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Abstract The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre
boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically
important region. The combination of carbon measurements with ocean circulation transport estimates from a
box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell
Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to
both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2

observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to
0.058 ± 0.010 PgC yr�1 derived from the inversion. However, a wintertime outgassing signal similar in size
results in a statistically insignificant annual air-to-sea CO2 flux of 0.002±0.007 PgC yr

�1 (mean 1998–2011)
to 0.012±0.024 PgC yr�1 (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon
balance, independently derived from in situ biogeochemical measurements, reveals that freshwater inputs and
biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW
entrainment, resulting in an estimated annual carbon sink of 0.033±0.021 PgC yr�1. Although relatively less
efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter
outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting
natural and anthropogenic carbon to the deep ocean where they can reside for long time scales.

1. Introduction

The Southern Ocean (>44°S) plays a critical role in the global carbon cycle as the location of both substantial
anthropogenic carbon uptake (~0.7 PgC yr�1, approximately a third of the total global oceanic sink [Khatiwala
et al., 2009; Mikaloff Fletcher et al., 2006]) and outgassing of upwelled natural dissolved inorganic carbon
(DIC) (0.4 PgC yr�1) [Mikaloff Fletcher et al., 2007]. This is a consequence of its unique circulation: the lack of
continental boundaries permits the existence of the Antarctic Circumpolar Current (ACC) that facilitates zonal
exchange between themajor ocean basins andmeridionally allows the upwelling of DIC-rich Circumpolar Deep
Water (CDW). The lighter components of this water mass merge with the ventilated mixed layer and move
northward [Sallée et al., 2012], while denser classes are transported south where they can combine with
colder, fresher surface waters and dense shelf waters, forming Antarctic Bottom Water (AABW) and closing the
southern loop of the overturning circulation [Lumpkin and Speer, 2007]. The region is thus key to ventilation of
the deep ocean [Orsi et al., 2002] and globally significant in driving changes in the carbon cycle and long-term
climate fluctuations [Anderson et al., 2009; Marinov et al., 2006; Watson and Naveira Garabato, 2006].
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The Weddell Gyre is one of the key regions of the Southern Ocean for the formation of deep and bottom
waters [Orsi et al., 1999], in the form of Weddell Sea Deep Water (WSDW) and Weddell Sea Bottom Water
(WSBW), and is a primary conduit for injection of recently ventilated surface waters to the global abyss. Heat
loss and brine rejection through sea ice production and basal ice shelf melting in the western and southern
parts of the gyre [Nicholls et al., 2009] lead to the production of cold, dense shelf waters, which subsequently
cascade down the continental slope to great depths. However, a lack of consensus regarding production
rates currently exists [e.g., Jullion et al., 2014; Lumpkin and Speer, 2007; Orsi et al., 2002; Schodlok et al., 2002;
Wang et al., 2009], leading to uncertainty in the estimates of deep ocean ventilation in the region. Similarly,
there are divergent estimates for total (natural plus anthropogenic) carbon uptake from the atmosphere
[Lenton et al., 2013] and storage within the water column [Khatiwala et al., 2013; Vázquez-Rodríguez et al.,
2009], resulting from differences in methodology used (e.g., atmospheric inversion, ocean biogeochemical
model, ocean inversion, and sea-surface observations) and data availability. While the seasonal cycle is the
dominant factor in the Southern Ocean air-sea carbon dioxide (CO2) flux variability, its variation interannually
and on smaller regional scales is not well constrained. Uptake is driven by biological drawdown, itself a
result of increased light availability and stratification in the ice-free summer months, whereas outgassing
dominates in winter following entrainment of DIC-rich waters through mixed layer deepening [Lenton et al.,
2013;Metzl et al., 2006; Takahashi et al., 2009]. Equally, assessments of long-term trends are limited by poor data
coverage [Lenton et al., 2013] except for a number of limited locations [Huhn et al., 2013; van Heuven et al., 2011].

In this workwe establish a total carbon budget for the entireWeddell Gyre region (see Figure 1), extending from
the Antarctic Peninsula eastward to 30°E and assess the air-sea CO2 flux variability of the region. Measurements
of total DIC from three full-depth hydrographic sections completely encircling the gyre are combined with
velocity fields derived from a box inversion to integrate carbon fluxes into and out of the region, in both the
ocean interior and through the air-sea interface. Sea surface fugacity of carbon dioxide (fCO2) observations
are then used to investigate the seasonal cycle and annual mean sink/source state and to compare with
inversion-derived outputs. Finally, a third independent estimate of the residual air-sea CO2 flux for the region is
estimated from the differences in winter and summer biogeochemical characteristics at the surface.

2. Data

Three hydrographic cruises were conducted in 2008–2010 around the Weddell Gyre (Figure 1). The U.S.
Climate Variability and Predictability (CLIVAR) cruise I6S (Expocode 33RR20080204, 4 February to 17 March
2008) was a quasi-meridional reoccupation of the 30°E section between South Africa and Antarctica on the
R/V Roger Revelle [Speer and Dittmar, 2008]. DIC measurements were made by coulometry [Wanninkhof
et al., 2009] using two analytical systems based on a Single Operator Multiparameter Metabolic Analyzer

Figure 1. Station locations with respect to local geography, bathymetry, and positions of climatological fronts [Orsi et al.,
1995]. Abbreviations: ASF = Antarctic Slope Front, EI = Elephant Island, FRIS = Filchner Ronne Ice Shelf, JI = Joinville
Island, KN = Kapp Norvegia, LIS = Larsen Ice Shelf, PF = Polar Front, SACCF = Southern Antarctic Circumpolar Current
Front, SB = Southern Boundary, SSR = South Scotia Ridge, andWF=Weddell Front. Bathymetry is from ETOPOv2 [U.S. Department
Commerce, 2006].
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[Johnson et al., 1999] and calibrated using certified reference materials (CRMs), Batch 85 [Dickson et al.,
2003]. Analytical accuracy and precision were calculated to be 1.1 μmol kg�1. Two UK Antarctic Deep Water
Rates of Export (ANDREX) cruises completed the enclosure of the gyre, following its northern edge from
30°E to the Antarctic Peninsula: JC30 on the RRS James Cook (26 December 2008 to 30 January 2009)
from 30°E to 17°W (Expocode 740H20081226) [Bacon and Jullion, 2009] and cruise JR239 on the RRS James
Clark Ross (19 March to 24 April 2010) from 57°W to 17°W (Expocode 74JC20100319) [Meredith, 2010].
On both cruises, DIC was measured by coulometry using two instruments (Versatile INstrument for the
Determination of Total inorganic carbon and titration Alkalinity 3C, MARIANDA, Germany [Mintrop, 2004])
and calibrated using CRMs. For JC30, Batch 92 was used, achieving an accuracy of 2.0 μmol kg�1 and a
precision of 1.6 μmol kg�1. For JR239, Batches 90, 96, and 97 were used, achieving an accuracy of
2.9 μmol kg�1 and a precision of 2.0 μmol kg�1. All three cruises occurred outside the window for inclusion
in the CARbon dioxide IN the Atlantic Ocean (CARINA) hydrographic data intercomparison exercise [Key
et al., 2010]. Therefore, all DIC, alkalinity, oxygen, nutrients, and salinity measurements were independently
checked for systematic biases following CARINA procedures [Key et al., 2010; Tanhua et al., 2010], using
data from an additional 59 historical, regional cruises for comparison. Biases were identified, and multiplicative
adjustments were applied to some oxygen (O2) and nutrient data sets, for data consistency (740H20081226,
stations 69–89 O2: 1.02, Silicate: 0.98; 74JC20100319, stations 1–68 O2: 1.03, Silicate: 1.02, Phosphate: 1.03).
No further adjustments were identified as necessary according to CARINAmethodology for any other data sets
(i.e., biases did not exceed ±4μmol kg�1 for DIC, ±6μmol kg�1 for alkalinity, ±1% for oxygen, ±2% for nutrients,
and ±0.005 for salinity). All cruise data are available from the CLIVAR and Carbon Hydrographic Data Office
(http://cchdo.ucsd.edu/).

2.1. Oceanographic Setting

The full-depth distribution of DIC around the Weddell Gyre is shown in Figure 2. The ACC is a key influence in
the region, and its eastward flow is concentrated along a number of fronts. The cruise track crosses the most
southerly of these—the Southern ACC front (SACCF) and Southern Boundary (SB) of the ACC —at its
northeastern corner (Figure 1). The SB marks the most poleward extent of Circumpolar Deep Water (CDW)
at this longitude [Orsi et al., 1995]. With no direct ventilation source, this water mass enters the Weddell
Gyre from the ACC at its eastern edge and acts as a salinity source for all other water masses poleward of
the Southern Boundary. Upon entering the Weddell Gyre, CDW characteristics are modified greatly by
mixing, and it is commonly known as Warm Deep Water (WDW, 28< neutral density, γn< 28.27) because
it is the warmest of the subsurface water masses [Orsi et al., 2002]. Compared to incoming CDW, WDW
exhibits increased concentrations of DIC and reduced oxygen concentrations in the interior gyre, indicative
of the accumulating effect of remineralization of sinking particulate organic matter [Hoppema et al., 2002].
Surface waters (SW, γn< 27.55) are typified by lower DIC values caused by enhanced biological and solubility
pumps where increased productivity and warmer summer temperatures lead to reduced inorganic carbon
levels. Below the surface waters lies Winter Water (WW, 27.55< γn< 28), a remnant of the winter mixed layer

Figure 2. Total dissolved inorganic carbon field in μmol kg�1 for the three hydrographic cruises encircling the Weddell
Gyre (northward view). Station numbers are shown above the sea surface. Neutral density contours indicate separation
of major water masses: SW (γn< 27.55), WW (27.55< γn< 28.0), WDW (28.0< γn< 28.27), WSDW (28.27< γn< 28.40), and
WSBW (γn> 28.40).
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that is eroded by the upwelling of warmer, more salineWDW. The majority of the water column in the Weddell
Gyre consists of WSDW (28.27< γn< 28.40) and WSBW (γn> 28.40), which collectively contribute to the AABW
that occupies the lower limb of the overturning circulation in the Atlantic Ocean. These deep waters are formed
through the densification of shelf waters by sub-ice-shelf processes and intense air-sea interaction prior to
mixing with WDW [Foldvik et al., 1985; Foster and Carmack, 1976], and the impact of DIC-poor shelf waters on
their formation in the Weddell Gyre causes DIC concentrations to decrease to ~2240μmol kg�1 toward the
bottom. While both contributors to AABW follow the gyre circulation, only WSDW is able to cross the South
Scotia Ridge (SSR) and spread northward directly [Naveira Garabato et al., 2002] carrying a significant carbon
loading [Ríos et al., 2012], whileWSBW is topographically constrainedwithin theWeddell Basin andmust upwell
into the WSDW class before escaping northward. The major export location from the gyre is focused at the
Weddell Front (WF) at ~22°W (see Figure 1), which marks the separation of warmer CDW to the north from
colderWDW to the south, while a substantial import from the east of AABW formed outside of the gyre occurs at
the Antarctic Slope Front (ASF) at 30°E, with a DIC signature similar, but slightly smaller [Hoppema et al., 2001], to
that for Weddell Sea varieties.

3. Methods
3.1. Box Inverse Model

The total contemporary carbon budget for the Weddell Gyre is computed by the combination of the DIC field
with an estimate of the underlying circulation (horizontal geostrophic and diapycnal velocities, eddy fluxes, the
air-sea exchange of heat and freshwater, and freshwater transport through solid sea ice export), diagnosed by
means of a box inverse model, computed by Jullion et al. [2014], and summarized here. Conservation of mass,
heat, and salt is imposed within the region enclosed by the three sections described in the text complemented
by temperature and salinity from the 2005 SR04 section between Joinville Island (near the Antarctic Peninsula)
and Kapp Norvegia, ~8°W, ~70°S (cruise ANT XXII/3 [Fahrbach, 2006]) on the Antarctic coast. The additional
SR04 section is used to minimize the influence of shelf-slope processes in the vicinity of the ice shelves in the
south and west of the gyre on the transport solution. An additional constraint on the transport of the ACC
between stations 82 and 111 (0±5 sverdrup (Sv)) is also imposed to aid in improving the solution. The sections
are divided vertically into 10 layers separated by neutral density interfaces [Jackett and McDougall, 1997]. The
layer interfaces are selected to correspond with the boundaries of the major water masses in the region. The
ocean surface is considered to be permeable to exchanges of heat and freshwater between the ocean and the
overlying atmosphere or ice. The inverse model seeks to apply the minimum amount of correction (in a least
squares sense) to the observation-based estimate of the regional circulation across the sections in order to satisfy
the conservation constraints. Volume transport estimates derived by Jullion et al. [2014] can thus be combined
with DIC observations interpolated on to the same spatial grid to obtain carbon transport fields.

Uncertainties are derived by the application of a Monte Carlo simulation, where 2000 runs of the inversion
were conducted applying a normally distributed offset for barotropic velocity and associated unknowns, with
the mean of these perturbations being equal to the inverse output, and its standard deviation equal to the
final model error. The error estimates presented here also include the contribution of DIC measurement
uncertainties (±2–3μmol kg�1), which were also applied during the Monte Carlo simulation in the same
manner as uncertainties for the velocities. The transport uncertainties represent the cumulative effect of
short-term barotropic perturbations on the final circulation field.

The nonsynoptic nature of the input data (taken from 2005 to 2010) is not thought to affect the derived
volume transports. The inverse model acts to minimize the influence on the solution of short-term barotropic
anomalies by adjusting velocities; thus, the volume transport estimates are considered to be representative
of a long-term (decadal) mean state. For chemical transports, however, while subsurface estimates can be
thought to be typical of a multiyear average, a similar description for the surface layer is not possible. The
large seasonal variability of carbon levels in these waters presupposes that the estimated carbon transport
may simply be representative of a long-term summer signal.

3.2. Air-Sea CO2 Fluxes

Historical surface ocean measurements of fCO2 are used in a two-step neural network approach to build
monthly air-sea CO2 flux maps for the Weddell region for the period of 1998–2011. This approach allows
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the assessment of both interannual and seasonal variabilities in sea surface fluxes independent of the
hydrographic section measurements.

Following the neural network method of Landschützer et al. [2014a], distinct biogeochemical provinces are
defined according to shared independent predictor variable—pCO2 relationships using a neural network
clustering algorithm. A feed-forward network method is then applied in each province to derive unique,
nonlinear pCO2-predictive equations for monthly and 1°×1° grid resolution. Global data were used in order to
overcome limited data coverage. The gridded observations of sea surface fCO2 from Surface Ocean CO2 Atlas
(SOCAT) v2 [Bakker et al., 2014] are converted to pCO2 [e.g., see Körtzinger, 1999] using in situ temperature and
mean monthly sea level atmospheric pressure of National Center for Environmental Prediction [Kalnay et al.,
1996]. Predictor variables for network training were National Oceanic and Atmospheric Administration optimally
interpolated surface temperature v2 [Reynolds et al., 2002], Globcolour-based chlorophyll a concentration
(http://www.globcolour.info), sea surface salinity and ocean mixed layer depth (from the Estimating the
Circulation and Climate of the Ocean project) [Menemenlis et al., 2008], and the monthly atmospheric CO2

mole fraction from GLOBALVIEW-CO2 [2011]. Predicted pCO2 values for each grid cell and month are then
combined with monthly wind speed fields (from the cross-calibrated multiplatform product [Atlas et al., 2011])
to calculate the air-sea CO2 flux, using the gas transfer coefficient of Sweeney et al. [2007] and the quadratic
wind speed dependence of the gas transfer velocity ofWanninkhof [1992]. As in the pCO2 climatology of
Takahashi et al. [2009], the presence of sea ice is accounted for bymaking the flux proportional to the fraction of
sea-ice-free water (derived from monthly sea ice fields of Rayner et al. [2003]).

Following the global analysis of Landschützer et al. [2014a], the uncertainty of the neural network-predicted
monthly sea surface pCO2 fields specifically for the Weddell Gyre is tested by conducting a residual analysis on
two separate observational data sets: SOCATv2 and additional data from the Global Ocean SurfaceWater Partial
Pressure of CO2 Database (LDEOv2013) [Takahashi et al., 2014] that are not included in SOCATv2. While the
former is not an independent validation (as the same data are used to generate pCO2 maps), the data can be
used to identify systematic biases; the latter are, however, a truly independent source for comparison. A paucity
of regional data both spatially and temporally limits the analysis to an annual basis across the 1998–2011 time
frame. The mean annual bias (observational data—neural network estimates) ± root-mean-square deviation
is computed as�4.0± 15.4μatm for SOCATv2 and�3.4± 16.8μatm for LDEOv2013 and represents both spatial
and temporal variabilities. There is no discernible residual trend for either data set across the time period,
although there is better agreement (lower residuals) in years with more observations. Hence, annual biases are
generally larger in data sparse years, particularly compared to the independent data product. This is also
reflected in our fairly large uncertainty estimate (see below). The residual analysis thus finds a small bias and
residual spread for both dependent and independent observations that are similar to those obtained for the
global analysis (1.5± 26μatm) [Landschützer et al., 2014a]. Following the same procedure, an assessment of the
uncertainty in the air-sea flux estimates was undertaken for the Weddell Gyre. Combining the error associated
with pCO2 gridding described above with that associated with the calculation of the gas transfer velocity
(the standard deviation of results from four different commonly used gas transfer formulations) enables the
quantification of the error associated with the Weddell Gyre’s CO2 source and sink terms.

3.3. Surface Carbon Balance

Biological production, salinity changes, and DIC-rich deepwater entrainment are each major processes
influencing CO2 content in surface waters. By quantifying their individual contributions to the surface
carbon balance, we can reach a third independent estimate of the annual mean air-sea CO2 flux. The
approach of Hoppema et al. [1999] is applied in this instance, utilizing differences in oxygen, salinity, and
nutrient concentrations in summer and winter in surface and WDW source waters to infer contributions to
net changes in DIC. TheWDW entrainment rate is estimated by calculating the fraction ofWDW, fWDW, necessary
to change the surface layer concentration [X]SL of oxygen from the beginning of the entrainment period ([X]SL1,
the start of winter and increased sea ice coverage (stations 62–68, covered by sea ice approximately 4weeks
later in May)) to the end of the entrainment period ([X]SL2, retreat of sea ice at the start of summer (stations
72–78, covered by sea ice ~1week prior to sampling in early January)), according to equation (1):

fWDW ¼ X½ �SL1 � X½ �SL2
� �

= X½ �WDW � X½ �SL2
� �

(1)

Global Biogeochemical Cycles 10.1002/2014GB005006

BROWN ET AL. ©2015. The Authors. 292

http://www.globcolour.info


where [X]WDW is the concentration inWarmDeepWater. Oxygen is chosen to trace this process as temperature
and salinity are nonconservative in the upper ocean due to heat exchange with the atmosphere and sea ice
formation/ice melt, respectively. The method assumes negligible changes in the oxygen concentration by
air-sea interaction (due to sea ice coverage) and biological activity under sea ice (due to wintertime darkness).
Using the entrainment rate, substitution of DIC concentrations in equation (1) yields the annual increase in
surface layer carbon levels due to entrainment.

Between sea ice retreat and sea ice formation at the onset of the following winter, the surface layer is
freshened through the action of precipitation and glacial melt, both reducing the DIC concentration.
Quantification of this process is achieved by the use of the salinity difference between the two periods;
normalizing prewinter DIC concentrations for this salinity change and comparing to its presummer value
reveal the overall effect of the freshwater addition.

Biological production moves the air-sea CO2 disequilibrium in the opposite sense to WDW entrainment by
reducing inorganic nutrient and carbon concentrations through photosynthesis. Part of the organic material
produced is subsequently exported from the surface layer to greater depths through various processes prior
to remineralization (the “biological carbon pump”). Assuming surface waters derive solely from WDW, it is
possible to quantify this process by comparing biologically modified parameters in surface water and WDW
at the end of the productive period (the onset of winter). Changes in oxygen or carbon dioxide are not

ASF

WF

EF

DP BP OP PP

Figure 3. (a) Cumulative contemporary carbon transports (with shaded uncertainties) for a number of water mass classifications. The positive (negative) values
indicate the transports into (out of) the Weddell Gyre box. Abbreviations: WF =Weddell Front, ACC = Antarctic Circumpolar Current, ASF = Antarctic Slope Front,
AP = Antarctic Peninsula, and SSR = South Scotia Ridge. (b) Air-sea carbon flux and total carbon transports for ANDREX and GLODAP data inputs for the full water
column and separated into constituent water masses for main import/export regions of the gyre, namely, the deep passages of the South Scotia Ridge and the
Weddell Front and Antarctic Slope Front (southward view). The error bars indicate the transport uncertainties (standard deviation) to represent short-term
variability of flows. Bathymetry from the ETOPO 2 2min global bathymetry database.
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suitable to track surface production due to the influence of air-sea exchange on their levels. However, nutrients
are more useful as they do not (phosphate) or negligibly (nitrate, through denitrification and N2 fixation)
interact with the atmosphere. Mean nutrient and DIC concentrations are determined for the surface andWDW
layers for winter-onset conditions using data from April 2010, from the latest stations of the JR239 section
(stations 62–68, where there was an approximately 4week gap before complete coverage by sea ice in
mid-May [Nolin et al., 1998]), and nutrient consumption rates are calculated for them. Through the use of
stoichiometric ratios, the analogous effect on carbon levels and the strength of the biological carbon pump can
be estimated. All values are salinity normalized following the convention of [X]SalNorm= ([X · 35])/Sal in order to
remove the effects of freshwater processes (precipitation and glacial melt) on surface water concentrations.

4. Results
4.1. Box Inverse Model

Cumulative transports of contemporary carbon for both full-depth and individual water masses along the length
of the Weddell Gyre box are shown with accompanying uncertainties in Figure 3a and Table 1, where positive
(negative) values indicate net import (export). A number of features dominate the plot: large carbon import
and export signals are associated with the SACCF and Southern Boundary of the ACC, where the ACC traverses
the domain’s northeastern corner (stations ~80–95), but their net effects on total box transports are negligible
due to the imposition of a net zero volume transport constraint. To the west, major full-depth outflow
around station 62 is associated with the Weddell Front. From station pair 75, there is evidence of the inner
gyre recirculation [Jullion et al., 2014], while waters from the Indian Ocean sector of the Southern Ocean
[Hoppema et al., 2001; Meredith et al., 2000] enter the box at the eastern boundary (around station 113) at the
Antarctic Slope Front. Of the individual water masses, WDW and WSDW contribute most to the overall
transports. WSDW transport across the section mainly takes place at locations where its movement is not
restricted by topography, i.e., east of the SSR and lower parts of the continental slope, although some flow
occurs through the deep passages of the SSR (notably Orkney Passage; station 33). The densest waters ofWSBW
are for the most part constrained to the Weddell region by bathymetry, with only a meandering signal across
the cruise track east of the SSR between stations 63 and 80 and a small net export into the ACC at station 93.

At the SSR, transport is mainly through the deep passages. As demonstrated most clearly by the WDW layer,
flow through these gaps is bidirectional with northward exports being intensified on their western side and
southward imports intensified on their eastern side. Lighter waters of the SW and WW have the smallest total
transports, with those in the ACC dominating the overall signal. A sizable WW export occurs at approximately
station 5 to the east of Elephant Island, is associated with the disintegration of the ASF over the South Scotia
Ridge, and has a large effect on the net budget for WW. Given that the DIC measurement uncertainty is
approximately 0.1% of the mean DIC concentration, carbon transport uncertainties scale in size with volume
transport magnitudes, such that the velocity estimate is by far the largest contributor to the overall error.

Table 1. Summary of Total Dissolved Inorganic Carbon Transports Across the Boundary Encircling the Weddell Gyre, for
Full-Depth and Specific Water Mass Types Based on the ANDREX and GLODAP Data Setsa

Carbon Budget ANDREX
(~2009) (Pg C yr�1)

Carbon Budget GLODAP
(~1994) (Pg C yr�1) Volume Transports (Sv)

SW (γn< 27.55) 0.837 ± 0.031 0.818 ± 0.032 1.0 ± 0.6
WW (27.55< γn< 28) �4.971 ± 0.084 �4.959 ± 0.084 �5.7 ± 1.7
WDW (28< γn< 28.27) 8.060 ± 0.153 8.045 ± 0.152 9.1 ± 3.0
WSDW (28.27< γn< 28.40) �2.065 ± 0.117 �2.038 ± 0.116 �2.3 ± 2.3
WSBW (28.40< γn) �1.623 ± 0.081 �1.615 ± 0.081 �1.8 ± 1.6
Volume total 0.239 ± 0.009 0.252 ± 0.009 0.3 ± 0.2
Eddy flux �0.290 ± 0.004 �0.289 ± 0.004 �0.4 ± 0.0
Sea-ice export �0.001 ± 0.0007 �0.001 ± 0.0007 �0.013 ± 0.002
Total storage �0.005 ± 0.001 �0.005 ± 0.001
Residual 0.058 ± 0.010 0.044 ± 0.010
(Air to sea flux)

aPositive is the flux into the region; negative is the flux out of the region. Uncertainties represent the 95% confidence
intervals. Water mass transports are from Jullion et al. [2014]. SW: Surface Water, WW: Winter Water, WDW: Warm Deep
Water, WSDW: Weddell Sea Deep Water, and WSBW: Weddell Sea Bottom Water.
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4.2. Weddell Gyre Contemporary Carbon Budget

The combination of the measured DIC field with an estimate of the underlying circulation yields a total net
oceanic carbon transport into or out of the Weddell Gyre (Table 1). However, to construct a budget for the
region, it is necessary to include other processes that add or remove carbon from the local system: the
contributions of eddy fluxes, sea ice export, glacial/freshwater inputs, carbonate sedimentation, and accumulation
of anthropogenic carbon in the water column are thus additionally calculated. Sensitivity of the budget to the
synoptic nature of the ANDREX DIC measurements is also tested through the use of gridded DIC outputs from
the Global Data Analysis Project (GLODAP) carbon synthesis project [Key et al., 2004], a data set that collates
high-quality, internally consistent hydrographic data principally from World Ocean Circulation Experiment
(WOCE) cruises of the 1990s. GLODAPDIC concentrations are interpolated onto ANDREX bottle locations before
combination with ANDREX hydrographic data-derived volume transport estimates. Like ANDREX, GLODAP
cruise timings are summer dominated but act as a marker of a decadally different DIC signal, temporally
separated from the ANDREX data by approximately 15 years. The Southern Ocean State Estimate model
[Mazloff et al., 2010] is used to derive eddy flux contributions for each of the 10 model neutral density layers
[Jullion et al., 2014]. Earlier inverse models have either classified eddy fluxes as a source of uncertainty or
disregarded them completely. In this study, it was anticipated that eddy-induced transports would constitute a
sufficiently significant contribution to exchanges across the rim of the gyre [Schröder and Fahrbach, 1999] to
necessitate their quantification. Here they balance the inversion-derived net horizontal transport divergence
[Jullion et al., 2014] and although relatively small volumetrically, carry a significant carbon signal. The mean
DIC concentrations for each layer (weighted to account for changing station frequency resolution) are
combined with the advective and diffusive eddy terms for each layer, yielding a net export by eddy fluxes
of �0.290 ± 0.004 Pg C yr�1. Carbon associated with sea ice export is estimated using the inversion-derived
solid freshwater flux of 13 ± 1m Sv across the edge of the gyre and a mean sea ice DIC concentration of
~300 μmol kg�1 measured in the Amundsen Sea [Fransson et al., 2011]. This results in a loss of carbon from
the region due to sea ice export of �0.00142 ± 7e�5 Pg C yr�1. The loss of carbon through burial is deemed
negligible due to substantial remineralization in the upper water column [Usbeck et al., 2002; Wefer and
Fischer, 1991] and low overall regional burial rates [Hulth et al., 1997; Sayles et al., 2001]. It is not possible to
estimate the contribution of dissolved organic carbon to the overall budget due to the lack of associated
measurements. Net water column carbon storage (corresponding to anthropogenic carbon buildup) is
calculated using linear time trends in DIC concentrations estimated for individual density layers in the
central Weddell Sea [van Heuven et al., 2011]. DIC increase rates are combined with water mass volumes
derived from area andmean thicknesses extracted from theWOCE Global Hydrographic Climatology [Gouretski
and Koltermann, 2004] for individual density layers to give a mean annual total storage term for the Weddell
region of 0.005±0.001 PgC yr�1.

The combination of all import and export terms closes the carbon budget for the region, with the residual
equivalent to the net annual air-sea flux term. Table 1 summarizes the ANDREX and GLODAP data-derived
carbon budgets for the Weddell region, including the net contributions of individual water masses where a
positive (negative) sign implies flux into (out of) the box. The uncertainties for all the budget terms are the
95% confidence intervals of the mean and are representative of a multi-annual-mean view of the carbon
cycle in the Weddell Gyre for the 2005–2010 summer period.

Net oceanic carbon imports of +0.239±0.009PgC yr�1 for ANDREX and +0.252±0.009PgC yr�1 for GLODAP
lead to net air-to-sea fluxes (oceanic uptake) of 0.058±0.010 PgCyr�1 and 0.044±0.010 PgCyr�1, respectively.
This implies that the Weddell Gyre region is a CO2 sink and that the calculated flux for the 1990s is consistent
with the late 2000s. The net oceanic term is principally dictated by deepwater transports, in particular the
balance between the import of WDW and export ofWW and AABW (as WSDW and WSBW) in the double-cell
structure of the overturning circulation [Jullion et al., 2014]. Although uncertainties on these individual
transports are relatively large, volume conservation imposed by the box inversion dictates that large
imports will always be balanced by large exports and thus volume and carbon transport residual uncertainties
are small. The net oceanic term is offset by sizable carbon export by the eddy volume flux that although
volumetrically small (�0.34 ± 0.07 Sv), balances the net horizontal transport divergence derived from the
inversion [Jullion et al., 2014] and thus has an associated carbon signal of similar magnitude. Figure 3b
summarizes the total carbon budget, focusing on the major transports into and out of the region, and the
decomposition of these into water mass contributions. The Antarctic Slope Front and the Weddell Front
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regions are the locations of greatest transport magnitude, dwarfing the residual net air-sea flux and eddy
fluxes. The importance and relatively large uncertainties of carbon transports at these fronts imply that the net
budget is sensitive to the long-term balance between these flows. The effect of regional overturning and
densification of water masses can be seen by the assessment of theWDW/AABW (WSDW+WSBW) relationship
in these two counterbalancing transports as they pass through the region: WDW has a greater magnitude in
imported flows, which then shifts to denser AABW waters dominating the exported flows. The substantial
transports through the SSR identified in Figure 3a are also visible here. The complex dynamics of movement
through the passages is clear, with bidirectional flows of high variability throughout the water column, in
addition to the large, sustained WSDW export through Orkney Passage [Naveira Garabato et al., 2002].

4.3. Air-Sea CO2 Uptake

Although small compared to oceanic transports, the box inverse-derived net air-to-sea flux is significantly
different from zero for both carbon data sets and estimated to be 0.044 to 0.058±0.010 PgC yr�1. While there
are some differences between ANDREX and GLODAP outputs, they are not statistically significant and indicate
that the predominant control on the carbon fluxes is the underlying circulation rather than changes in carbon
inputs over a 15 year period, despite an increase of ~34ppm CO2 in the atmosphere [Thoning et al., 2010].
The inverse model reduces the impact of time-varying transport processes (variable barotropic perturbations)
on the final circulation field to the extent that it is thought to be representative of a multiyear to decadal mean
state [Jullion et al., 2014]. However, the residual air-sea carbon uptake calculated may not be illustrative of
the same time scale due to the temporally aliased nature of the input carbon data, whether collected during the
summertime ANDREX or the summer-dominated GLODAP cruises. Independent neural network-derived
monthly CO2 flux maps for the Weddell region between 1998 and 2011 are estimated to investigate
seasonal variability and compare to the box inversion outputs.

Seasonal means for each 1°×1° grid cell using the entire 14 year neural network data set are shown in Figure 4,
with positive values representing ocean to atmosphere outgassing and negative values indicating ocean
uptake of CO2. During spring, maximum sea ice coverage (>95% of box [Brown et al., 2014]) slowly recedes
and the initial stages of biological production and sea ice melt start to drawdown carbon levels to the extent
that the net outgassing signal begins to be supressed and reduced. Moving into summer, increased light
availability, diminished sea ice coverage (<30% of box), greater stratification caused by ice melt and higher
temperatures, and a possible ice melt fertilization effect lead to enhanced biological productivity [Bakker
et al., 2008; Geibert et al., 2010], causing the drawdown of surface ocean pCO2 levels and a widespread net
carbon uptake signal. The uptake continues into the autumn, albeit to a reduced extent: to the east, a slight
net outgassing signal becomes visible, possibly as the balance between upwelling of high-DIC deep waters
and biological uptake shifts more to the former. This area is known for its spatial and temporal variabilities
[Bakker et al., 1997; Bellerby et al., 2004; Hoppema et al., 2000; Jabaud-Jan et al., 2004; Metzl et al., 1991;
Robertson and Watson, 1995], and there is significant year-to-year variability in sign and magnitude of carbon
flux across the 1998–2011 period for the area (Figure 5a), possibly related to changing wind fields and frontal
positions. In winter, sea ice coverage reaches its greatest extent, with the deepening of the mixed layer
bringing carbon-enriched waters to the surface and outgassing north of the ice edge. The largest flux signals
are located north of the ANDREX region. These relate to the positions of the ACC fronts and the strong
westerly winds driving deep upwelling and more northerly subduction. The fluxes greatly exceed those
identified farther south, and the neural network approach reproduces well the regional source and sink
trends across the Atlantic sector of the Southern Ocean observed with other methods [Gruber et al., 2009;
Landschützer et al., 2014a; Lenton et al., 2013; Takahashi et al., 2009].

To investigate the interannual variability, the mean 1°×1° monthly air-sea CO2 flux estimates are determined
for the Weddell region for the entire time series. Figure 5a shows a recurrent seasonal signal of summer
uptake and winter outgassing but also variability in fluxmagnitude on a year-to-year basis. For the earlier part

Figure 4. Mean seasonal air-sea CO2 fluxes for the Atlantic sector of the Southern Ocean calculated using 1998–2011
SOCATv2 [Bakker et al., 2014] sea-surface fCO2 measurements interpolated using a two-step neural network technique
[Landschützer et al., 2013]. In common with most examinations of air-sea CO2 fluxes, negative fluxes indicate uptake of
carbon by the ocean, and positive fluxes indicate ocean outgassing. The pink triangles indicate ANDREX station locations
and the extent of the Weddell region. The white regions indicate zero air-sea flux, and within the Weddell box, represent
the presence of sea ice.
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Figure 5. (a) Monthly air-sea CO2 fluxes for the Weddell region for 1998–2011. The light shaded area indicates the time
period of hydrographic sections. The darker shaded area represents the best estimate of the uncertainty of these
estimates, taking into account measurement, gridding, mapping, and air-sea flux uncertainties. (b) Mean monthly
(curves) and annual (horizontal lines) air-sea CO2 fluxes for the Weddell region for 1998–2011 (solid line) and 2008–2010
(time span of hydrographic cruises) (dashed line). Summertime ocean inversion-derived estimates of air-sea CO2 fluxes
for ANDREX and GLODAP input data sets are also shown. The shaded uncertainties represent the 95% confidence
intervals of the variability of the data. The thin solid line curves represent the temporal and spatial variabilities in the
fluxes, accounting for measurement, gridding, mapping, and air-sea flux uncertainties. Both Figures 5a and 5b were
calculated using SOCATv2 [Bakker et al., 2014] sea-surface fCO2 measurements interpolated using a two-step neural
network technique [Landschützer et al., 2013]. In common with most examinations of air-sea CO2 fluxes, negative fluxes
indicate uptake of carbon by the ocean, and positive fluxes indicate ocean outgassing.
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of the time series, wintertime sea-to-air fluxes eclipse summer air-to-sea fluxes, while for the latter part, the
reverse is true. This indicates substantial variability in the net annual carbon flux signal [Landschützer et al.,
2014a]. The shaded areas represent the best estimate of the uncertainty of the monthly fluxes, derived by
combining the error estimates of measurements, gridding, mapping, and gas transfer velocities. They
characterize both the subregional variability observed within the box (Figure 4) and inherent within the
predictive parameter fields and the uncertainty associated with deriving flux estimates from limited spatial
and temporal data availability. On a global scale, gas exchange is the predominating contributor to the
overall uncertainty [Landschützer et al., 2014a]. In the Weddell Gyre, however, the data residual will be at
least as significant due to reduced data availability and autocorrelation associated with this smaller, highly
variable region. Average monthly flux terms were calculated for the 14 year time series, as well as for the
shorter period spanning the hydrographic measurements (2008–2010; shaded in Figure 5a). These are
shown in Figure 5b alongside their 95% confidence intervals (shaded) and the best estimate of the overall
uncertainty of the neural network methodology. The relatively large mean uptake for the ANDREX period
previously noted is apparent here. The greatest uncertainty for both long and short time spans occurs
in the late summer and autumn and is likely related to the temporal variability associated with the timing
and size of biological production, wind-driven mixed layer deepening, and the return of sea ice coverage.
The larger uncertainty for the longer time series represents the variability in the timing of these events.
Superimposed are the air-sea flux terms from the ocean inversion for the ANDREX and GLODAP data. They
compare well with the sea-surface pCO2-derived summer fluxes. Both indicate that the resultant uptake
fluxes of 0.044 to 0.058 ± 0.010 Pg C yr�1 correspond well to summer conditions. The annual means were
calculated from both the full (1998–2011) and truncated (2008–2010) data sets, giving net uptakes of
0.002 ± 0.007 PgC yr�1 and 0.012±0.024PgC yr�1, respectively (where the uncertainty is the 95% confidence
interval), suggesting a negligible to small annual CO2 sink status for the region.

4.4. Surface Carbon Balance

The seasonal signals presented have shown the importance of entrainment and biological production on
surface DIC concentrations and the direction of the flux between the atmosphere and the ocean. Following
Hoppema et al. [1999], the summer-winter differences in oxygen, salinity, and nutrient concentrations in source
WDW and surface waters across the period of sea ice coverage are analyzed to infer net changes in DIC.

Oxygen values from Table 2 are applied to equation (1) to estimate the mean WDW fraction. These are taken
from the subsurface temperature maximum forWDW (averaged from the two cruises along the northern
boundary of the gyre) and stations 72–78 for the post-sea-ice surface layer (covered by sea ice ~1week prior to
sampling in early January [Nolin et al., 1998]) and stations 62–68 for the pre-sea-ice conditions (an approximately
4week gap before complete coverage in mid-May). A mean WDW fraction entraining into the mixed layer of
0.202 ± 0.054 is calculated for the end of winter. Assuming a mean mixed layer depth of 100m (average
calculated from ANDREX CTD profiles, also Hoppema et al. [1999]), 20.2% or 20 ± 5m of the surface layer
is thus renewed by “pure” WDW each year, equating to a mean entrainment age of 5.0 ± 1.4 years. The
uncertainty estimate does not cover a number of aspects, such as the nonconsecutive nature of the data,
changes that have occurred between sampling, and the onset/retreat of sea ice and interannual variability.

Table 2. Top: Mean Oxygen and DIC Concentrations for the Surface Mixed Layer and WDW Layer for April and Januarya

Surface Layer WDW Layer

Winter Onset
(April)

Summer Onset
(Jan)

Winter Onset
(April)

Summer Onset
(Jan)

Oxygen (μmol kg�1) 339.7 ± 1.7 309.7 ± 6.2 191.0 ± 2.3 191.5 ± 3.3
DIC (μmol kg�1) 2167.1 ± 5.1 2210.2 ± 4.5 2270.6 ± 2.7 2271.4 ± 4.7
Salinity 33.845 ± 0.074 34.679 ± 0.006

Salinity normalized
Nitrate (μmol kg�1) 25.1 ± 0.44 35.2 ± 1.80
Phosphate (μmol kg�1) 1.73 ± 0.07 2.4 ± 0.03
DIC (μmol kg�1) 2241.4 ± 8.4 2289.3 ± 4.2

aBottom: Salinity-normalized (multiplied by 35/Sal) mean concentrations of nutrients and DIC for the same water
masses for April. January data taken from cruise 740H20081226; April data taken from from cruise 74JC20100319.
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However, effects are thought to be small as the pre-sea-ice oxygen concentrations are close to/at saturation
and the timing of sea ice retreat occurred shortly before sampling.

The annual increase in surface layer DIC levels due to entrainment is reached using equation (1) and the
entrainment rate. Substituting prewinter surface layer [X]SL1 and WDW carbon data from Table 2 yields a
presummer surface layer DIC [X]SL2 value of 2188.1μmol kg�1. Comparing with the prewinter surface
concentration of 2167.1μmol kg�1 implies a net increase in DIC of 20.9 ± 1.6μmol kg�1 yr�1 due to WDW
entrainment. Repeating the process for salinity, an increase of 0.169 from 33.845 (prewinter) to 34.014 after
entrainment is expected. To calculate the effects of the summer freshening, a prewinter DIC concentration
unaffected by salinity changes can be calculated as 2167.1 · (34.014/33.845)=2177.9μmolkg�1. This means that the
annual freshening of the surface layer reduces the DIC concentration by 2177.9–2167.1=10.8±0.3μmolkg�1 yr�1.
Combined, the net annual entrainment/freshening signal of DIC is +10.1± 1.5μmol kg�1 yr�1.

The effect of biological consumption or net community production was estimated by comparing the salinity-
normalized concentrations of nitrate and phosphate in the surface layer with those inWDW and division by the
surface layer renewal rate (Table 2). Decreases of 2.03± 0.37μmol kg�1 yr�1 and 0.13± 0.02μmol kg�1 yr�1

were calculated for nitrate and phosphate, respectively. The effect of this biological activity on DIC levels
can be estimated using nutrient changes in combination with suitable remineralization ratios (e.g., Redfield
stoichiometry). We follow Hoppema et al. [1999] by applying both classical Redfield ratios [Redfield et al., 1963]
and more recent approximations [Anderson and Sarmiento, 1994] commonly used in the region [Hoppema,
2004a; Hoppema et al., 2002; Lo Monaco et al., 2005; van Heuven et al., 2011] on both nitrate and phosphate
depletion rates and calculate a mean annual biological carbon consumption of 14.5 ± 2.2 μmol kg�1 yr�1

(Table 3). Figure 5b summarizes the processes of the surface layer DIC balance budget and signals a
residual term of �4.3 ± 2.7 μmol kg�1 yr�1. Combining a mixed layer depth of 100m and a Weddell region
surface area of 6.2 × 1012m2, a net annual air-sea CO2 flux into the ocean of 0.033 ± 0.021 Pg C yr�1 is
calculated. This compares well to the annual sink of 0.012 ± 0.024 PgC yr�1 derived from neural network
sea surface ΔpCO2 estimates for the 2008–2010 period. This is not entirely unexpected as a significant amount
of smoothing is involved in both methods: the multiyear mean annual cycle from the neural network approach
removes part of the monthly and seasonal variabilities, while the use of chemical properties from the times
of onset and retreat of sea ice similarly integrates the variability of the key processes affecting DIC levels,
deconvolving the larger-scale response over time.

The impact of end-member selection and the representativeness of the northern part of the gyre for the
region as a whole are tested by the substitution of the mean WDW characteristics with those taken from
alternative Weddell Gyre locations, namely, the western Weddell Sea (1996 SR04 section), central Weddell
Sea (2010 0°E section), and the eastern boundary (2008 I06S occupation). Propagation of substituted
oxygen values (187.6 to 195.2 μmol kg�1) through the calculation scheme generates mean entrainment
ages ranging from 4.74 to 5.25 years, within the uncertainty estimate presented here. Inclusion of alternate
WDW DIC levels (2258.0 to 2268.7μmol kg�1) produces a net change in surface DIC levels through entrainment
of 17.9 to 20.4 μmol kg�1 yr�1, compared to 20.9 ± 1.6 μmol kg�1 yr�1 for the northern gyre end-member.
For the effects of freshening, substitute salinity values (34.654 to 34.688) elicit a DIC change of �10.2
to �11.0 μmol kg�1 yr�1, compared to the �10.8 ± 0.3 μmol kg�1 yr�1 originally calculated. Finally, the
use of distinct salinity-normalized nutrients (nitrate at 33.3 to 34.7 μmol kg�1 and phosphate at 2.30 to

Table 3. Net Annual Biological Consumption of Nutrients and DIC Calculated Using Remineralization Ratiosa

Net Annual Biological Nutrient
Consumption

(μmol kg�1 yr�1)

Net Annual Biological
Carbon Consumption

Mean Annual Biological Carbon
Consumption

(μmol kg�1 yr�1)

(μmol kg�1 yr�1)

Redfield et al. [1963] Anderson and Sarmiento [1994]

RC:N 6.6 RC:N 7.3 14.5 ± 2.2
Nitrate 2.03 ± 0.37 13.4 ± 2.5 14.8 ± 2.7

RC:P 106 RC:P 117
Phosphate 0.13 ± 0.02 14.1 ± 1.7 15.6 ± 1.8

aConsumption values come from comparing surface layer andWDW values and dividing by the surface layer renewal rate. The mean annual biological carbon
consumption is the mean of the four values for the net annual biological carbon consumption.
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2.41 μmol kg�1) and DIC (2280.7 to 2289.1 μmol kg�1) produces estimates of DIC change caused by
biological activity of �11.9 to �14.2 μmol kg�1 yr�1, in comparison to a northern end-member-derived
value of�14.5± 2.2μmol kg�1 yr�1. Brought together within the surface layer budget, the residual air-sea CO2

exchange term is calculated to be �3.5 to �5.0± 2.2μmol kg�1 yr�1, equivalent to 0.027 to 0.038PgC yr�1.
Although there are some variabilities between the individual outputs, due to the internal compensation
and balancing nature of the transformations, the resultant derived air-sea CO2 flux is consistent and the
methodology is robust to WDW end-member selection.

5. Discussion
5.1. Ocean Transports

The combination of observed interior carbon distributions with an estimate of the underlying circulation reveals
the enormous quantities of carbon involved in regional horizontal transports and the relatively small net air-sea
exchange that evolves from them. Water mass transformation enables the conversion of warm, salty WDW
to colder, fresherWW andWSDW andWSBW (Table 1). This dual-cell overturning circulation [Jullion et al., 2014] is
manifested by open-ocean wind-forced upwelling of WDW into the surface layer and downwelling (through
cooling and salinity-derived buoyancy losses) at the gyre boundaries. Regional carbon dynamics are intrinsically
linked to these processes, with the carbon signal associated withWDW entrainment dampening the annual
CO2 sink capacity of the surface ocean and making the area a source of CO2 to the atmosphere for half
of the year (Figures 3 and 5). Vertical transport estimates from the box inversion apportion a gyre interior
upwelling of 2 ±� 2 Sv into the winter surface layer [Jullion et al., 2014] that equates to a flux of 1.8 PgC yr�1

(assuming a DIC concentration of 2271μmol kg�1 in WDW). This compares well with a previous estimate of
midgyre upwelling of 1.6 PgC yr�1 [Hoppema et al., 1999] for the Weddell Sea only. While a small fraction of the
entrained signal is outgassed within the gyre during winter, a significant proportion exits the region to the
east of Elephant Island (around stations 4 and 5; Figure 3a), where it enters the ACC’s frontal system or
participates in deepwater formation at the gyre’s periphery (~8 Sv [Jullion et al., 2014], 7.3 Pg C yr�1) and
contributes to a net AABW (WSDW and WSBW) export of �3.7 Pg C yr�1. Part of this signal derives from the
sea ice pump, where DIC is added to the shelf waters as they become more dense by freshwater removal
and brine rejection during sea ice formation. The remainder is derived directly from WDW as it is entrained
by the dense waters descending the western and southwestern continental shelves. Both processes contribute
to the region’s importance for the removal of carbon dioxide from contact with the atmosphere and injection
to the global abyss on climatically important time scales [Hoppema, 2004a; Marinov et al., 2006].

5.2. Air-Sea CO2 Flux

Due to low data coverage across the Southern Ocean, few alternative direct air-sea CO2 flux estimates for the
Weddell region are available with which to compare the values calculated here and larger-scale estimates
that do exist show significant variability. The area southwest of the SR04 line between Joinville Island and
Kapp Norvegia—accounting for ~27% of the surface area of the ANDREX region surface area—is assessed
as a small net annual sink (�0.01 Pg C yr�1 [Hoppema et al., 1999; Stoll et al., 1999], using surface pCO2

measurements and entrainment rates, fitting well with our estimates from a greater area. Meanwhile,
more extensive circumpolar studies show contrasting tendencies: south of 58°S (where 96% of the study
box lies), sea surface pCO2 observations [Takahashi et al., 2009] and atmospheric inversions [Peylin
et al., 2013] indicate a small CO2 source of +0.04 ± 0.02 Pg C yr�1 and +0.03 ± 0.03 PgC yr�1, respectively;
ocean biogeochemical models prescribe a negligible sink of �0.04 ± 0.09 Pg C yr�1 [Lenton et al., 2013],
while ocean inversions suggest a higher carbon uptake of �0.07 ± 0.01 PgC yr�1 [Lenton et al., 2013]
or �0.21 ± 0.08 PgC yr�1 [Gruber et al., 2009] depending on weightings applied. Regarding the neural
network methodology applied to estimate the fluxes in the Weddell region, it was found that the approach
reproduces the available data well, with an overall small bias and similar uncertainty in predicted values to the
much wider scale global analysis. However, the paucity of spatial and temporal data in this relatively small but
highly variable region leads to a large overall uncertainty in integrated fluxes, where it is thought that data
residuals contribute at least as much to the overall uncertainty as the error in gas exchange. The estimation of
the contribution of individual drivers to the uncertainty is even less straightforward, mainly due to cross
correlations within the predictors; e.g., variabilities (seasonal and interannual) in mixed layer depth are
correlated to temperature variabilities.
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5.3. Surface Layer Carbon Balance

A comparison of outputs from the surface layer carbon balance method for data from 1993 to 1996 from
the center of the Weddell Gyre [Hoppema et al., 1999] yields different estimates for the magnitude of the
individual budget terms. The WDW entrainment rate of 35 ± 10myr�1 found by Hoppema et al. [1999] is
higher than the 20± 5myr�1 presented here and is likely related to the greater divergent wind stress field
and upwelling strength toward the center of the gyre. Additional upwelling estimates of 17myr�1 [Gordon
et al., 1984] and 44myr�1 [Gordon and Huber, 1990] suggest that our outputs are at the lower end of the range.
The variability observed in these upwelling estimates is largely thought to be reflective of the different locations
and times of observations and how short-term variability impacts the local calculation of the mixed layer
depth. DIC changes due to entrainment reflect these differing replenishment rates with a historical value of
+26 μmol kg�1 yr�1 [Hoppema et al., 1999] compared to the new +21μmol kg�1 yr�1 signal here. Freshwater
dilution effects showhigh coherence between the two studies (�11 and�10.8μmol kg�1 yr�1), but differences
are apparent in the biological production signals: higher historical nutrient consumptions (2.81 versus
2.03 μmol kg�1 yr�1 for nitrate and 0.18 versus 0.13 μmol kg�1 yr�1 for phosphate) lead to a larger estimate
of the biological pump (�19.9 ± 2.4 μmol kg�1 yr�1 versus �14.5 ± 2.2 μmol kg�1 yr�1) for Hoppema et al.
[1999] and this study, respectively, caused mainly by the different entrainment estimates. These values translate
to an annual biological production in the Weddell region of 0.14 Pg C yr�1 [Smith, 1991], 0.17 Pg C yr�1

[Chavez and Toggweiler, 1995], 0.13 ± 0.02 PgC yr�1 [Hoppema et al., 2002], and 0.18–0.25 Pg C yr�1 [Moreau
et al., 2013]. The 0.11 PgC yr�1 of this study lies at the lower end of published estimates but is comparable
with the broader range within the uncertainty margins. The range of estimates will likely be an indication
of the natural interannual and spatial variabilities that will impact individual studies to different extents.
The studies by Hoppema et al. [1999] and this study have similar residuals (air-sea CO2 uptake) of
3.6 ± 3.3 μmol kg�1 yr�1 [Hoppema et al., 1999] and 4.3 ± 2.7 μmol kg�1 yr�1 (ANDREX). An air-sea CO2

uptake of �0.008 ± 0.007 PgC yr�1 is calculated for the southwestern sector of the Weddell region (area
~1.7 × 1012m2), and extrapolating this to the full domain (area ~6.2 × 1012m2) yields an annual uptake
estimate of �0.028 ± 0.024 PgC yr�1. This compares well with the estimate of �0.033 ± 0.021 Pg C yr�1.
The neural network estimate of 0.012 ± 0.024 PgC yr�1 is also within their respective error bounds.

6. Conclusions

Three independent methods have been used to ascertain the magnitude and direction of the air-sea carbon
dioxide flux in the Weddell region. The application of an ocean inversion technique [Jullion et al., 2014] to
hydrographic data from around the boundary of theWeddell Gyre reveals a carbon budget that is sensitive to
the underlying circulation scheme, with deepwater mass transports of WDW and WSBW dominating. A
dual-cell vertical overturning circulation leads to both significant upwelling and the delivery of large
quantities of carbon to the deep ocean, culminating in a net export of 3.7 Pg C yr�1 of carbon in AABW
(comprising WSDW and WSBW) from the region (Table 1), and a substantial transferral (~5 Pg C yr�1) of
carbon inWSDW across the South Scotia Ridge into the global abyssal oceans. The budget residual suggests an
air-to-sea carbon flux for the summer months that is relatively insensitive to the source of input carbon data
(ANDREX or GLODAP). A comparison with historical sea surface fCO2 observations from the SOCAT database
[Bakker et al., 2014] interpolated using a two-step neural-network-based technique [Landschützer et al., 2014a]
confirms the summertime carbon sink quantified in the ocean inversion (Figure 5b). It also reveals a similarly
sized outgassing signal for the winter months. Combined together, the pCO2 fields diagnose a negligible to
small annual carbon sink for the region, in line with previous estimates for the circumpolar Southern Ocean
region of this latitude range [Gruber et al., 2009; Lenton et al., 2013; Peylin et al., 2013]. However, the strong
seasonal and interannual variations also imply sensitivity of carbon fluxes to both short- and long-term
variations in factors, such as changes in wind stress, sea ice coverage, and heat and freshwater fluxes
[Lenton et al., 2013]. On an annual time scale, a surface layer carbon budget confirms that theWeddell region acts
as a small atmospheric carbon sink. A breakdown of processes indicates that although strong entrainment of
WDW into the surface layer raises dissolved inorganic carbon levels during winter, the effects of freshwater inputs
and biological production in summer on carbon drawdown exceed those of entrainment (Figure 6).

The Weddell region carbon sink is small in relation to the estimates of net global ocean carbon
uptake (�2.0 ± 0.2 Pg C yr�1 [Wanninkhof et al., 2013]) and of the Southern Ocean sink south of 44°S
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(�0.42 ± 0.07 Pg C yr�1 [Lenton et al.,
2013]). The locations of highest carbon
outgassing and uptake signals coincide
with ACC frontal positions, which for
the most part lie outside of the ANDREX
region (Figure 1). However, the small
net sink term belies the importance
of the Weddell Gyre in the global
carbon cycle. First, moderate summer
biological production and freshwater
inputs offset the large upwelling-
related carbon outgassing that may
have dominated in preindustrial times
[Hoppema, 2004b] and led the region
to be a net source to the atmosphere.
Second, exported particulate organic
matter is remineralized at relatively
shallow depths (<800m) in the Weddell

Gyre, and the buildup of dissolved inorganic carbon and coincident decrease in oxygen lead to the
formation of a variant ofWDW (named Central Intermediate Water by Hoppema et al. [2002]) that is too dense to
mix with shelf waters. With only ~20% of these waters believed to ultimately enter the surface layer, the vast
majority exits the region northward entering the deep ACC, acting as an important conduit for transporting
natural carbon away from the surface to the deep ocean [Hoppema et al., 2002]. The increase of 8μmol kg�1

in the mean DIC concentration of WDW between entering the gyre as part of the Antarctic Slope Front at
30°E and leaving at the Weddell Front at ~25°W (Figure 1) exemplifies this process. Finally, dense water
production and ventilation in the western and southern parts of the gyre transfer large quantities of climatically
important gases (e.g., anthropogenic carbon and chlorofluorocarbons (CFCs)) to the abyssal ocean on long
time scales. This is evidenced by the buildup of dissolved inorganic carbon [van Heuven et al., 2011] and CFCs
[Huhn et al., 2013] in deepwatermasses in the region, the large net carbon export ofWSDW andWSBW (Table 1),
and their spreading northward along the ocean abyss [Orsi et al., 1999; Ríos et al., 2012].

With increasing atmospheric CO2 levels and a steady state ocean, the region would be expected to become
more important globally, with upwelling-associated carbon outgassing progressively suppressed and deep
waters carrying ever increasing anthropogenic carbon loadings [Lovenduski and Ito, 2009; Matear and Lenton,
2008]. However, given the sensitivity of the carbon fluxes to the horizontal and vertical overturning circulations,
it is not known how the ocean physics or chemistry of the region will respond in an era of an accelerating
hydrological cycle, increased glacial export, changing sea ice extent, wind stress trends, and warming shelf
waters. The budgets determined here represent an important regional benchmark against which future
changes can be compared and highlight critical processes that must be included if predictive skill concerning
future change is to be increased.
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