y(g).*’ This indicates that the divergence
in S (g,0) at @=e€y(q), which is due to a diver-
gent density of states, becomes weaker for A>0
than in (3.17) for A=0.

All this suggests a conjecture for the continuum
contribution to S;(g,w) of the general form

Sz(g,0)= const X [w2—ei(q)]‘“[e%](q)~m2]‘ﬂ s

(3.18)
er(g) <o <eylq) .
It is the simplest generalization of the XY result
(3.17) which is compatible with the above-mention-
ed results from approximate approaches and
finite-chain calculations.*!

The validity of (3.18) will now be checked by the
severe test of the infinite set of sum rules (3.6).
The nth frequency moment of (3.18) can be
evaluated exactly yielding®?

1
Kz(,")(q)=const><(uz)("_”/z"'z”‘“‘m(1—u2)"“”/22F1 -z 2_1 JN—a;2—a—pB; liiz (3.19)
with u =sin(g/2), n =1,3,5.... The hypergeometric function ,F; for negative integer first arguments
—(n —1)/2 can be written as polynomial*®
| ) l;—‘ - ] (1—a); !
) —n—z——,l—a;Z—a—B;Tf—u—z -3 (2—a—IB)11! 1:42 , (3.20)

where (a);=TI'(a +1)/T'(a) is Pochhammer’s symbol. We notice at once that (3.19) with (3.20) reduces to a
polynomial in cosg of degree n exactly if the two exponents a,f are related to each other by a+ = %
Hence, the infinite set of sum rules (3.6) is in strong support of the following conjecture for S,,(g,®) of the

S=+ XY-HB AFM at T =0:

24 O(w—er(q))O(ey(q)—w)

Sz(q,0)=

B(l—a,5 +a) [0*—€1(@)][eh(g)—0®]' >

(3.21)

with the beta function as a convenient normalizing factor. The rigorous XY result (3.17) is recovered with
a=0,4 =2. The frequency moments then read (with p =J7 sinu /u)
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-t —";1 (1—a),
Ap" !
K(n)( )=
= o 1§0 ()

The normalization constant 4 is determined by
KP(q) of (3.5a), the only frequency moment which
is completely known. The determination of the ex-
ponent « in (3.21) would require the complete
knowledge of one further frequency moment, e.g.,
K3g), i.e., expression (A1) including the values of
the four-point correlation functions. As these
highler correlation functions are not known for the

= planar AFM, a different way for determin-
ing a has to be found. Luther and Peschel,?! by
using the mapping between the quantum spin
chain and the eight-vertex model, have related
T =0 critical exponents of the S =% planar AFM
to known critical exponents of the eight-vertex
model. Their results imply a A-dependent ex-
ponent a

a=(mr/2—p)/(m—un), cosp=A . (3.23)

To O(A) this exponent is reproduced by approxi-
mate calculations in the fermion representation of
(3.1): (i) by calculations in the continuum limit
(Luttinger model)?"?? yielding results valid for

o <<J (i.e., g~0 and gq~), and (ii) by dynamical
Hartree-Fock calculations for the lattice spin
model,? yielding results which are valid for all
wave numbers.

Note that the expression (3.21) has already been
conjectured in a previous pubication.”’ However, it
is only now that its validity is supported by an in-
finite set of sum rules. The implications of the re-
sult (3.21) for various physical quantities of in-
terest including the determination of the constant
A are extensively discussed in Ref. 27. Here the
result (3.21) for S,,(g,w) shall be compared with
the same quantity as obtained by a perturbation
calculation in the fermion representation. In this
approach which does not make use of sum rules
the XY part of the Hamiltonian (3.1) represents a
system of free fermions and the part multiplied by
J, an interaction between the fermions. S, (g,®) is
related to a two-particle Green’s function. This
has been calculated for the planar AFM in the
Hartree-Fock approximation.'®? At A=0 both
approaches yield the exact result (3.17), which has
a finite step at €, (q) and a square-root divergence
at €y(g). At A=0.1, the result (3.21) [for

(u2)(n+1)/2+1(1_u2)(n—1)/2—l= i A,':,COqu, n=135....

m =0

(3.22)

—
q=4m/5 shown as a solid line in Fig. 1(a)] has
developed a second power-law divergence at €1 (q)
where the step discontinuity was, and the singulari-
ty at €y(q) has become weaker. The dashed line in
Fig. 1(a) represents the corresponding Hartree-Fock
result* for the line shape of S, (47/5,0). A=0.1
belongs to the weak-coupling regime in the fermion
representation. Therefore, we can expect the
Hartree-Fock approximation to reproduce a quali-
tatively correct picture. S (g,w) indeed has also
the characteristic two-peak structure. Evidently,
the fact that the two peaks are rounded off (one of
them being very sharp and tall) is an artifact of the
Hartree-Fock approximation. A more careful

IS3z(q,w)
n
o

00 0 20

(b)

IS77(q,w)
N
Q

00

FIG. 1. Dynamic structure factor S, (q,w) for the

=% XY-Heisenberg antiferromagnet [Hamiltonian
(3.1) with J,=J>0,0<A=J,/J <1] at T =0 and fixed
wave number g =47/5. The two plots represent the
cases (a) A=0.1, (b) A=1, respectively. The solid
curves represent the result (3.21) and the dashed curves
the Hartree-Fock result of Ref. 20. Note that for
A=0.1 the peak of the Hartree-Fock result at wo~e¢;(q)
is of finite height (JS;**~118), although very sharp and
high. The peak of the result (3.21) on the other hand, is
of infinite height.



26 SUM RULES IN THE DYNAMICS OF QUANTUM SPIN CHAINS 1317

analysis reveals, however, that a power-law singu-
larity of the form [w?—e? (g)]™® appears in the
Hartree-Fock result as a logarithmic correction.?®
For A=1, the result (3.21) has a square-root diver-
gence at €;(q) and a finite step at €y(g). The line
shape of S,,(47/5,w) is shown as a solid line in
Fig. 1(b). A=1 is no longer in the weak-coupling
regime. Therefore, we cannot expect a reliable re-
sult from the Hartree-Fock calculation [see dashed
line in Fig. 1(b)]. It displays indeed a much less
pronounced peak close to € (g).

D. Transition from continuous to discrete spectrum

We note that the general properties of the sum
rules (3.4) satisfied by (3.21) are independent of the
spin quantum number S. This indicates that the
validity of (3.21) is not necessarily restricted to

=+ chains. In a previous publication,?’ argu-
ments were indeed presented which suggest that
S (g,w) for the isotropic S > % HB AFM [i.e.,
(3.1) with J,=J, =J > 0] can still be represented by
an expression of the form (3.21) with continuum
boundaries €; (¢)=(p /2)sing, €y(q)=p sin(q /2).

In the quantum limit S= %, S, (g,w) is character-
ized by the parameters p =nJ, a= %,

= -2-(1n2— %), according to the results of Sec.
IIIC.* Now we use the sum rules for the deter-
mination of the same parameters in the classical
limit S— . For the classical GS
(SF)=(S?)=(S?)=(—1)!S /v/3, the correlation
function in the sum rules (3.5a) and (4.1) can be
evaluated explicitly, yielding

KN (g)=2JS*1—cosq) , (3.24a)
K(q)=37°8*(1—cosq)*(1+cosq) .  (3.24b)

The corresponding frequency moments of (3.21) as
given by (3.22) are

K3 (q)=(A4JS /m)(1—cosq) , (3.25a)

K3 (q)=(44J3S? /m)[ (1—cosq)*(1+cosq)
++(1—a)(1—cosq)’],
(3.25b)

where the amplitude predicted by classical spin-
wave theory p =2JS has been used.

Comparison of (3.24) and (3.25) demonstrates
that with

a=1, A=2xS/3, (3.26)

the conjecture (3.21) is adequate for the HB AFM
in the classical limit. It is readily proved that for
this set of parameters expression (3.21) is equiva-
lent to the prediction of linear spin-wave theory

S, (q,0)= éer[(l-—cosq)/(l—}—cosq)]‘/2
X 6(w —2JSsing) . (3.27)

In the limit a— 1 the divergence of (3.21) at

€7 (g)=2JS sing becomes very strong; simultane-
ously the normalizing factor 24 /B(1—a, 5 +a)
tends to zero, leaving nonzero intensity only at
w=¢€(q). Thus the sum rules force the continu-
ous spectrum of the 1D quantum HB AFM to col-
lapse into a discrete spectrum as the classical limit
is approached.

The conjecture (3.21) in combination with the
sum rules offers a practical way to obtain quantum
corrections to the classical result (3.27) by calculat-
ing quantum corrections to the static correlation
functions appearing in K.} (¢) and K(g). A
rough estimate of such quantum corrections can be
done by approximating the four-point correlation
functions of (A1) as products of pair correlation
functions (S{'Sf',z ), R =0,1.

With

| (SISTvr) | = | (SISt R |
= | (SIZSIZ+R> | EFR ’
R =0, 1, the sum rules (3.5a) and (A1) then read

Kz(z”(q)=2JF1(1—cosq) , (3.28a)

K3(q)=24J°F,[(F, +F,)(1—cosq)?
—F;(1—cosq)’] . (3.28b)

By comparing (3.28) and (3.25), the quantum
corrections in the parameters A,a of expression
(3.21) for S,,(q,w) are determined in terms of quan-
tum corrections to F;. For the exponent a we thus
get

a=3F,/(F{+Fy)—7 . (3.29)

Using the results Fo=+S2, F;=5S*1—2/78) of
linear spin-wave theory,*® (3.29) yields to O (S )
3

a=1-— el (3.30)
This has to be compared with a result by Mikes-
ka.”* He calculated quantum corrections to
S,;(q,0) of the HB AFM at T =0 by use of a
Holstein-Primakoff-type approach (boson represen-
tation), and found an analytic result for
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q~m, ® <<2JS:
Sy, (g,0) <« O —2JS sing)
X (@ —4J*S%sin’q) ™%
with an exponent a’'=1—1/7S+0(S ~?) very
similar to (3.30). In view of the crude approxima-
tions used for the four-point correlation functions
in (3.28b), the agreement is reasonable.

In summary, some general properties of an infin-
ite set of sum rules for the dynamics of 1D quan-
tum spin chains have been derived and their impli-
cations on the properties of the T =0 dynamic
structure factor S,,,(q,) discussed for various
cases in the general XXZ model. In cases with a
discrete spectrum, S, (g,) is directly determined

Iz
from known sum rules. For the S =% XY-HB

AFM and for the isotropic § >y HB AFM, i,
cases with a continuous spectrum, an analytic ex-
pression for S, (q,w) at T=0 has been conjectured
which satisfies all the sum rules. For the latter
model it is shown how the continuous spectrum
transforms into a discrete one in the classical limit
S—w.
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APPENDIX A: EXACT RESULT FOR K(q)

The sum rule K2'(q) determining the third frequency moment of the dynamic structure factor S,,(g,)
for the Hamiltonian (3.1) has been calculated in terms of four-point correlation functions. The result reads

(J,=J, A=J, /)

4 9
K2@=4|S On@+A S 0,()+A%(q) |,

m=1 m=>5

Q.(q)= —2<SIXSIZ+ISIZ+2SIX+3 )(1—cosq ?,

Qz(q)={3(S1xSf+1Sf+2Sf+3 ) —(SIxSIx+1SIx+ZSIx+2>

“<SIXSIV+1SIV+2SIX+2) ——(Sfo+ISf+1SIZ+2)](l—cosq)2 ,

03(q)=1{ {SISISi 18742 ) + (SISIST 1S 42)

+(SIST 187418712 + (SIS 1187157 2 ) Jcosq(1—cosq) ,

Q4(q)=—{(S{'SI'SI'ST 1)+ (SISISEST 1) + (STSIST 18T 1) + (SISIST 4187410 }(1—cosq) ,

05(q)= _2{ (SIXSIX+1SIX+2SIX+3 )+ <SIxSIx+ISIV+ZSIV+3 ) }( l—cosq)3 ,
Q6(q)={4( SIS 18742573 ) +4(STST" 1811 28T+ 3 ) — (ST'ST 18T 42874 3)

+<SIXSIV+1SIX+ZSIV+3) '—(SIXSIX-§»I*S'IV+ISI’,+2)—<SIX‘S'I},+I‘S‘IX—H‘S’IV-FZ)}(l—cosq)2 s

01(q)=2(SFSF, 1574 15T, » Yeosg(1—cosq) ,
Qs(@)={ (SISI'S{ 418142 ) + (S7'SIS 1 18742)

(A1)

—(SST 18T 1872 ) — (PS4 18742813 ) J (1 —cosq)(1+-cosq) ,

Qo(q)={2(S7S] 1 1S4 18742 ) — (STST4 18742574 3 ) — (STST 1871287 43 ) — (STSTS 18T 1)

"*'(SIXSfSIV+ISIy+1> *<SIXSZVSIX+1SIV+1 >"<SIXSIVSIV+ISIJ(+1 )}(1—00&]) ’

Q10(q)={2( ST 187+ 18742 ) + (SIST 1S4 28T 13 ) + {ST'SFSF 18741 )

—2(SIST4 1T 28742 ) — (STSEST 18742 ) — (STSTSFSTL 1) (1 —cosq) .
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APPENDIX B: GENERAL PROPERTIES OF K (q)

Here some general properties are derived for the quantity (where the commutator on the right-hand side is

n-fold)

Km(@ =5 [[S4q),HLH], ..., HLS (—q)1), n=1,3,5,..., pv=x,9,z (B1)

of the general XYZ Hamiltonian

N
H= 3 {J,. ST +JyS]vS;"+l +J,8iSf1) = EJ’,,H# .
m

=1

(B1) can be decomposed into a sum

3"
K@= aiki@), a=JoqJq - Jq

i=1

(B2)

ki@)=I[ - - - [[S*q).Ho L H ). - - ., Hy 1,S"(—q)]

=N eI (S Hg | H, ],

w

where i is a short notation for {ay,a,, ..., a,}.
To keep the notation simple, the fixed labels u,v,n
are suppressed in most of the following quantities.
The multiple commutator in (B3) has the following
general form

[[ e [[S;t’HaI]’HaZ]’ e ;Han],Sl"’]
Z(i)"+12ej{fjﬁl'_1,kj+fj51—1',kj} ,
J

(B4)
where

By B B, = By By B
fj:,s'losl1 N S’n , ff:SToSI_; . ST:’

L=I+R;, ;=I—R;, [y<l;< -+ <,

the index j stands for the whole set
{l()’BO;ll’Bl; .o ';ln’Bn }, and ej =O,i‘l meg to

.. )Han ]’SII"] ’

l
the fact that H is a nearest-neighbor interaction the
magnitude of R; is restricted to |R; | <n. More-

over, the inversion symmetry of H implies
(f;)={f;). We thus obtain

kil@) ="' 3 e;(f; deos(qR;) , | R; | <n .
! (B5)

Expressing cos(gR;) as a polynomial in cosg of de-

gree n yields the following general form for K L"V)(q)

n
K@= 3 Ancos™q ,
m=0

n BB B,
Am= 2 bS8, 08, - 81 ")
j

where [ <li < -+ <l,, ,—ly<n,n=1,3,5,...,
and where b }'”) is an integer.
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