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Validation of recent shear wave velocity models
in the United States with full-wave simulation
Haiying Gao1 and Yang Shen2

1Department of Geosciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA, 2Graduate School of
Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA

Abstract Interpretations of dynamic processes and the thermal and chemical structure of the Earth
depend on the accuracy of Earth models. With the growing number of velocity models constructed with
different tomographic methods and seismic data sets, there is an increasing need for a systematic way to
validate model accuracy and resolution. This study selects five shear wave velocity models in the U.S. and
simulates full-wave propagation within the 3-D structures. Surface-wave signals extracted from ambient
seismic noise and regional earthquakes are compared with synthetic waveforms at multiple-frequency
bands. Phase delays and cross-correlation coefficients between observed and synthetic waveforms allow us
to compare and validate these models quantitatively. In general, measurements from regional earthquakes
are consistent with ambient noise results, but appear more scattered, which may result from uncertainty
of the earthquake source location, origin time, and moment tensor. Our results show the improvement of
model prediction with the increase of seismic data sets and implement of advanced methods. There exists a
positive linear trend between phase delay and interstation distance for three models, indicating that on
average, these models are faster than the real Earth structure. The phase delays from the jointly inverted
model of ambient noise and receiver function have negative means at all periods while without obvious
dependence on the interstation distance. The full-wave ambient noise tomographic model predicts more
accurate phase arrivals compared to other models. This study suggests a need for an integrated model
constructed with multiple seismic waveforms and consideration of anisotropy and attenuation.

1. Introduction

Seismic tomography has been one of the main methods to study the structure of the Earth. An accurate
velocity model is essential for the interpretation of underlying dynamic processes and our understanding of
the temperature and composition of the Earth [Goes et al., 2000; Hammond and Humphreys, 2000; Takei, 2002;
Cammarano et al., 2003; Godey et al., 2004; Faul and Jackson, 2005; Behn et al., 2009]. With the EarthScope
USArray migrating from west to east of the United States, numerous P and S velocity models have been
presented [e.g., Burdick et al., 2008, 2010; Bedle and van der Lee, 2009; Sigloch, 2011; Yuan et al., 2011; Simmons
et al., 2012]. Particularly, the structures in the western and central U.S. have been constructed with great
details [Roth et al., 2008; Yang et al., 2008; Abers et al., 2009; Audet et al., 2009; Moschetti et al., 2010; Obrebski
et al., 2010, 2011; Schmandt and Humphreys, 2010; Calkins et al., 2011; Gao et al., 2011; Delorey and Vidale,
2011; James et al., 2011; Porritt et al., 2011, 2013; Wagner et al., 2012; Shen et al., 2013; Gao and Shen, 2014].

With the availability of these various models resolved from different methods and data sets comes the need
to understand the accuracy and resolution of these models. Becker [2012] quantitatively documented the
similarities and differences among several velocity perturbation models resolved from body wave tomography
in the Pacific Northwest [Roth et al., 2008; Burdick et al., 2008, 2010; Obrebski et al., 2010, 2011; Schmandt and
Humphreys, 2010, 2011; James et al., 2011; Sigloch, 2011]. Although the large-scale structures are found to be
consistent among these models, the magnitudes of the velocity anomalies vary within a wide range, posing a
challenge in using the velocity models to infer the thermal and compositional structures of the mantle in the
region. Pavlis et al. [2012] discussed the geometry of the Farallon Plate inferred from the 3-D visualization of
recent 3-D tomographic results [Bedle and van der Lee, 2009; Obrebski et al., 2010, 2011; Schmandt and
Humphreys, 2010, 2011; Burdick et al., 2010; James et al., 2011; Pavlis et al., 2012; Sigloch, 2011; Tian et al., 2011].

Although the comparison of various models is informative, it does not provide an assessment on the validity
of the models in predicting seismic observations. A more straightforward and powerful way to validate
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models is to directly compare the observed and synthetic waveforms [e.g., Song and Helmberger, 2007; Qin
et al., 2009; Bozdag and Trampert, 2010; Gao and Shen, 2012]. Using the simulation of full-wave propagation,
Gao and Shen [2012] systematically validated four surface wave tomographic models in the Cascades [Shapiro
and Ritzwoller, 2002; Yang et al., 2008; Gao et al., 2011; Porritt et al., 2011]. The results showed that none of
the Cascade models is adequately accurate in the sense that the misfits between the observed and predicted
seismic waves are much larger than the uncertainty of the observed waveform, indicating room for
significant improvement in the Cascade models. This earlier work suggests that it is necessary to also
assess and validate the existing velocity models of the United States in a systematic way.

This study differs from the work by Gao and Shen [2012] in a few ways. First, surface wave signals are
extracted only from ambient seismic noise in Gao and Shen [2012], while in this study we also include surface
waves from large regional earthquakes. Second, Gao and Shen [2012] focus on the crustal structures in the
Cascades using short- to intermediate-period (7–50 s) waves. Here we validate models covering a much large
geographical area from the crust to ~100 km depth, using up to 75 s period waves. Third, all the models
tested in Gao and Shen [2012] are constructed from surface wave tomographic methods. In this study, our
selected models include ones resolved with both body wave and surface wave signals.

In the following, we first introduce the velocity models that are selected for the model validation. Then we
briefly present the data quality from ambient seismic noise and regional earthquakes and discuss wave
propagation simulation. The phase delays and cross-correlation coefficients at multiple-frequency bands
allow us to systematically and quantitatively compare these models.

2. Models

We select five shear wave velocity models (Figures 1 and 2). Three of them cover the entire U.S. and two the
western and central U.S. Among these five models, one is resolved from shear wave tomography (an update
of Grand [2002]), two from surface wave tomography [Shapiro and Ritzwoller, 2002; Shen, 2012], one from joint
inversion of body wave travel times and surface wave dispersions [Obrebski et al., 2011], and one from the
joint inversion of receiver functions and surface wave signals [Shen et al., 2013]. Our criterion for the model

Figure 1. Shear wave velocity models for model accuracy validation in this study at depth of 20 km. CUB, TX11 and URI12
cover the entire U.S., while DNA10 and Shen13 cover the western and central U.S. The five models share the same color
scale in km/s.
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selection among numerous existing models is that the model should provide absolute shear wave velocity
from the surface to at least 200 km depth. This criterion is based on several considerations. First, the velocity
perturbations resolved from teleseismic body wave tomography are not sensitive to the initial reference
model [e.g., James et al., 2011], making it difficult to convert velocity perturbations to absolute values
accurately. Second, Rayleigh waves (the observed waveforms used in model validation) are sensitive mostly
to shear wave velocity, so uncertainties in conversion from S wave velocity to P wave velocity using a Vp /Vs
ratio cause relatively minor errors in Rayleigh waveforms. In contrast, systematic errors in the conversion from
P wave model to S wave model may result in large deviation. In the following, we briefly describe the five
selected models.

2.1. CUB

A 2°×2° global upper mantle shear wave velocity model by Shapiro and Ritzwoller [2002], based on
fundamental mode surface wave group and phase velocities. The depth range of this model is from the Earth
surface down to ~400 km, with a depth spacing of 4 km. The model is downloaded from http://ciei.colorado.
edu/~nshapiro/MODEL.

2.2. TX11

Grand [2002] derived a 2°×2° global shear wave tomography model (TX2000) from shear wave travel times,
includingmultiple surface bounce arrivals. The depth range of the model is from the surface to the core-mantle
boundary, with a depth spacing of 25 km within the top 1000 km depth. The model used in this study is an
update of Grand [2002] in 2011 therefore named as TX11.

2.3. URI12

A 1°×1° U.S. shear wave velocity model by Shen [2012] from the full-wave tomography of intermediate- to
long-period (37–400 s) empirical Green’s functions (Rayleigh waves) extracted from ambient seismic noise
recorded by ~300 selected stations in the conterminous U.S. The depth range of the model is from the
surface to ~1000 km, and the vertical spacing increases with depth.

2.4. DNA10

A 0.2°×0.2° shear wave velocity model of the western and central U.S. by Obrebski et al. [2011] from a joint
inversion of body wave travel times and surface wave phase velocities. This model takes into account the

Figure 2. Same as Figure 1 except at depth of 100 km.
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variation of crust thickness within the
study area. The depth range of the
model is from the surface to 1000 km,
with a depth spacing of 25 km.

2.5. Shen13

A 0.25°×0.25° shear wave velocity model
of the western and central U.S. by Shen
et al. [2013] from a joint inversion of
receiver functions and surface wave
dispersion measurements. The depth
range of the model is from the surface
to 200 km, with a depth spacing of 2 km.
Models of TX11, DNA10, and Shen13 are
available at Incorporated Research
Institutions for Seismology (IRIS) Earth
Model Collaboration (http://www.iris.
edu/dms/products/emc-earthmodels/).

For all of the models, the western U.S.
has relatively lower shear wave
velocities than the eastern U.S.
(Figures 1 and 2). Particularly, the
patterns of URI12, DNA10, and Shen13
are consistent with each other.
Nevertheless, the magnitudes of these
five shear wave models vary within a
wide range (Figures 1–3), especially at
depths greater than 50 km. The
difference in the average Vs within the
western and central U.S. is up to
~0.3 km/s (Figure 3). The average Vs of
Shen13 is much lower compared to

other models from the midcrust to ~80 km depth, while at depths greater than 100 km, URI12 has the lowest
average Vs. TX11 has the highest Vs within the depth range of 50–120 km. The average velocity variations of
DNA10 and TX11 show very similar trend at depths greater than 50 km, with DNA10 relatively slower than TX11
at corresponding depths. The differences observed among these models result from different tomographic
methods and seismic data sets. We convert S wave velocity to P wave velocity with a Vp/Vs ratio of 1.74 in the
crust [Brocher, 2005] and the empirical relationship of Vp and Vs in the International Association of Seismology
and Physics of the Earth’s Interior 91 mantle at the corresponding depths [Kennett et al., 1995]. The density is
calculated as a function of Vp [Christensen and Mooney, 1995].

None of the selected models provides a self-consistent attenuation structure, although the effects of wave
dissipation may have significant effects on waveforms [e.g., Bozdag and Trampert, 2010; Savage et al., 2010],
especially at depths greater than 100 km [Dalton et al., 2008]. As dissipation is less in the lithosphere, to
minimize the complexity related to attenuation, we limit the comparison of phase delays to surface waves
with periods up to 75 s, which sample mostly the less attenuative crust and mantle lithosphere. Despite the
severe limitations in the selection of the models and the data used in comparison, this study provides a direct
and quantitative, though incomplete, assessment of the models in predicting seismic waveforms.

3. Data and Method

In this study, we use both the continuous seismic data from 1995 to 2012 and large (M>=5.0) regional
earthquake records from 2007 to 2012 for the model validation. All the data are requested from the IRIS
Data Management Center, including ANZA Regional Network (AZ), Berkeley Digital Seismograph Network

Figure 3. Average shear wave velocity (in km/s) of the five models within
the western and central U.S. (that is, the study area of DNA10 and Shen13).
Deeper than 50 km, the shear wave velocity varies within a wide range
among these models.
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(BK), California Institute of Technology Regional Seismic Network (CI), the Global Seismograph Network
(IU), Network of Autonomously Recording Seismographs Array (NR), USArray Transportable Array (TA), the
United States National Seismic Network (U.S.), and the Pacific Northwest Regional Seismic Network (UW).
The instrument sensors are Streckeisen STS-2 or Güralp CMG-3 T types. The number of seismic stations
used in this validation study is over 1500 for CUB, TX11, and URI12 (black triangles in Figure 4a) and ~850
for DNA10 and Shen13 (black triangles in Figure 4b). The empirical Green’s functions (EGF) between the
station pairs are retrieved from the vertical-to-vertical component cross correlation of ambient noise. Prior

Figure 5. Example of empirical Green’s functions (EGF) from one virtual source to all the receivers. (a) Raypath from the virtual source to all the other stations and
(b and c) EGFs, sorted in terms of the interstation distance, are filtered at periods of 50–100 s and 15–50 s, individually. The black lines outline the surface wave signal
window defined by the group velocity at 2.5 km/s and 4.5 km/s.

Figure 4. Distribution of seismic stations (black triangles), virtual source locations (red dots), and regional earthquakes (blue triangles) for (left) the entire U.S. area
and (right) the western and central U.S. area.
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to cross-correlating ambient noise, we
remove instrument response, cut the
continuous record into a daily length,
and resample the waveform to a
uniform sample rate of 1 point per
second. To normalize the ambient noise
in the time and frequency domains with
a frequency-time-normalization
method [Shen et al., 2012], we filter
the records at frequency bands of
1MHz interval, normalize the resulting
signals with their envelopes, and
then sum the normalized signals into

frequency-time-normalized waveform. We also eliminate the time segments of large (M> 5.5) earthquakes.
To increase the signal-to-noise ratio, we stack daily cross correlations for each station pair. The EGFs are then
recovered as the negative time derivative of the stacked cross correlations [e.g., Sabra et al., 2005; Snieder, 2004].
In addition, we obtain the monthly stacks of cross correlations, whose variations provide estimates of the
uncertainties of EGFs and their travel times. The EGFs provide high-quality surface waves within the periods
used in this validation study (15–75 s; Figure 5). To validate the models in a systematic way, we choose six
widely distributed stations as “virtual sources” (red dots in Figure 4; Table 1) and all others as receivers. We also
select six regional earthquakes (blue triangles in Figure 4; Table 2). The procedure to process the earthquake
data involves removal of instrument response and obtaining a uniform sample rate of 1 point per second.
The earthquakes provide high-quality seismic waveforms within the frequency bands of our interest (Figure 6).

To equate EGFs with Green’s functions of the Earth, a uniform distribution of noise sources around the
seismic stations and zero attenuation are required [e.g., Wapenaar, 2004; Wapenaar and Fokkema, 2006;
Snieder, 2007]. These conditions are usually not strictly satisfied in seismic ambient noise [e.g., Yang and
Ritzwoller, 2008]. For our study area, most of the ambient noise comes from the Pacific Ocean and the
northern Atlantic Ocean. On the other hand, it has been suggested that the nonuniformity of noise sources
significantly affects the surface wave amplitude [Tsai and Moschetti, 2010] but not the velocity [Snieder,
2004]. Numerical experiments show that the nonuniform distribution of noise sources leads to less than
0.5% error in travel times and phase velocity [Yang and Ritzwoller, 2008]. This level of error is much less than
the lateral velocity variations in the Pacific Northwest [e.g., Porritt et al., 2011; Gao and Shen, 2012] and
the differences among themodels tested in this study (up to 7%; Figure 3). In the following, we consider the
effects of nonuniform noise source distribution on travel times secondary to those of the Earth structure
and EGF a close approximation to the surface wave portion of the Green’s function of the Earth.

We simulate wave propagation in the 3-D spherical Earth structure with a 3-D nonstaggered grid, finite
difference method [Zhang et al., 2012]. The horizontal grid spacing is ~3 km along geographic longitude and
latitude. The vertical grid spacing is depth dependent with finer grids in the crust, ~1.0 km near the surface,
and increases to 5 km at 100 km depth. Such a grid is sufficient to accurately simulate wave propagation at

Table 2. Regional Earthquakes Used in the Model Validation From Global CMT Solutions (http://www.globalcmt.org/CMTsearch.html)a

Earthquakes (Centroid Time) Latitude (°C) Longitude (°C) Depth (km) Mw T (s) Moment Tensor (dyn cm)

31/10/2007 03:04:59 37.37 �121.78 13.9 5.6 1.5 (�0.033, �2.53, 2.56, 0.209, 0.417, 0.836) × 1024

21/2/2008 14:16:10 41.16 �114.85 13.5 6.0 2.5 (�1.27, 0.198, 1.07, 0.069, 0.256, 0.61) × 1025

18/4/2008 09:37:03 38.49 �87.86 26.9 5.4 1.3 (�0.096, 1.420, �1.330, �0.064, �0.046, 1.140) × 1024

1/10/2009 10:01:28 36.37 �117.83 14.8 5.1 0.9 (�0.344, �5.390, 5.730, �0.111, �1.370, 2.950) × 1023

30/12/2009 18:49:01 32.46 �115.17 14.7 5.9 2.1 (�0.088, �0.669, 0.757, 0.095, 0.050, 0.349) × 1025

14/9/2010 10:52:22 32.14 �115.20 14.7 5.0 0.8 (�1.580, �3.260, 4.840, 0.515, �0.683, �0.467) × 1023

23/8/2011 05:46:22 37.12 �104.59 12 5.3 1.1 (�1.210, 0.025, 1.190, 0.119, �0.383, 0.302) × 1023

6/11/2011 03:53:13 35.61 �96.72 12 5.7 1.8 (�0.463, 4.610, �4.150, �0.063, �0.171, �1.490) × 1024

21/10/2012 06:55:14 36.27 �120.89 12 5.4 1.2 (0.132, �1.180, 1.050, �0.308, 0.295, 0.888) × 1024

aThe estimated half duration (T) is used to calculate source time function (see example in Figure 8). The focal mechanism listed in column 7 is in the order of Mrr,
Mtt, Mpp, Mrt, Mrp, and Mtp.

Table 1. Coordinates of “Virtual” sources in the Full-Wave Ambient
Noise Tomography (Red Dots in Figure 4)

Virtual Sources Latitude (°C) Longitude (°C)

IU COR 44.59 �123.30
IU RSSD 44.12 �104.04
IU WVT 36.13 �87.83
U.S. AGMN 48.30 �95.86
U.S. GLMI 44.82 �84.62
U.S. LKWY 44.57 �110.40
U.S. MNTX 31.70 �105.38
U.S. NLWA 47.39 �123.87
U.S. TPNV 36.95 �116.25
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15 s and longer periods [see Zhang et al., 2012]. To maintain numerical stability, we use a time step of 0.15 s.
The total wave propagation time in simulation is 2000 s, as the longest distance between stations is about
5000 km. To calculate Green’s functions, we use a Gaussian pulse with a half width of 3 s as the source time

Figure 6. Example of a regional earthquake (18 April 2008 09:37:03) recorded by the seismic stations. (a) The distribution of the earthquake (red dot) and the selected
seismic stations (black triangles). See the detailed earthquake information in Table 2. (b and c) Recorded seismic waveforms filtered at 50–100 s and 15–50 s,
individually. The y axis in Figures 6b and 6c is sorted by the distance from the epicenter to the station.

Figure 7. Source time function (STF) used in the wave simulation for ambient noise tomography. (a) The half width of the
Gaussian source time function is 3 s, and the time shift of the STF from zero is 9 s. To account for the initial time shift of the
simulated waveforms and the finite-frequency nature of the STF, we need to convolve the EGF with the STF. (b) Example
of convolution of EGF with the source time function, filtered at 10–25 s period. As we can see, the convolved EGF has been
shifted 9 s forward.
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function (Figure 7a). To simulate the regional earthquakes, we use the global centroid moment tensor (CMT)
solutions (see Table 2) [Dziewonski et al., 1981; Ekström et al., 2012] for the earthquake source timing, location,
and moment tensors. For computational reason, we use a bell integral function with the full width of 4 s
(Figure 8a) as the earthquake source time function in the simulation (see adjustments for different
earthquake source time functions below). The 3-D wave simulation is executed on a Linux cluster with 17
nodes (each with 24 CPU cores). It takes about 27 h per simulation on four nodes. No anisotropy (see
discussion by Gao and Shen [2012]) and attenuation are considered in the wave simulation. We assumeminor
effect of attenuation on the travel times of surface waves at shallow depths [e.g., Bozdag and Trampert, 2010;
Savage et al., 2010].

In this study, we compare the surface wave signals extracted from ambient noise and earthquakes with
synthetic waveforms. Prior to comparing the EGFs and synthetics, we first split the EGFs into positive
(causal) and negative (acausal) time lags. To account for the finite-frequency nature and initial time shift of
the simulated waveforms, we then convolve the observed EGFs and earthquake waveforms with the
corresponding source time functions used in wave simulations for ambient noise and earthquake data,
respectively (Figure 7 and Figures 8a–8c). In addition, for earthquake data, we also convolve synthetics
with the source time function from the global CMT solutions (Figures 8d and 8e and Table 2) to equalize the
effects of finite source times in nature and simulation. The source time-equalized waveforms from
empirical and synthetic Green’s functions are

ud tð Þ ¼ eG tð Þ�Λs tð Þ (1)

us tð Þ ¼ G tð Þ�Λs tð Þ (2)

Figure 8. (top) Source time function used in the wave simulation for earthquakes. (a) The source time function in the earthquake simulation is a bell integral step
function, with the width of 4 s. (b) The derivative of the source step function. (c) Convolution of observed earthquake waveform by station BK WDC with the source
function in Figure 8b, filtered at 10–25 s period, which shifts the waveform 2 s forward. (bottom) Estimated source time function for the regional earthquake
at 21 February 2008 14:16:10. (d) The earthquake source time function is estimated with the half duration from the global CMT solution as listed in Table 2.
(e) Convolution of synthetic waveform with the function in Figure 8d, which shifts the synthetics 2.5 s forward.
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where ud(t) and us(t) are the observed and synthetic waveforms, respectively, eG tð Þ is the empirical Green’s
function extracted from ambient noise, G(t) is the Green’s function, andΛs(t) is the source time function used
in numerical simulation. Similarly, the equalized earthquake waveforms are

ud tð Þ ¼ G tð Þ � Λe tð ÞM � Λs tð Þ (3)

us tð Þ ¼ G tð Þ � Λs tð ÞM � Λe ′ tð Þ (4)

where Λe ′ tð Þ is the approximation of the earthquake source time function (Λe(t)) in the global CMT solution
and M is the earthquake moment tensor.

After source time equalization, we then cross correlate the positive- and negative-time-lag EGFs or
observed earthquake waveforms with the corresponding synthetics using the MATLAB function xcorr
within multiple-period bands, ranging from 35–75 s and 25–50 s to 15–35 s (Figure 9). These wave periods
are much longer than the earthquake source time function (Table 2), so the higher-order complexity in
earthquake source time functions is negligible, and the source time convolution in equations (1)–(4)
amounts to a time shift in waveforms. We also experimented with measuring the phase delays in narrower
band pass filters (15–25 s, 25–35 s, 35–50s, and 50–75 s). The results are similar to what are presented in
Figures 10–12, so the use of narrower period bands does not change the pattern of phase delays, but does
slightly increases the scattering of the measurements, reflecting the trade-off in the narrowness of the
frequency band and the uncertainty of phase delay measurements. Note that for the comparison of the
EGFs and synthetics, we mainly consider the phase arrivals, which are relatively stable, rather than the
accuracy of the waveforms, which can change significantly due to the uneven source distribution and
normalization methods used at the data processing.

Both the observed and synthetic data are filtered with the zero-phase digital filtering (performed with the
MATLAB function filtfilt). To ensure high-quality signals, the source-receiver distance is required to be at least
1.5 wavelength and the signal-to-noise ratio of the seismic waveforms at least 10. To avoid phase cycle

Figure 9. Comparison of observed (black) and synthetic (red) waveforms for (left, station pair of IUWVT U.S. ACSO) ambient
noise and a (right, 31 October 2007 03:04:59) regional earthquake recorded by station AZ BZN with the model of URI12.
The solid and dashed black lines on the left correspond to the causal and acausal parts of the EGF, respectively. The time
window (defined by the green lines) is frequency dependent (see the text for details). The cross-correlation coefficients are
labeled within each panel.
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skipping, we restrict the maximum cross-correlation lag time to the lower period limit within each period
range. The selection of the signal window, which is frequency dependent, is empirical based on our
experience. We define the starting time of the signal window as the distance divided by a high-enough group
velocity for the observed Rayleigh waves (4.3 km/s) minus the upper period limit within each period range.
The window length varies within 4–6 times of the upper period limit from the shorter- to longer-period bands
to ensure capture of the main seismic arrivals. The phase delay time is the average of the measurements
for the positive and negative time lags, which minimizes the effect of the instrument time shift, if it exists
[Stehly et al., 2007]. We then shift the synthetics correspondingly in terms of amount of the phase delay and
calculate the cross-correlation coefficient with the observed waveforms.

4. Results and Discussion

The measurements between the observations and synthetics for both ambient noise and regional earthquakes
are shown and compared in three ways: phase delay versus interstation or source-receiver distance (Figure 10),
histogram of phase delays (Figure 11), and histogram of cross-correlation coefficients (Figure 12). The mean and

Figure 10. Phase delays versus source-receiver distance filtered at four period bands. Each row represents onemodel, and each column represents one period band.
The black and red dots with outlines are measurements from ambient noise and regional earthquakes, individually. A positive linear trend indicates that the
synthetics arrive earlier than the observations, which prefer a relatively slower Earth structure.
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standard deviation of the phase delays from ambient noise and regional earthquakes for the five models at
each frequency range are listed in Table 3. An accurate model would result in nearly zero-phase delays and high
cross-correlation coefficients between the synthetics and observations at all the frequency bands. A positive
delay time in this studymeans that synthetic Rayleighwave arrives earlier than observation; that is, themodel is
relatively faster than the real Earth structure. Phase delays from earthquakes appear to be more scattered than
from ambient noise (Figures 10 and 11), which partly result from uncertainties of the earthquake source
location, origin time, and moment tensors. For example, a 10 km mislocation of the hypocenter will result in
about 3 s phase delay, assuming a 3.5 km/s phase velocity. Meanwhile, statistically, the cross-correlation
coefficients from regional earthquakes are higher than from ambient noise (Figure 12), which means a better
match of synthetic waveforms with observations. This likely reflects the fact that the earthquake waveforms
have higher signal-to-noise ratios than the waveforms extracted from ambient seismic noise (Figure 9).
Nevertheless, in general, for eachmodel, the trend of phase delay versus interstation or source-receiver distance
is consistent between ambient noise and regional earthquakes.

4.1. Models of CUB and TX11

Phase delays from CUB and TX11 show an obvious positive linear trend with the source-receiver distances
except at the shortest periods (Figures 10 and 11). This implies that these twomodels are, on average, too fast

Figure 11. Histogram of phase delays after removing the linear trend. Blue: measurements from ambient noise and red: measurements from regional earthquakes.
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for the real U.S. structure in the uppermost mantle and lower crust. In particular, TX11 has the highest average
velocities in the uppermost mantle and lower crust among the five selectedmodels (Figure 3). Measurements
at short periods appear to be more scattered, especially from earthquakes, which may reflect the complex
shallow crustal structure not present in the models. Distribution of cross-correlation coefficients (Figure 12)

Figure 12. Histogram of cross-correlation coefficients. Blue: measurements from ambient noise and red: measurements from regional earthquakes.

Table 3. The Mean and Standard Deviation of the Phase Delays at Three Period Ranges for Five Models Tested in
This Studya

CUB TX11 URI12 DNA10 Shen13

35–75 s 2.84/3.99 10.88/12.68 0.40/1.29 7.95/8.78 �1.96/2.48
3.53/4.86 10.57/12.95 �0.63/2.56 5.76/6.64 �2.42/3.69

25–50 s 0.48/2.35 10.09/12.21 �0.76/1.84 7.75/8.70 �3.69/4.27
1.48/4.01 7.44/11.36 �1.96/3.46 4.58/6.15 �4.89/6.01

15–35 s �1.75/3.05 2.19/6.15 �2.48/3.61 6.68/7.46 �3.48/4.08
�0.23/4.92 0.64/7.45 �3.73/5.17 3.63/6.42 �5.63/7.45

aFor each model at one period range, the top row is from ambient noise, and the bottom row is from regional earth-
quakes in the format of mean/standard deviation.
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shows that synthetic waveforms fit the observations better at longer periods than at shorter periods. This also
indicates the poorly resolved crustal structure. By comparing the histogram of the cross-correlation
coefficients from earthquakes and ambient noise (Figure 12), it appears that for both CUB and TX11, the
synthetics fit the earthquake waveforms better than the EGFs within periods of 25–75 s.

4.2. Model of URI12

Measurements from URI12, a full-wave ambient noise tomographic model, are improved compared to
models of CUB and TX11 (Figures 10 and 11). Phase delays from both ambient noise and earthquakes are well
constrained without any apparent relationship with source-receiver distance. Nevertheless, as shown by the
histogram of cross-correlation coefficients (Figure 12), the synthetic waveforms still cannot explain the
observations adequately, especially at periods shorter than 35 s (beyond the frequency range used in the
construction of the model). As shown in Figure 11, the phase delays are normally distributed, with an
approximately zero mean from ambient noise and a negative average (within a range of �0.6 s to �3.7 s
from longer to shorter periods; Table 3) from earthquakes. As the negative mean is independent of the
interstation distance (Figure 10), it can at least partly be attributed to the contribution from uncertainties of
earthquake source location and time. It is worth to point out that the construction of the URI12 model
utilized the same forward wave simulation method as we use in this study. In addition, a small fraction
(~20%) of the empirical Green’s functions used in this validation were used in the construction of URI12,
although no earthquake waveforms were used. Thus, we expect a more consistent (smaller) EGF phase
delays for this model compared to other models. Nevertheless, the consistency of the ambient noise data
with the regional earthquake data, which is independent of the Green’s functions extracted from noise
cross correlation, also suggests that the URI12 model can explain the observed waveforms in a better way.

4.3. Models of DNA10 and Shen13

As these two models only cover the western and central U.S., the longest interstation distance is shorter
compared to the above three models (Figure 10). For DNA10, phase delays at all the period bands increase
positively with the increasing source-receiver distances (Figure 10), similar to the trend for TX11. This
indicates that on average, DNA10 is too fast for the Earth structure in the western and central U.S. In contrast,
the average phase delays from Shen13, a joint model of receiver function and surface wave tomography,
are negative at all the three frequency bands (Figure 11), reflecting the lowest average velocities in the
uppermost mantle and lower crust among the five models (Figure 3). Measurements from Shen13 are less
scattered compared to results from DNA10. Distribution of the cross-correlation coefficients by these two
models shows similar patterns for ambient noise and earthquakes (Figure 12).

5. Conclusions

In this study, we simulate wave propagation within five 3-D shear wave velocity models of the United States
and compare phase delays and correlation coefficients between observed and synthetic waveforms at
multiple-period bands (within 15–75 s) to validate quantitatively and directly the models in the crust and
uppermost mantle. Our results confirm the improvement of models in terms of model predictions with the
increase of seismic data sets and implement of advanced seismological methods (URI12 and Shen13 versus
CUB, TX11, and DNA10). In general, earthquake phase delays are more scattered than those of ambient noise,
likely reflecting uncertainties in earthquake location, origin time, and moment tensors. A positive linear
trend between phase delay and interstation distance is observed for models of CUB, TX11, and DNA10 at periods
of 25–75 s, indicating the faster-than-real structure. The similar trend of measurements for TX11 and DNA10
(Figure 10) is consistent with the similarity of their average velocity profiles (Figure 3). The twomost recentmodels,
Shen13 and URI12, predict the phase arrivals more accurately than other models. For all of the five models,
phase delays and cross-correlation coefficients within the crust (15–35 s periods) appear to be more scattered
compared to results at longer periods, indicative of the unresolved complex crustal structure. The grid spacings
used in our wave simulation are not fine enough to extend the comparison to shorter-period (<15 s) surface
waves, which are affected by the complexity of the shallow crustal structure (see supporting information).

We note that the Pwave velocity in the shallowest crust affects Rayleigh waves (<10 km for up to 50 s period
Rayleigh waves). For scale, a ±10% P wave velocity variation in the upper ∼15 km crust can result in up to
±1.5 s phase arrival time change for a Rayleigh wave with a period of 25–50 s and traveling between two
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stations separated by ∼580 km. So uncertainties in the conversion from Vs to Vp in the construction of the
models for simulation may result in minor errors compared to the discrepancies between the observed and
synthetics (Figure 10).

As discussed in section 2, the criteria for model selection in this study limit the type and number of velocity
models to be tested. Present body wave tomographic models in the United States are consistent in pattern at
large scales [e.g., Becker, 2012] and provide velocity perturbations to the mantle transition zone. Many of the
body wave tomographic models cannot be tested and validated in this study because of the difficulty to
accurately convert the velocity perturbation to absolute shear wave velocity. Moreover, the lack of the
attenuation structure in the models also prevents us from validating the deeper mantle structure of the
models. The coherency of phase velocities and attenuation coefficients in the western U.S. [Lawrence and
Prieto, 2011] suggests the necessity of a combined velocity and attenuation structure from the crust to the
mantle. Sensitivities of various seismic waves to the Earth structure vary from the surface to the mantle; thus,
to obtain a comprehensive Earth model, we need to combine all the usable seismic data sets, include
anisotropy and attenuation, and improve the solution of earthquake source location and moment tensors.
Finally, we strongly emphasize that this study validates only parts of the selected model, particularly for the
ones constrained or partially constrained by body waves (TX11 and DNA10), which extend to deepmantle. So
the comparison should not be used in any way to rank the models. The results should be interpreted only as
an assessment of the state of our ability to predict a limited set of seismic observations and the collective
need for further model improvement.
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