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Excitation spectrum and T' = 0 dynamics of the
one-dimensional planar spin-1/2 ferromagnet

Hans Beck! and Gerhard Miiller2

T Institut de Physique de I'Université de Neuchatel, CH-2000 Neuchatel, Switzerland
2 Department of Physics, University of Rhode Island, Kingston Rl 02881, USA

The T' = 0 dynamics of the one-dimenslonal S = 1/2 ferromagnet with planar exchange anisotropy is stud-
ied by finite-chaln calculations and a Green function approach. We demonstrate that the excitation spectrum
relevant for appropriate low-7" inelastic neutron scattering experiments is much more complex than predicted
by linear spin-wave theory. It includes two continua and a set of discrete branches. Some of the low-lying
excitations predicted by rigorous calculations, on the other hand, are shown to contribute no spectral weight
to the T' = 0 dynamic structure factor S..(g,w). We provide quantitative results for the spectral-weight dis-
tribution in S..(q,w) at T" = 0 from bound states and continuum states, including a detailed analysis of the
singularity in S (g, w) at the lower band edge. Further evidence is found for the prediction that some T" = 0
critical properties of the planar S = 1/2 ferro- and antiferromagnet are governed by exponents which depend
continuously on the planar anisotropy.

1. Introduction

The static and dynamic properties of one-dimensional (1D) ferromagnets (FM) have been stud-
ied extensively for some time, both theoretically and experimentally [1]. By far the most prominent
physical realization of such systems has been the quasi-1D S = 1 easy-plane FM CsNiFj. Its ex-
citation spectrum and low-temperature dynamical properties have been interpreted — not without
controversy — mostly in terms of classical spin waves and solitons [2]. More recently, the discovery
of a number of compounds characterized as quasi-1D spin-1/2 FM’s has attracted much atten-
tion from both experimentalists [3] and theorists [4,5], in the belief that quantum effects will be
important. A neutron scattering study completed very recently [6] has indeed confirmed that the
dynamical properties of the quasi-1D FM CuCl; - DMSO cannot be understood in terms of the
excitations predicted by classical theories.

The object of the present work is the 1D S =1/2 FM

N
Ho= 0 [SPS +SPSY,, + AP (1)
=1

with planar exchange anisotropy 0 < A < 1. It is well-known that this system has a singlet ground
state without true long-range order [7,8]. Therefore, linear spin-wave theory is not applicable.
The energies of two classes of low-lying excitations of (1) were found by Johnson et al. [9] by
exploiting the mapping between the eight-vertex model and the quantum spin chain. According
to their rigorous calculations, the excitation spectrum of (1) consists for 0 < A < 1 of two partly
overlapping continua of "free" states and a set of discrete branches of "bound" states. The states
of the continua C and C, respectively, have energies

C: en(q) <w < ey(q); C: ér(q) <w<éeylq) (2a)
eL(q) = J(msinp/2p)|sing|, €r(q) = €eL(q) (2b)
cu(q) = J(msinp/p)|sin(q/2)|,  €v(q) = ev(m —q) (2¢)
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where A = —cosp, 7/2 < p <7, —1 < q¢ < 7 (see Fig. 1). The energies of the bound states are
given by

e-(q) = J(msinp/psiny) sin(q/2)\/sin2(q/2) + sin? y cos?(q/2) (3)
where y = (nr/2u)(m — p), and the r-th branch exists only for u > 7/(1 + 1/r). In the XY limit
(A = 0) only the two continua are present. The bound-state branches r = 1,2, 3,... progressively

emerge from the top of continuum C at A = 0,0.5,0.707 ..., etc. In the Heisenberg limit (A = 1)
the continua vanish altogether leaving behind an infinite set of discrete branches. Fig. 1 shows the
bound-state branches ¢,.(q), r = 1,2, 3 existing at A = 0.8 together with the continua C and C.
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Figure 1. Excitation spectrum of the 1D S = 1/2 planar FM (i) with A = 0.8, consisting of
two continua and three discrete branches of bound states. Only the states of continuum C and
of branches €,(g)) with odd r (solid lines) contribute to S;.(¢,w) at T = 0.

Apart from the knowledge of their energies it has remained unclear whether these excitations
are relevant for the dynamics because the corresponding matrix elements have, generally, not been
known. A set of excitations of (1) can be called relevant for the dynamics at a given temperature
if it contributes significantly to the dynamic structure factor S,,(q,w), the Fourier transform of
the time-dependent two-spin correlation function (Sj(t)S} ). Such a relevant set of excitations
should then be observable in an appropriate inelastic neutron scattering experiment. At T' = 0
S,u(g,w) can be written in the simple form

Sun(a,w) =Y MS(w — Ex+ Eg), M =2x|(G|S"(¢)| ) (4)
A

where S*(q) = N71/23", exp(igl)S}', |G) is the ground state with energy Eg, and A runs over all
eignestates |\) of (1) with energies E}.

This communication reports the results of a purely quantum mechanical approach to the T = 0
dynamics of the planar S = 1/2 FM (1). We investigate the observability of the excitations (2),




Antiferromagnetic long-range order in the anisotropic quantum spin chain

(3) predicted by Johnson et al. [9] and find observable excitations not present in any classical
calculation. Preliminary, rather qualitative results, are already published [5]. The approach of the
present work, which was proposed in Ref. 5, is paralleled to some extent by work of Schneider and
Stoll [10].

2. Finite-Chain Calculations

By using exact finite-chain results for S..(q,w), i.e. by diagonalizing the Hamiltonian (1) for
N = 4 t0 10 and evaluating the (squared) matrix elements M7} of (4), we have analyzed the spectral
weight of the various excitations contributing to S,.(q,w) at T = 0.

At A = 0 we observe that only the excitations of continuum C carry spectral weight (i.e.
have M$ # 0), in agreement with exact analytic results for the XY model [11]. With increasing
A“branches” of states out of continuum C are progressively transformed into branches of bound
state €.(q) with odd r. In the Heisenberg limit A = 1), finally, all states of continuum CC have
“evaporated” into odd-r bound states. These states keep nonzero spectral weight in the finite system
for 0 < A <1 either as continuum states or as bound states. The bound states in branches with
even r, on the other hand, are of different origin and have zero spectral weight in S,.(q,w) at
any value of A [12]. A simple but not rigorous argument explaining this empirical selection rule is
presented in Sect. 3.

The states of continuum C and any excitations not considered so far are observed not to con-
tribute significantly to S..(¢,w) for any A. Their matrix elements M3 for N = 10 are at least two
orders of magnitude smaller than the matrix element of any C state.

At A = 1 the eigenstates can be characterized according to their quantum number S7 of the
total spin ), 52 = ST(ST 4+ 1). For the bound states ST = N/2 — r holds. The ground state has
r = 0. The r = 1 states are the familiar FM magnons and the r > 1 excitations are bound r-spin
complexes. At A = 1 a selection rule based on the Wigner-Eckart theorem allows only the magnons
(r =1) to contribute to S,.(¢,w) at T = 0.

Finally, we should remark that the well-known two-magnon continuum states found for the
Heisenberg-lsing FM (A > 1) [13] are not related to the continuum states (2) of the Heisenberg-
XY FM (0 <A <1).

3. Green Function Approach to S..(q,w)

The finite-chain calculations have proved to be very useful in identifying which classes of excita-
tions play an important role in the 7" = 0 dynamics. They provide a very reliable though qualitative
picture of the excitation spectrum relevant in S, (¢,w) at T = 0. For an analytic approach we use
the well-known mapping of (1) onto a Fermion system [14],

H=> elk)afar + (2N)~ ZV —q) (5)
k

with €o(k) = —Jcosk, V(q) = —2AJcosq, p(q) = >, aLa;Hq. The dynamic structure factor
S.:(q,w) of the spin chain (1) is related to the two-particle Green function Gy of (5) which is the
solution of a Bethe-Salpeter equation. In the Hartree-Fock approximation the latter reads

Ga(¢,p,2) = H(q,p,2) |1+ N~ IZ{V V(p—1)}Galap,2) |, (6)

where
Np(p—q/2) — Nr(p+4q/2)

z+elp—aq/2) —elp+4q/2)
with Ng(p) = [exp(Be(p)) + 1]~ comes from the product of the two one-particle propagators.
Incorporation of Hartree-Fock corrections to the one-particle spectrum leads (at T = 0) to the

H(q,p,2) = (7)
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effective exchange J':
e(k)=—J cosk, J =J(1—-2A/T). (8)

Eq. (6) has been applied earlier to the Heisenberg antiferromagnet (AFM) [15]. S, (¢, w) is obtained
from the imaginary part (at z = w + i€)) of

Xa:(@:2) + N7 Galap,2), (x=xX —ix") (9)
Selgow) = o) (10)

Solving eq. (6) yields [15]

Xo(q 2)
1 —W(g,2)xo(g,2) D

Here W (q, z) = 2[Az?/4.J" sin?(q/2) — AJ cos q], and xo(q, z) = N~ Zp H(q,p, z) is the response
function for the noninteractlng system. For 7' = 0 the real and imaginary parts read, respectively

Xo (q, )= 29(w _ wU(q)) arctan wQU(q)/QJ/
Ty/w? —wi(q) w? — wg (q)
_Oebla) —@P) | Veiple) - @t wia)/2T (12a)
ﬂ\/w?](q) — w? \/wU — w? —+w12](q)/2(]’

\0,) = sn() 17 L0t 0) — )
WU(Q) —w

with the spectral boundaries wr(¢) = J'sing, wy(q) = 2J'sin(q/2). The result (11) yields the
following information on S,,(q,w) at T = 0:

(i) The Hartree-Fock correction (8) leads to a renormalization of the boundaries wr,(q), wy(q)
of continuum C, which agrees with (2) to first order in A.

(ii) For A > 0 x.. has a pole at the energy

Xzz(q,w) =

(12b)

wi(q) = [472sin?(q/2) + 16A2%sin’ (¢/2)] '/ (13)

above the continuum C. wy(q) agrees with €;(g) of (3) to first order in A. Thus our approximation
reproduces the first branch of bound states in a satisfactory way. The residuum is readily evaluated,
yielding the contribution

Sf;(q, w) =4rA sin(q/2)5(w —wq (q)) (14)

to the dynamic structure factor. The occurence of discrete energies in the spectrum of S,, above
the continuum is easily understood by realizing that, according to (6), G is the Green function of
a two-particle scattering problem. In an appropriate continuum approximation we can concentrate
on the p-range p ~ 7/2 close to the upper bound wy (q) of theparticle-hole continuum. Then

2(q, R, 2) Ze”’RG 4. p, 2 Z UAl q’z _w 2.0) (15)

is the Green function of a continuum scattering problem with potential W,(R) = N~! >, exp(ipR)
x[V(p) — V(q)], wave functions ¢, and eigenvalues E\. In a similar way, the wave function
(q,R%(g, R)) of an exciton in a semiconductor is built up by electron and hole states such that the
pair has total momentum /g and a relative coordinate R [16]. The signs in the Schrédinger equation
for ¥ in (15) are such that discrete“bound state” of the potential occur at energies Ey > wr(q),
i.e. above the continuum. Although the full physical content of (6) is more complicated than a
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simple potential scattering problem (due to the presence of the filled Fermi sea) we can use this
simple picture to illustrate the role of bound states in the spectrum of S..(¢q,w): (a) In 1D po-
tential well problems there is no threshold for the formation of a first bound state. Accordingly
the first branch of hound states (3) shows up at arbitrarily small A > 0. (b) If the potential has
inversion symmetry (like our W,(R)) the bound-state wave functions have alternating parity, the
lowest being even. Obviously, the states with odd wave functions do not contribute to x..(¢,w) in
(9). If the same holds true for the full Bethe-Salpeter equation (where higher-order terms will lead
to nonlocal, energy-dependent potentials), it is clear why every other bound state branch has zero
spectral weight in .S,,, as we have observed in finite-chain results.
(iii) The continuum part of S,.(q,w) as given by

¢ (0w) = X0 (4, w)
52:09) = T g @ o) + W@ @l (16)

is illustrated in Fig. 2(a) for the noninteracting case A = 0 and (b) for the weakly coupled case
A = 0.1 (solid curve). Here the Hartree-Fock approximation is expected to give a qualitatively
correct picture. Clearly, such details as the rounded-off singularities at the band edges should not
be taken too literally. A more useful way to analyse (16), on which more elaborate renormalizatlon
group techniques [17] in the continuum limit are based, consists in simply calculating the first order
correction to the singularities of x .. At the lower edge wy (¢) the discontinuity of x{ (¢, w) changes
to a logarithmic singularity for A # 0. If we postulate a power-law behavior of S, (g,w) — which,
in fact, was predicted by calculations in the (Luttinger model) continuum limlt for ¢ ~ 7 [7,8] —
with an exponent «(A), we can formally expand

S.(gw) x w2 —wi(g)] ™ =1-aln(w? —wi(g) + O(a?). (17)
Comparison with the same form found from (16) for w 2 wr,(q) yields

alA) = —% +0(A?). (18)

This agrees to O(A) with the corresponding exponent obtained in the continuum approximation

(a) (b)
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Figure 2. Dynamic structure factor S..(q,w) for the system (I) at 7' = 0, as obtained by the
Green function approach. The two plots represent S..(q,w) at fixed ¢ = 47 /5 as a function of
w for (a) A =0 (exact result ) , (b) A = 0.1 (solid lines), A = —0.1 (dashed line). In the case
A > 0 there is a J-function type contribution from a bound state in addition to the continuum.
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for ¢ ~ 7 [7,8] and with the exponent

a:m, cosp=—A (19)
T —p
as derived from known critical exponents of the eight-vertex model [7]. We stress that our present
calculation justifies the form (17) for the whole Brillouin zone, at least to O(A), whereas previous
calculations [7,8] for continuum models, only cover the domains g ~ 0, . The same analysis applied
to the singularity at wy(q) would require a higher order approximations to S, (¢,w) than (6).
(iv) The result (16) evaluated at small negative A yields the dynamic structure factor S, (q,w)
for the planar AFM [18]. Fig. 2(b) shows the case A = —0.1 as the dashed curve. Here S, (q,w)
has a two-peak structure with peaks close to wr,(q) and wy(q), respectively. In the Hartree-Fock
approximation both peaks are rounded off, one of them being very tall and sharp for the example
shown in Fig. 2(b). The analysis used above for the planar FM, however, suggests that S, (q,w)
for the planar AFM also has a power-law singularity of the form (17) at wy,(¢)) with an exponent
(18). In the AFM case, the positive « leads to a divergence of S,,(q,w) at wr(¢) in agreement
with calculations in the continuum approximation at ¢ ~ 7 [7,8]. It is interesting to note that the
general shape of S,,(q,w) for A = —0.1 from (16) is in remarkably good agreement with S, (q,w)
as obtained in Ref. 19 by a completely different approach. The Hartree-Fock result (16) evaluated
at A = —1, on the other hand, has serious deficiencies [15]. Note also that the exponent a in (17)
determines (for o > 0) the T, = 0 critical exponent 7 as it appears in [(S7S7 z)| ~ R'™" to be
n(A) =3 —2a(A).

4. Behavior of S,.(q,w)

We have also investigated the transverse components S, (¢, w) of the dynamic structure factor.
Finite-chain results show that the spectral weight is distributed over both continua C and C for
0 < A < 1. As the limit A = 1 is approached the spectral weight is progressively transferred to
the r = 1 branch of (3), i.e. to the FM magnon states. An analytic expression for S,,(¢,w) in
the limit A = 0 obtained by a different approach has been given in Ref. 19 including figures of
lineshapes [18]. An extension of that approach for S,.(q,w) and S,.(¢,w) to A > 0 together with
a more detailed account of the present calculations including second-order terms in V(g) will be
published in due course.

Acknowledgment: The authors are indebted to J.C. Bonner, M.W. Puga and H. Thomas for
many valuable comments. This work was supported by the Swiss National Science Foundation. We
have used a modified cmpj.sty style file.
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